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Chapter 6  Quantified Truth Trees 



The Language Q
Before we start studying quantified truth trees, we need to 
formalize our understanding of the language of Q, i.e., 
quantificational logic. (Bonevac actually does this in Ch. 5 on 
p. 153)
It’s important to understand that Q is not a brand new 
language, but an extension of sentential logic.  That means 
that if we want to we can still use our letters p, q, r, s, p1, s1, 
etc. to stand for entire sentences. 
So, for example, these are going to be perfectly well formed 
sentences in Q:

p → ∀xFx
p v ∃y∀xFxy

Of course, that’s only if ‘p’ is standing for an entire sentence.  If 
‘p’ is standing for a proper name, like Paul (which, as we’ll see, 
is not officially permitted) then the above sentences are not 
well-formed at all.



Vocabulary of Q

The complete vocabulary of Q is:
Sentence letters:  p, q, r, s, p1, q1,…
n-ary predicate constants: F, G, H,…M, F1, 
G1…
Individual constants:  a, b, c, ..., o, a1, b1…
Individual varibables: t, u, v, w, x, y, z, t1, u1…
Sentential connectives: ¬, &, v, →, ↔
Quantifiers ∀, ∃
Grouping Indicators  (, )



Formation Rules

Any sentence letter is a formula
An n-ary predicate followed by n individual 
constants is a formula.
If A is a formula, then ¬A is a formula.
If A and B are formulas, then (A →B), (A v B), 
(A &B), (A ↔B) are formulas.
If Ac, is a formula with individual constant c, 
and v is a variable that does not occur in Ac, 
the ∃vAv and ∀vAv, are formulas.
Every formula can be constructed from a finite 
number of applications of these rules.



Unbound variables
The most important thing to understand about the formation 
rules is that what it tells you about the relation between 
variables and individual constants constants.  

We can’t have any free variables. All variables have to be 
bound by a quantifier.  So this is not a formula in Q:

∀xFxy
We can’t have multiple quantifiers binding the same 
variable.  This this is not a formula in Q:

∃x∀xFxx
Quantifiers don’t bind constants.  This is not a formula in Q:

∀xFa
Finally, we can not substitute variables for predicate 
constants.  This is not a formula in Q:

∀xXb
As Bonevac note, there are systems of logic that permit this.  
They are called second-order quantificational logic.  Our 
system is first order, meaning it only quantifies over individual 
constants.



Truth trees in quantificational logic

Truth trees in quantificational logic are just like 
truth trees in sentential logic, with the addition of 
some new rules to deal with the quantifiers.  
In quantificational logic, the truth trees method 
does is not actually a decision procedure, as it 
is in sentential logic. In other words, it does not 
guarantee a result.  This is not a defect in the 
method.  It is simply a proven fact about 
systems of quantificational logic that they are 
not decidable. 



Instances
Inference in quantificational logic proceeds by 
rules for instantiating, or creating instances. 
The existential and universal quantifiers are 
bound by different rules for fairly intuitive 
reasons.

An existentially quantified expression, like
∃xGx

where G means ‘goofy’ tells us only that at least one x 
is goofy.  But we can not infer from this that any 
particular individual is goofy.  
A universally quantified expression like

∀xGx
tells us that everything is goofy. That means we can 
create any instance we like:  Ga, Gb, Gc, etc.



Quantifiers
To understand the truth tree rules you first you first need to 
understand that quantifiers are in effect a kind of connective.  
Because truth tree rules only allow you to operate on the main 
connective, this applies to the quantifier as well.
The scope of the quantifier is that part of the formula (including 
the quantifier itself) to which the quantifier applies.  Consider the 
following formula:

(∀xFx v ∃yGy)
Here the main connective is v.  The scope of the universal 
quantifier is ∀xFx .  The scope of the existential quantifier is ∃yGy
But consider the following formula: 

∀x∃y(Fxy v Fyx)
Now the main connective is actually the universal quantifier.  It is 
the main connective, or has the widest scope, because it is the 
outermost quantifier.
Importantly, then, with quantifiers, the requirement that we always 
operate on the main connective means that when a quantifier is a
main connective, we are always operating on the outermost 
quantifier.



Existential (E)
The rule for instantiating the existential quantifier is a kind of trick.  
Recall that problem is basically that since with an existentially 
quantified expression like ∃xGx, we only know that some unidentified 
x is G.  So we basically just give this x a name, that is not the name of 
anything else we know.  
Here’s a helpful way to think about this.  Comedians know that when 
you are telling a joke, it’s important not to just:  “So this guy goes into 
a bar.. and then just keep referring to him as ‘this guy’.  To make it 
funnier  give him a names.  But to make sure you know they’re not 
talking about anybody real, they’ll often say something like:  “So this 
guy goes into a bar.  Let’s call him René.  So the bartender says to 
René “How ‘bout a drink?” and René says “I think not.” And he 
suddenly disappears.”
Of course, that joke is only funny if you know it’s René Descartes 
you’re talking about, so it actually undermines the point of the above 
paragraph.  The important thing is to introduce a name that is the 
name of no one in particular.
In logic, we take advantage of this technique by instantiating 
existentials only to brand new constants.  The constant has to be new
to the proof.



Existential (E)  2
So, suppose you are testing the following inference for 
validity.

∃xFx  ∴ Fa
You begin by negating the conclusion as before and trying 
to generate a contradiction

∃xFx
¬ Fa

Clearly, the only way to get a contradiction is to instantiate 
to Fa.  But, of course you can’t do that, because the 
constant ‘a’ is not new to the proof.  All you can do is 
instantiate to a new constant, like ‘b’.

√∃xFx
¬ Fa

Fb
and the line here remains open.



Negated existential  (¬E)
Negated existentials are not restricted in the 
same way that non negated existentials are. 
The reason for this is that a negated existential 
like

¬∃xFx
tells us that there is nothing at all that has F.  So 
we are just as free to say ¬Fa as ¬Fb or any 
other constant we like.
Interestingly, what this means is that we never 
really fully dispatch a negated existential, which 
is why we use *, not √.  The asterisk is a 
temporary dispatch mark.  It means that we can 
instantiate the negated existential as many 
times as we like.   



Example using (¬E)

¬∃x Fx → Ga, ¬∃x Gx ∴ Show ∃x Fx 

¬∃x Fx → Ga
¬∃x Gx 
¬ ∃x Fx 



Example using (¬E)

¬∃x Fx → Ga, ¬∃x Gx ∴ Show ∃x Fx 

¬∃x Fx → Ga
*¬∃x Gx 
¬ ∃x Fx 
¬ Ga



Example using (¬E)
¬∃x Fx → Ga, ¬∃x Gx ∴ Show ∃x Fx 

¬∃x Fx → Ga
*¬∃x Gx 
*¬ ∃x Fx 

¬ Ga
¬ Fa

Notice here that we could have gone to ¬Fb or any constant 
we like, but we took advantage of the unrestricted nature of 
(¬E) to to get a contradiction.



Example using (¬E)

¬∃x Fx → Ga, ¬∃x Gx ∴ Show ∃x Fx 

√¬∃x Fx → Ga
*¬∃x Gx 
*¬ ∃x Fx 

¬ Ga
¬ Fa

¬¬∃x Fx                 Ga
x                          x     



Universal (U)

Instantiating a universal is an entirely free 
move as well. A statement like ∀xFx says 
that everything has F, hence it follows 
that Fa, Fb, Fc, etc. 
For this reason, we also use an * rather 
than a √ to dispatch a universally 
quantified expression.



Negated Universal  (¬U)

A negated universal like ¬∀xFx tells us 
that not everything is F, in other words, 
there is at least one thing that is not F.  
Hence, it is restricted in the same way 
that an existentially quantified expression 
is.
Namely, when you instantiate a negated 
universal, the constant you use must be 
entirely new to the proof.



Example using (U) and (¬U)

∀x¬∀y(Fy  → Gx)  ∴ ∃x∃y(Fy & ¬Gx)

∀x¬∀y(Fy → Gx)
¬∃x∃y(Fy & ¬Gx)

Negate the conclusion in the usual way.



Example using (U) and (¬U)

*∀x¬∀y(Fy  → Gx)
¬∃x∃y(Fy & ¬Gx)
¬∀y (Fy  → Ga)

We make this move first because even though both lines are unrestricted, 
we see that the new line is not.  In general, we want to take care of our 
restricted moves first, as this will maximize the opportunity to generate 
contradictions in the fewest number of steps. 



Example using (U) and (¬U)

*∀x¬∀y(Fy  → Gx)
¬∃x∃y(Fy & ¬Gx)
√¬∀y(Fy  → Ga)

¬(Fb →Ga)

Note that we had to introduce a new constant 
here because (¬U) is restricted.



Example using (U) and (¬U)

*∀x¬∀y(Fy  → Gx)
¬∃x∃y(Fy & ¬Gx)
√¬∀y(Fy  → Ga)
√ ¬(Fb → Ga)

Fb
¬Ga

This, of course, is just the rule for →.



Example using (U) and (¬U)

*∀x¬∀y(Fy  → Gx)
*¬∃x∃y(Fy & ¬Gx)
√¬∀y(Fy  → Ga)
√ ¬(Fb → Ga)

Fb
¬Ga

¬ ∃y(Fy & ¬Ga)

This is an unrestricted move, and we go to Ga 
with the hope of getting a contradiction.



Example using (U) and (¬U)

*∀x¬∀y(Fy  → Gx)
*¬∃x∃y(Fy & ¬Gx)
√¬∀y(Fy  → Ga)
√ ¬(Fb → Ga)

Fb
¬Ga

*¬ ∃y(Fy & ¬Ga)
¬(Fb & ¬Ga) 

This, too is an unrestricted move, and we go to Fb 
with the hope of getting a contradiction.



Example using (U) and (¬U)

*∀x¬∀y(Fy  → Gx)
*¬∃x∃y(Fy & ¬Gx)
√¬∀y(Fy  → Ga)
√ ¬(Fb → Ga)

Fb
¬Ga

*¬ ∃y(Fy & ¬Ga)
√ ¬(Fb & ¬Ga) 

¬Fb                         ¬¬Ga 
x                             x

Finally, the ¬& rule and  we’re done.



Strategies

In addition to the strategies from truth 
trees in sentential logic, there are two 
strategies relating to the quantifiers. 

1. Apply the restricted rules (E and ¬U)
before the unrestricted ones (¬E and U)

2. Don’t introduce new constants 
unnecessarily.  In other words, when 
using the unrestricted rules, remember 
that you can, and often should, 
instantiate them to constants already in 
the proof.
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