Rocks: Materials of the Solid Earth

Rock Cycle

- Shows the interrelationships among the three rock types
- Earth as a system: The *rock cycle*
 - Magma
 - Crystallization
 - Igneous rock
 - Weathering, transportation, and deposition

Rock Cycle

- Earth as a system: The *rock cycle*
 - Sediment
 - Lithification
 - Sedimentary rock
 - Metamorphism
 - Metamorphic rock
 - Melting
 - Magma
Rock Cycle

- **Earth as a system: The rock cycle**
 - Full cycle does not always take place due to "shortcuts" or interruptions
 - e.g., sedimentary rock melts
 - e.g., igneous rock is metamorphosed
 - e.g., sedimentary rock is weathered
 - e.g., metamorphic rock weathers

The Rock Cycle

![Figure 2.2](Image)

Igneous Rocks

- Form as magma cools and crystallizes
 - Rocks formed inside Earth are called *plutonic* or *intrusive* rocks
 - Rocks formed on the surface
 - Formed from *lava* (a material similar to magma, but without gas)
 - Called *volcanic* or *extrusive* rocks
Igneous Rocks

- Crystallization of magma
 - Ions are arranged into orderly patterns
 - Crystal size is determined by the rate of cooling
 - Slow rate forms large crystals
 - Fast rate forms microscopic crystals
 - Very fast rate forms glass

Igneous Rocks

- Classification is based on the rock’s texture and mineral constituents
 - Texture
 - Size and arrangement of crystals
 - Types
 - *Fine-grained*—fast rate of cooling
 - *Coarse-grained*—slow rate of cooling
 - *Porphyritic* (two crystal sizes)—two rates of cooling
 - *Glassy*—very fast rate of cooling

Fine-Grained Igneous Texture

Figure 2.4 A
Coarse-Grained Igneous Texture

B. Figure 2.4 B

Porphyritic Igneous Texture

Figure 2.6

Obsidian Exhibits a Glassy Texture

A Figure 2.7 A
Igneous Compositions

- Composed mainly of silicate minerals
- Two major groups
 - Dark silicates = rich in iron and/or magnesium
 - Light silicates = greater amounts of potassium, sodium, and calcium

Igneous Compositions

- Granitic rocks
 - Composed almost entirely of light-colored silicates—quartz and feldspar
 - Also referred to as *felsic*: feldspar and *silica* (quartz)
 - High silica content (about 70 percent)
 - Common rock is *granite*

Igneous Compositions

- Basaltic rocks
 - Contain substantial dark silicate minerals and calcium-rich plagioclase feldspar
 - Also referred to as *mafic*: magnesium and *ferrum* (iron)
 - Common rock is *basalt*
Igneous Compositions

- Other compositional groups
 - **Andesitic** (or intermediate)
 - Common volcanic rock is andesite
 - **Ultramafic**
 - Peridotite

Classification of Igneous Rocks

Figure 2.8
How Different Igneous Rocks Form

- Bowen’s reaction series
 - Magma crystallizes over a temperature range of several hundred degrees
 - Therefore, minerals crystallize in a predictable order
 - Last minerals to crystallize are very different in composition from the earlier formed minerals

Bowen’s Reaction Series

![Figure 2.9](image)

How Different Igneous Rocks Form

- Magmatic differentiation
 - Differentiation refers to the formation of one or more secondary magmas from a single parent magma
 - One example of this is crystal settling
 - Earlier-formed minerals are denser than the liquid portion and sink to the bottom of the magma chamber
weathering of rocks

- **mechanical weathering** is the physical breaking apart of earth materials
 - frost wedging = splitting of rocks due to alternate freezing and thawing of water in cracks or voids
 - unloading = slabs of rock "peel" away due to a reduction in pressure when overlying rock is eroded away

weathering of rocks

- mechanical weathering
 - biological activity = activities of plants and burrowing animals
 - *chemical weathering* alters the internal structure of minerals by removing and/or adding elements

weathering of rocks

- chemical weathering
 - water is the most important agent of chemical weathering
 - reactions such as oxidation or dissolution by acids serve to decompose rocks
 - clay minerals are the most abundant and stable product of chemical weathering
Sedimentary Rocks

- Form from *sediment* (weathered products)
- About 75% of all rock outcrops on the continents
- Used to reconstruct much of Earth’s history
 - Clues to past environments
 - Provide information about sediment transport
 - Rocks often contain fossils

Sedimentary Rocks

- Economic importance
 - Coal
 - Petroleum and natural gas
 - Sources of iron and aluminum

Sedimentary Rocks

- Classifying sedimentary rocks
 - Two groups based on the source of the material
 - *Detrital rocks*
 - Material is solid particles
 - Classified by particle size
 - Common rocks include
 - *Shale* (most abundant)
 - *Sandstone*
 - *Conglomerate*
Classification of Sedimentary Rocks

<table>
<thead>
<tr>
<th>Sedimentary Rocks</th>
<th>Chemical Sedimentary Rocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>arkose</td>
<td>conglomerate</td>
</tr>
<tr>
<td>chert</td>
<td>siltstone</td>
</tr>
<tr>
<td>siltstone</td>
<td>sandstone</td>
</tr>
<tr>
<td>shale</td>
<td>limestone</td>
</tr>
<tr>
<td>mud</td>
<td>dolomite</td>
</tr>
<tr>
<td>clay</td>
<td>marble</td>
</tr>
</tbody>
</table>

Figure 2.16

Shale with Plant Fossils

Figure 2.17 D

Sandstone

Figure 2.17 C
Conglomerate

A Figure 2.17 A

Sedimentary Rocks

- **Classifying sedimentary rocks**
 - Two groups based on the source of the material
 - **Chemical rocks**
 - Derived from material that was once in solution, which precipitated to form sediment
 - Directly precipitated as the result of physical processes, or
 - Through life processes (biochemical origin)

Sedimentary Rocks

- **Classifying sedimentary rocks**
 - **Chemical rocks**
 - *Limestone*—The most abundant chemical rock
 - Microcrystalline quartz (precipitated quartz) known as chert, flint, jasper, or agate
 - Evaporites such as rock salt or gypsum
 - Coal

Sedimentary Rocks

- Sedimentary rocks are produced through *lithification*
 - Loose sediments are transformed into solid rock
- Lithification processes
 - Compaction
 - Cementation by
 - Calcite
 - Silica
 - Iron Oxide

Fossiliferous Limestone

Rock Salt
Sedimentary Rocks

- Features of sedimentary rocks
 - *Strata*, or beds (most characteristic)
 - *Bedding planes* separate strata
 - *Fossils*
 - Traces or remains of prehistoric life
 - Are the most important inclusions
 - Help determine past environments
 - Used as time indicators
 - Used for matching rocks from different places

Metamorphic Rocks

- "Changed form" rocks
- Produced from preexisting
 - Igneous rocks
 - Sedimentary rocks
 - Other metamorphic rocks

Metamorphic Rocks

- Metamorphism
 - Takes place where preexisting rock is subjected to temperatures and pressures unlike those in which it formed
 - Degrees of metamorphism
 - Exhibited by rock texture and mineralogy
 - *Low-grade* (e.g., shale becomes slate)
 - *High-grade* (obliteration of original features)
Metamorphic Rocks

- Metamorphic settings
 - Contact, or thermal, metamorphism
 - Occurs near a body of magma
 - Changes are driven by a rise in temperature
 - Regional metamorphism
 - Directed pressures and high temperatures during mountain building
 - Produces the greatest volume of metamorphic rock

Metamorphic Rocks

- Metamorphic agents
 - Heat
 - Pressure (stress)
 - From burial (confining pressure)
 - From differential stress during mountain building
 - Chemically active fluids
 - Mainly water and other volatiles
 - Promote recrystallization by enhancing ion migration

Origin of Pressure in Metamorphism

Figure 2.24
Metamorphic Rocks

- Metamorphic textures
 - Foliated texture
 - Minerals are in a parallel alignment
 - Minerals are perpendicular to the compressional force
 - Nonfoliated texture
 - Contain equidimensional crystals
 - Resembles a coarse-grained igneous rock

Development of Foliation

Figure 2.26

Metamorphic Rocks

- Common metamorphic rocks
 - Foliated rocks
 - Slate
 - Fine-grained
 - Splits easily
 - Schist
 - Strongly foliated
 - "Platy"
 - Types based on composition (e.g., mica schist)
Classification of Metamorphic Rocks

<table>
<thead>
<tr>
<th>Rock Name</th>
<th>Texture</th>
<th>Grain Size</th>
<th>Comments</th>
<th>Parent Rock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slate</td>
<td>Fine</td>
<td>Very fine</td>
<td>Excellent rock cleavage, smooth dull surfaces</td>
<td>Slate, mudstone, or dolostone</td>
</tr>
<tr>
<td>Phyllite</td>
<td>Fine</td>
<td>Medium to coarse</td>
<td>Micaceous minerals, dominant, slaty foliation</td>
<td>Phyllite</td>
</tr>
<tr>
<td>Schist</td>
<td>Coarse</td>
<td>Medium to coarse</td>
<td>Compositional banding due to segregation of minerals</td>
<td>Slate, granite, or volcanic rocks</td>
</tr>
<tr>
<td>Gneiss</td>
<td>Coarse</td>
<td>Medium to coarse</td>
<td>"Banded" texture</td>
<td>Gneiss</td>
</tr>
<tr>
<td>Marble</td>
<td>Coarse</td>
<td>Medium to coarse</td>
<td>Interlocking calcite or dolomite grains</td>
<td>Limestone, dolostone</td>
</tr>
<tr>
<td>Quartzite</td>
<td>Coarse</td>
<td>Medium to coarse</td>
<td>Fused quartz grains, fine to very fine</td>
<td>Quartz sandstone</td>
</tr>
<tr>
<td>Anthracite</td>
<td>Fine</td>
<td>Fine</td>
<td>Strong black organic rock that may exhibit conchoidal fracture</td>
<td>Anthracite coal</td>
</tr>
</tbody>
</table>

Figure 2.27

Metamorphic Rocks

- Common metamorphic rocks
 - Foliated rocks
 - Gneiss
 - Strong segregation of silicate minerals
 - "Banded" texture
 - Nonfoliated rocks
 - Marble
 - Parent rock is limestone
 - Large, interlocking calcite crystals

Metamorphic Rocks

- Common metamorphic rocks
 - Nonfoliated rocks
 - Marble
 - Used as a building stone
 - Variety of colors
 - Quartzite
 - Parent rock—Quartz sandstone
 - Quartz grains are fused
Marble—A Nonfoliated Metamorphic Rock