
Deduction
by Daniel Bonevac

Chapter 3 Truth Trees

Truth trees

Truth trees provide an alternate decision
procedure for assessing validity, logical
equivalence, satisfiability and other logical
properties of sentences and arguments.
Truth trees are superior to truth tables
only in that they are much less tedious for
humans to use.
The basic idea behind a truth tree can be
captured by explaining a shorter way of
using a truth table to assess validity.

Thinking backwards
You already know how to use a truth table to determine whether a
sentence like this is valid.
((p→r) & ¬p) → ¬r
But you can shorten the task by recalling that the only way for a
conditional to be false is for the premises to be true and the conclusion
false.
This means that you really only need to look at the lines of the table that
could possibly produce that result. To do this, you simply assign F to the
conclusion and work backwards to see what assignments of T to the
premises are consistent with the assignment of F to the conclusion.
In the case of the above formula, we begin by observing that the only way
it can be false is if ¬r is F, meaning that r must be T.
We now look for ways to assign F to antecedent ((p→r) & ¬p) that is
compatible with r being T. We know from the truth table for → that if r is
T, then (p→r) must be true. So, the only way that the formula ((p→r) &
¬p will be true is if ¬p is F, meaning that p is true.
But this one interpretation gives us an assignment that renders the
formula not valid.

Example of working backwards 1

Here’s how that reasoning works out in a truth table.
First assign F to the conclusion.

p r ((p → r) & ¬ p) → ¬ r)
F

Example of working backwards 2

This means that r has to be T

p r ((p → r) & ¬ p) → ¬ r)
T T F

Example of working backwards 3

This means that (p → r) has to be T

p r ((p → r) & ¬ p) → ¬ r)
T T T F

Example of working backwards 4

So in order for the conjunction to be T, ¬p must be
T, meaning that p is F.

p r ((p → r) & ¬ p) →
T

¬ r)
F T F T T F

Example of working backwards 5

Which gives you an F under the →, meaning the
formula is not valid.

p r ((p → r) & ¬ p) →
T F

¬ r)
F T F T T F

Truth tree terminology

Truth trees are tree-like structures with
nodes of the trees corresponding to
particular formulas.

Here are some basic facts about truth trees.
The branches of the trees develop in accord with
specific rules that we will learn.
The rules are applied to the formulas on the nodes
of the tree.
When a rule has been applied, the formula is
dispatched with a √ mark. This means that you are
done operating on it. A formula without a √ mark is
called live.

More truth tree terminology

We say that a branch of a tree is closed
when a formula and it’s negation both
appear on the branch. We mark a closed
branch with an X. Otherwise we say the
branch is open.

We say that a branch is finished when it is
(1) closed or (2) only atomic formulas or
their negations are live on it.

Using trees to test for validity
The most common use of a truth tree is to test an argument for
validity. The idea behind this test is simple. Just as with working
backwards by the truth table method, we assume the conclusion
is false. With the truth tree method, we do not assign the letter F,
but rather just negate the conclusion.
So, if we were going to test the following argument for validity:

p v q
¬p
∴q

We would start the tree like this.
p v q
¬p
∴¬q

From the definition of validity, you know that if the original
argument is valid, then negating the conclusion will produce a
contradiction. In truth table language this means that every
possible interpretation of the corresponding conditional will be
false. In truth tree language it means that every single branch of
the corresponding tree will be closed.

Rules for truth trees
The rules for making trees exploit the difference between
conjunctions and disjunctions.
Statements of the form (A & B) are true if and only if both A
and B are true. So the rule for growing a branch with a
conjunction is to write both A and B on the same branch.
Statements of the form (A v B) are true when just one or both
of the conjuncts are true. So the rule for growing a branch with
a conjunction is to write A and B on different branches.

√ p & q

p

q

√ p v q

p q

Other truth tree rules

Almost all of the other rules for truth trees
are based on the logical equivalence of
formulas with those involving v and &.
The only exception is the rule for double
negation (¬¬) which is simply:

√ ¬¬p
p

The negated conjunction rule ¬&

A negated conjunction has the form
¬(A & B)

and it is logically equivalent to
¬A v ¬ B

This is intuitive, but you can also prove it to
yourself using the truth table method.
Because of this equivalence, the truth tree rule
for negated conjunction is:

√ ¬(p & q)

¬p ¬q

The negated disjunction rule ¬v
A negated disjunction has the form

¬(A v B)
and it is logically equivalent to

¬A & ¬ B

Because of this equivalence, the truth tree rule for
negated conjunction is:

√ ¬(p v q)
¬p
¬q

A first truth tree proof.

Let’s use the truth tree method to determine
whether the following argument is valid.

¬(¬ p v ¬ q)
∴ p & q

We begin by negating the conclusion.
¬(¬ p v ¬ q)

¬(p & q)

We can now proceed by applying rules to either one of the
formulas. Practically speaking it is always best to work on the
non branching formulas first. In this case, that means we apply
the rule of ¬v to the premise.

First truth tree proof 2

√ ¬(¬ p v ¬ q)
¬(p & q)

¬¬p
¬¬q

∴ After dispatching the original formula,
we now apply the ¬¬ rule to both
resulting formulas. We do this now,
because ¬¬ is also a non branching
rule.

First truth tree proof 3

√ ¬(¬ p v ¬ q)
¬(p & q)
√ ¬¬p
√¬¬q

p
q

∴ Now the only thing left to do is apply ¬& to the
negated conclusion.

First truth tree proof 4
√ ¬(¬ p v ¬ q)

√¬(p & q)
√ ¬¬p
√¬¬q

p
q

∴ ¬p ¬q

∴ We have now dispatched everything but atomic and
negated formulas. The only thing left to do is check and see
if the branches are closed or open.

Example continued
√ ¬(¬ p v ¬ q)

√¬(p & q)
√ ¬¬p
√¬¬q

p
q

∴ ¬p ¬q
∴ x x

∴ And it’s easy to see that in this example both branches close,
since tracing backwards, you find contradictory formulas in both
cases. Because both branches close, the original argument is
valid.

Conditional →
There are four more rules we need to learn, all related to
conditionals and biconditionals.
The rule for a conditional (→) is based on the fact that

(A → B)
is logically equivalent to

¬A v B
This is intuitive, as we saw in the previous chapter.
Because of this equivalence, the truth tree rule for ¬is:

√ (p → q)

¬p q

Negated conditional ¬→
A negated conditional (¬→) has the form

¬(A → B)
and it is logically equivalent to

A & ¬ B
This is not at all intuitive, but we won’t dwell on that now.
You can prove it to yourself using the truth table method, or
by simply recalling that the only way for a conditional (A →
B) to be false (i.e. negated) is for A to be true and B to be
false.
Because of this equivalence, the truth tree rule for ¬→ is:

√ ¬(p → q)
p

¬q

Biconditional ↔
The rule for the biconditional (↔) based on the slightly more
complicated fact that

(A ↔ B)
is logically equivalent to

(A & B) v (¬A & ¬B)
Since the equivalent expression is a disjunction of
conjunctions, this is a branching rule with the conjunctions
hanging off the ends of the branches like this:

√ (p ↔ q)

p ¬p
q ¬q

Negated biconditional ¬↔
Our last rule is negated biconditional ¬↔. It is based on the
fact that

¬(A ↔ B)
is logically equivalent to

(A & ¬ B) v (¬A & B)
Since the equivalent expression is a disjunction of
conjunctions, this is a branching rule with the conjunctions
hanging off the ends of the branches like this:

√ ¬(p ↔ q)

p ¬p
¬q q

Two more details

There are just a couple of more things you need
to know about doing truth trees property:
(1) When you are decomposing a formula
according to a truth tree rule, you must do so on
every open branch under the formula. For
example, if there are four open branches under
the formula, you must apply the rule 4 times.
(This is why we always try to apply non
branching rules first.)
(2) Once a contradiction appears on a branch
you can close it off. You don’t need to continue
working on it. This saves a lot of work as well.

More truth tree proofs

Let’s do some more trees in a different
environment.
Let’s do some more trees in a different
environment.

	Deduction �by Daniel Bonevac
	Truth trees
	Thinking backwards
	Example of working backwards 1
	Example of working backwards 2
	Example of working backwards 3
	Example of working backwards 4
	Example of working backwards 5
	Truth tree terminology
	More truth tree terminology
	Using trees to test for validity
	Rules for truth trees
	Other truth tree rules
	The negated conjunction rule ¬&
	The negated disjunction rule ¬v
	A first truth tree proof.
	First truth tree proof 2
	First truth tree proof 3
	First truth tree proof 4
	Example continued
	Conditional →
	Negated conditional ¬→
	Biconditional ↔
	Negated biconditional ¬↔
	Two more details
	More truth tree proofs

