
Deduction
by Daniel Bonevac

Chapter 6 Quantified Truth Trees

The Language Q
Before we start studying quantified truth trees, we need to
formalize our understanding of the language of Q, i.e.,
quantificational logic. (Bonevac actually does this in Ch. 5 on
p. 153)
It’s important to understand that Q is not a brand new
language, but an extension of sentential logic. That means
that if we want to we can still use our letters p, q, r, s, p1, s1,
etc. to stand for entire sentences.
So, for example, these are going to be perfectly well formed
sentences in Q:

p → ∀xFx
p v ∃y∀xFxy

Of course, that’s only if ‘p’ is standing for an entire sentence. If
‘p’ is standing for a proper name, like Paul (which, as we’ll see,
is not officially permitted) then the above sentences are not
well-formed at all.

Vocabulary of Q

The complete vocabulary of Q is:
Sentence letters: p, q, r, s, p1, q1,…
n-ary predicate constants: F, G, H,…M, F1,
G1…
Individual constants: a, b, c, ..., o, a1, b1…
Individual varibables: t, u, v, w, x, y, z, t1, u1…
Sentential connectives: ¬, &, v, →, ↔
Quantifiers ∀, ∃
Grouping Indicators (,)

Formation Rules

Any sentence letter is a formula
An n-ary predicate followed by n individual
constants is a formula.
If A is a formula, then ¬A is a formula.
If A and B are formulas, then (A →B), (A v B),
(A &B), (A ↔B) are formulas.
If Ac, is a formula with individual constant c,
and v is a variable that does not occur in Ac,
the ∃vAv and ∀vAv, are formulas.
Every formula can be constructed from a finite
number of applications of these rules.

Unbound variables
The most important thing to understand about the formation
rules is that what it tells you about the relation between
variables and individual constants constants.

We can’t have any free variables. All variables have to be
bound by a quantifier. So this is not a formula in Q:

∀xFxy
We can’t have multiple quantifiers binding the same
variable. This this is not a formula in Q:

∃x∀xFxx
Quantifiers don’t bind constants. This is not a formula in Q:

∀xFa
Finally, we can not substitute variables for predicate
constants. This is not a formula in Q:

∀xXb
As Bonevac note, there are systems of logic that permit this.
They are called second-order quantificational logic. Our
system is first order, meaning it only quantifies over individual
constants.

Truth trees in quantificational logic

Truth trees in quantificational logic are just like
truth trees in sentential logic, with the addition of
some new rules to deal with the quantifiers.
In quantificational logic, the truth trees method
does is not actually a decision procedure, as it
is in sentential logic. In other words, it does not
guarantee a result. This is not a defect in the
method. It is simply a proven fact about
systems of quantificational logic that they are
not decidable.

Instances
Inference in quantificational logic proceeds by
rules for instantiating, or creating instances.
The existential and universal quantifiers are
bound by different rules for fairly intuitive
reasons.

An existentially quantified expression, like
∃xGx

where G means ‘goofy’ tells us only that at least one x
is goofy. But we can not infer from this that any
particular individual is goofy.
A universally quantified expression like

∀xGx
tells us that everything is goofy. That means we can
create any instance we like: Ga, Gb, Gc, etc.

Quantifiers
To understand the truth tree rules you first you first need to
understand that quantifiers are in effect a kind of connective.
Because truth tree rules only allow you to operate on the main
connective, this applies to the quantifier as well.
The scope of the quantifier is that part of the formula (including
the quantifier itself) to which the quantifier applies. Consider the
following formula:

(∀xFx v ∃yGy)
Here the main connective is v. The scope of the universal
quantifier is ∀xFx . The scope of the existential quantifier is ∃yGy
But consider the following formula:

∀x∃y(Fxy v Fyx)
Now the main connective is actually the universal quantifier. It is
the main connective, or has the widest scope, because it is the
outermost quantifier.
Importantly, then, with quantifiers, the requirement that we always
operate on the main connective means that when a quantifier is a
main connective, we are always operating on the outermost
quantifier.

Existential (E)
The rule for instantiating the existential quantifier is a kind of trick.
Recall that problem is basically that since with an existentially
quantified expression like ∃xGx, we only know that some unidentified
x is G. So we basically just give this x a name, that is not the name of
anything else we know.
Here’s a helpful way to think about this. Comedians know that when
you are telling a joke, it’s important not to just: “So this guy goes into
a bar.. and then just keep referring to him as ‘this guy’. To make it
funnier give him a names. But to make sure you know they’re not
talking about anybody real, they’ll often say something like: “So this
guy goes into a bar. Let’s call him René. So the bartender says to
René “How ‘bout a drink?” and René says “I think not.” And he
suddenly disappears.”
Of course, that joke is only funny if you know it’s René Descartes
you’re talking about, so it actually undermines the point of the above
paragraph. The important thing is to introduce a name that is the
name of no one in particular.
In logic, we take advantage of this technique by instantiating
existentials only to brand new constants. The constant has to be new
to the proof.

Existential (E) 2
So, suppose you are testing the following inference for
validity.

∃xFx ∴ Fa
You begin by negating the conclusion as before and trying
to generate a contradiction

∃xFx
¬ Fa

Clearly, the only way to get a contradiction is to instantiate
to Fa. But, of course you can’t do that, because the
constant ‘a’ is not new to the proof. All you can do is
instantiate to a new constant, like ‘b’.

√∃xFx
¬ Fa

Fb
and the line here remains open.

Negated existential (¬E)
Negated existentials are not restricted in the
same way that non negated existentials are.
The reason for this is that a negated existential
like

¬∃xFx
tells us that there is nothing at all that has F. So
we are just as free to say ¬Fa as ¬Fb or any
other constant we like.
Interestingly, what this means is that we never
really fully dispatch a negated existential, which
is why we use *, not √. The asterisk is a
temporary dispatch mark. It means that we can
instantiate the negated existential as many
times as we like.

Example using (¬E)

¬∃x Fx → Ga, ¬∃x Gx ∴ Show ∃x Fx

¬∃x Fx → Ga
¬∃x Gx
¬ ∃x Fx

Example using (¬E)

¬∃x Fx → Ga, ¬∃x Gx ∴ Show ∃x Fx

¬∃x Fx → Ga
*¬∃x Gx
¬ ∃x Fx
¬ Ga

Example using (¬E)
¬∃x Fx → Ga, ¬∃x Gx ∴ Show ∃x Fx

¬∃x Fx → Ga
*¬∃x Gx
*¬ ∃x Fx

¬ Ga
¬ Fa

Notice here that we could have gone to ¬Fb or any constant
we like, but we took advantage of the unrestricted nature of
(¬E) to to get a contradiction.

Example using (¬E)

¬∃x Fx → Ga, ¬∃x Gx ∴ Show ∃x Fx

√¬∃x Fx → Ga
*¬∃x Gx
*¬ ∃x Fx

¬ Ga
¬ Fa

¬¬∃x Fx Ga
x x

Universal (U)

Instantiating a universal is an entirely free
move as well. A statement like ∀xFx says
that everything has F, hence it follows
that Fa, Fb, Fc, etc.
For this reason, we also use an * rather
than a √ to dispatch a universally
quantified expression.

Negated Universal (¬U)

A negated universal like ¬∀xFx tells us
that not everything is F, in other words,
there is at least one thing that is not F.
Hence, it is restricted in the same way
that an existentially quantified expression
is.
Namely, when you instantiate a negated
universal, the constant you use must be
entirely new to the proof.

Example using (U) and (¬U)

∀x¬∀y(Fy → Gx) ∴ ∃x∃y(Fy & ¬Gx)

∀x¬∀y(Fy → Gx)
¬∃x∃y(Fy & ¬Gx)

Negate the conclusion in the usual way.

Example using (U) and (¬U)

*∀x¬∀y(Fy → Gx)
¬∃x∃y(Fy & ¬Gx)
¬∀y (Fy → Ga)

We make this move first because even though both lines are unrestricted,
we see that the new line is not. In general, we want to take care of our
restricted moves first, as this will maximize the opportunity to generate
contradictions in the fewest number of steps.

Example using (U) and (¬U)

*∀x¬∀y(Fy → Gx)
¬∃x∃y(Fy & ¬Gx)
√¬∀y(Fy → Ga)

¬(Fb →Ga)

Note that we had to introduce a new constant
here because (¬U) is restricted.

Example using (U) and (¬U)

*∀x¬∀y(Fy → Gx)
¬∃x∃y(Fy & ¬Gx)
√¬∀y(Fy → Ga)
√ ¬(Fb → Ga)

Fb
¬Ga

This, of course, is just the rule for →.

Example using (U) and (¬U)

*∀x¬∀y(Fy → Gx)
*¬∃x∃y(Fy & ¬Gx)
√¬∀y(Fy → Ga)
√ ¬(Fb → Ga)

Fb
¬Ga

¬ ∃y(Fy & ¬Ga)

This is an unrestricted move, and we go to Ga
with the hope of getting a contradiction.

Example using (U) and (¬U)

*∀x¬∀y(Fy → Gx)
*¬∃x∃y(Fy & ¬Gx)
√¬∀y(Fy → Ga)
√ ¬(Fb → Ga)

Fb
¬Ga

*¬ ∃y(Fy & ¬Ga)
¬(Fb & ¬Ga)

This, too is an unrestricted move, and we go to Fb
with the hope of getting a contradiction.

Example using (U) and (¬U)

*∀x¬∀y(Fy → Gx)
*¬∃x∃y(Fy & ¬Gx)
√¬∀y(Fy → Ga)
√ ¬(Fb → Ga)

Fb
¬Ga

*¬ ∃y(Fy & ¬Ga)
√ ¬(Fb & ¬Ga)

¬Fb ¬¬Ga
x x

Finally, the ¬& rule and we’re done.

Strategies

In addition to the strategies from truth
trees in sentential logic, there are two
strategies relating to the quantifiers.

1. Apply the restricted rules (E and ¬U)
before the unrestricted ones (¬E and U)

2. Don’t introduce new constants
unnecessarily. In other words, when
using the unrestricted rules, remember
that you can, and often should,
instantiate them to constants already in
the proof.

	Deduction �by Daniel Bonevac
	The Language Q
	Vocabulary of Q
	Formation Rules
	Unbound variables
	Truth trees in quantificational logic
	Instances
	Quantifiers
	Existential (E)
	Existential (E) 2
	Negated existential (¬E)
	Example using (¬E)
	Example using (¬E)
	Example using (¬E)
	Example using (¬E)
	Universal (U)
	Negated Universal (¬U)
	Example using (U) and (¬U)
	Example using (U) and (¬U)
	Example using (U) and (¬U)
	Example using (U) and (¬U)
	Example using (U) and (¬U)
	Example using (U) and (¬U)
	Example using (U) and (¬U)
	Strategies

