
Deduction
by Daniel Bonevac

Chapter 8 Identity and Functions

Introduction 1
This chapter introduces two important extensions of Q that
make it quite a bit more powerful.
The first is the mathematical relation of identity (=). Up until
now we would find it difficult to express a simple sentence
like:

Marilyn Monroe is Norma Mortenson .
Both of these terms are names, not predicates, so we could
only have translated this as something like

Emn
Where E is a predicate meaning “equals” or “identical to”.
There is nothing really wrong with this, but it doesn’t allow
us to make any inferences based on well known properties
of identity. For example, if we know that Marilyn Monroe is
Norma Mortenson, then we also know that Norma
Mortenson is Marilyn Monroe. But right now we can’t prove
that.

Introduction 2
The second extension of Q is the idea of a function. A
function is really just a specific kind of relation, but it is a
relation with special properties. Basically, a function relates
two objects as input to output. Functions are very important
in mathematics, but they are also essential to our
understanding of English.
For example, until now if we wanted to express a statement
like:

Mary is the mother of Jesus.
We could only have done so like this:

Mmj
This is fine, but it turns out to be very useful to be able to
treat the phrase “mother of Jesus” as indicating a particular
person, just as the phrase “square of 10” indicates a
particular number.

Identity
To introduce the concept of identity, we simply introduce two new
symbols: = and ≠.
Identity is a binary relation. In Q it does not hold between
predicates or sentences. Rather it holds between individual
constants and variables.

a = b
∃x∀y x ≠y

but not
Fa = Gb
p = q (where p and q stand for sentences)
F = G

Also note that while this is a formula:
¬a=a

We only use it when we have more than one negation associated
with identity. For example:

¬a≠a

Identity vs. Predication

In English, the word “is” can be used in two
importantly different ways. To see this, consider
the following statements.

Tony Stark is clever.
Tony Stark is Iron Man.

The first use is what we call the ‘is’ of
predication. It simply predicates the property of
cleverness to a person named Tony Stark: Ct
The second use is what we call the ‘is’ of
identity. It says that Tony Stark and Iron Man
are the same guy: t = s

Identity statements 1

With identity we can now say all sorts of exciting
things that we could not say before.
For example:

Tony is the only one who is having fun.
This sentence doesn’t just say that Tony is
having fun. It says that Tony is having fun, and
nobody else is. We can express this as follows:

Ft & ∀x (Fx → x=t).
In English, this says:

Tony is having fun, and for all x, if x is having fun, then
x is identical to Tony.

Identity statements 2
Pages 227-229 show you ways that we can now
characterize certain kinds of quantitative
statements. For example:

There are at least two apples.
can be expressed as

∃x∃y ((Ax & Ay) & x≠y)
Alternatively

There are at most two apples
can be expressed as

∀x∀y∀x((Ax & Ay & Az) → (x=y v y=z v x = z))
Notice that the author has here adopted the
common convention of dropping parentheses
for strings of conjunctions or disjunctions.

Identity statements 3

We can also express superlatives like:
Big Brown is the fastest horse.

This is essentially to say that Big Brown is
faster than every horse not identical to
Big Brown. Symbolically:
∀x (x≠b, then Fbx)

Rules for identity

We introduce new rules of inference for identity.
The truth tree rules and the natural deduction
rules are slightly different, but the basic ideas
are the same.
There are two new rules for each system.

One kind of rule allows you to make inferences from
the fact that two things are identical. Specifically, if
you know something like Fa and you know that a=b,
then you can infer Fb.
The other kind or rule allows you to exploit the fact
that something is always identical to itself: a=a.

Truth tree rules: identity (=)
The first truth tree rule allows you to exploit the identity
relation. It can be reused, so you only mark it with a * after
you have used it. It works like this.

Fab or Fab or Faa
*a=b *a=b *a=b
Fbb Faa Fba

Fbb is simply the result of substituting b for a in the first
expression sentence Fab, and it is justified by the fact that
a=b. You can created Faa by the same process as shown
Importantly, you do not actually have to substitute for every
occurrence of the constant, as shown by the third example.

Truth tree rules: negated identity (≠)
Negated identity allows you to cancel any line
that contains a statement of the form a ≠ a.
Because it is always the case that a=a, this is
tantamount to a mathematical contradiction.
Example:

*a=b
b=c
a≠c
*a=c
a≠a
x

Natural deduction rules: =I

The first natural deduction rule for identity
is called identity introduction or (=I). It is
the analog of the negated identity rule for
truth trees.
=I simply allows you to introduce any
sentence of the form

a=a

whenever you like. There will be no line
number in the justification. Simply write
=I.

Natural deduction: =E
The second natural deduction rule for identity is
the same as the identity truth tree rule.
Here we call it =E. So, if you have a proof that
looks like this:

n. Fab
m. a=b

then on some later line you can write
o. Fbb =I, n,m.

However you can only perform this rule on
constants. You can’t do this:

n. ∀x∀yFxy
m. ∀x∀y x=y
o. ∀xFxx =I, n,m.

An example
Let’s do a translation example and then prove it using both
methods.

Brian is the only one who doesn’t shower.
Only someone who doesn’t shower stinks.
So, if anyone stinks, it’s Brian.

We will translate this on the assumption that the domain of
discourse is people. This means that every object referred
to here is a person, so we don’t have to keep using the
predicate ‘is a person’.
On this assumption, the argument translates as follows.

∀y(¬Sy → y=b)
∀x(Ts → ¬Sx)
∀x (Tx → x=b)

Truth tree solution

∀y(¬Sy → y=b)
∀x(Tx → ¬Sx)

¬∀x (Tx → x=b)

Truth tree solution

∀y(¬Sy → y=b)
∀x(Tx → ¬Sx)
√ ¬∀x (Tx → x=b)
√¬(Ta → a=b)

Ta
a≠b

Truth tree solution

*∀y(¬Sy → y=b)
*∀x(Tx → ¬Sx)
√ ¬∀x (Tx → x=b)
√¬(Ta → a=b)

Ta
a≠b

¬Sa → a=b
Ta → ¬Sa

Truth tree solution
*∀y(¬Sy → y=b)
*∀x(Tx → ¬Sx)
*¬∀x (Tx → x=b)
√¬(Ta → a=b)

Ta
a≠b

√ ¬Sa → a=b
√ Ta → ¬Sa

¬ Ta ¬Sa
x

¬¬Sa a=b
x x

Truth tree solution
*∀y(¬Sy → y=b)
*∀x(Tx → ¬Sx)
√ ¬∀x (Tx → x=b)
√¬(Ta → a=b)

Ta
a≠b
¬Sa → a=b
√ Ta → ¬Sa

¬ Ta ¬Sa
x

Natural Deduction Solution
1. ∀y (¬Sy → y=b) A
2. ∀x (Tx → ¬Sx) A
3. Show: ∀x (Tx → x=b)
4. Show: Ta → a=b
5. Ta ACP
6. Ta → ¬Sa ∀E,2
7. ¬Sa → a=b ∀E,1
8. ¬Sa →E, 5,6
9. a=b →E, 7,8

Cancel show lines.

Example 2

Here is a proof that requires the use of
identity exploitation.
Whatever is pooping on the porch is big.
Marty is not big. So, Marty is not the one
pooping on the porch.

Translation:
Let P stand for “pooping on the porch”

∀x(Px → Bx)
¬Bm
Therefore, ∀x(Px → x≠m)

Truth tree solution
*∀x(Px → Bx)
¬Bm
√¬ ∀x(Px → x≠m)
√¬(Pa → a≠m)

Pa
√¬a≠m

*a=m
(Pm → Bm)

¬Pm Bm
Pm ¬Ba

x x

Natural deduction solution
1. ∀x(Px → Bx) A
2. ¬Bm A
3. Show ∀x(Px → x≠m)
4. Show Pa → a≠m
5. Pa ACP
6. Show a≠m
7. a=m AIP
8. ¬Ba =E 2,7
9. Pa → Ba ∀E, 1
10. ¬Pa →E* 8,9
11. Pa R, 5

Functions
It is surprisingly easy to introduce functions into Q, and they
actually require no new rules.
You probably remember that in mathematics we sometimes
represent a function as follows

f(x)
For example, we might say that

f(x) = x2

This would allow us to write, for example that
f(3) = 9

We basically do the same thing in Q, with the provision that
variable be bound.
So, suppose we let

f(x) = “father of x”
Now suppose we know that the father of Sarah is Michael.
We can represent this as:

f(s) = m

Understanding function symbolism
As we noted in the beginning, functions are basically just certain kinds of
relations, and function symbolism is just a way of representing a relation
that is conducive to certain kinds of inferences.
The statement: “Michael is the father of Sarah” can be represented as

Fms
or

f(s) = m

By representing the statement in the latter form we can combine function
statements with the rules of identity to produce inferences we could not
produce before.
If you recall the distinction between identity and predication, you may note
that it’s not entirely correct to say that the two expressions above mean
exactly the same thing.
To preserve the distinction, we can say that ms means “Michael fathered
Sarah,” so that the father-offspring relation is being predicated of Michael
and Sarah.
On the other hand f(s) = m says that the “Michael is identical to the father
of Sarah”

Understanding function symbolism 2
Because function symbols go in the place of constants and
variables, they are treated in the same manner. This is why
we don’t need any new rules for them.
For example, if we say something like:

Billy’s father loves Sarah’s mother.
We would write this as:

Lf(b)m(s)
Read as: The father of Billy loves the mother of Sarah.
If we knew that Billy’s father is Alvin and that Sarah’s
mother is Denise, then we would write this as

f(b) = a
m(s) = d

We can then use =E to show that.
Lad

Understanding function symbolism 3
The other interesting thing about functions is that they can
be iterated.
Again, you may remember from mathematics that we can
say things like this.

f(g(x))
Suppose f(x) = x2 and g(x) = 1/x

then f(g(2))= ¼.
In logic we can represent functions of functions in the same
way. For example, we can represent “paternal grandfather”
as g(x) or as f(f(x)).
Hence, we can write

g(x) = f(f(x))
Hence, if we know that Alvin is the paternal grandfather of
Betty, we’ll be able to easily prove that Alvin is the father of
the father of Betty.

Function conditions

It’s important to understand that functions
are special kinds of relations. There are
two conditions they must meet.
The first is called the existence condition.
The second is called the uniqueness
conditions.

The existence condition

The existence condition on functions
requires that every input produces an
output.
The relation “father of” (understood as
biological father) is reasonably construed
as a function because every human has a
biological father.
On the other hand “brother of” is not a
function, because not every person has a
brother.

The uniqueness condition

The uniqueness condition requires that a
function have exactly one output for every
input.
Again, “father of” (biological) is
reasonably construed as a function
because everyone has exactly one father.
But even though “grandfather of” meets
the existence condition, it does not meet
the uniqueness condition, because
everyone has two biological grandfathers.

Perils of ignoring existence and uniqueness

We can get into a lot of trouble ignoring these two conditions.
It’s a lot like ignoring the fact that you can’t divide by zero.
Division is technically not a function because the fact that you
can’t divide by zero means it fails the existence condition, at
least if division is defined on the set of integers. Here’s the proof
in case you have forgotten it:

1. a=b A (a and b not equal to 0)
2. Show: 2 = 1
3. a2=ab multiplying both sides equally.
4. a2 – b2 = ab - b2 subtracting from both sides equally.
5. (a – b)(a +b) = b(a –b) distributive property of multiplication
6. (a + b) = b dividing both sides by (a-b)
7. (b+b) = b =E, 1,6
8. 2b=b addition
9. 2 = 1 divide both sides equally

Bogus function proofs
In the same way, you can do bogus function proofs if you
ignore these conditions. For example, if you ignore the
uniqueness condition you can prove the folowing:

Juan’s dog is his pet.
Juan’s cat is his pet.
Therefore, Juan’s dog is Juan’s cat.

This inference would never go through if “dog of” and “cat
of” and “pet of” were translated as binary predicates. But if
they are allowed to pose as functions, we would translate
the argument and prove it as follows:

1. d(j) = p(j) A
2. c(j) = p(j) A
3. Show d(j) = p(j)
4. d(j) = c(j) =E, 1,2

	Deduction �by Daniel Bonevac
	Introduction 1
	Introduction 2
	Identity
	Identity vs. Predication
	Identity statements 1
	Identity statements 2
	Identity statements 3
	Rules for identity
	Truth tree rules: identity (=)
	Truth tree rules: negated identity (≠)
	Natural deduction rules: =I
	Natural deduction: =E
	An example
	Truth tree solution
	Truth tree solution
	Truth tree solution
	Truth tree solution
	Truth tree solution
	Natural Deduction Solution
	Example 2
	Truth tree solution
	Natural deduction solution
	Functions
	Understanding function symbolism
	Understanding function symbolism 2
	Understanding function symbolism 3
	Function conditions
	The existence condition
	The uniqueness condition
	Perils of ignoring existence and uniqueness
	Bogus function proofs

