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Introduction 1
This chapter introduces two important extensions of Q that 
make it quite a bit more powerful.
The first is the mathematical relation of identity (=).  Up until 
now we would find it difficult to express a simple sentence 
like:

Marilyn Monroe is Norma Mortenson .
Both of these terms are names, not predicates, so we could 
only have translated this as something like

Emn
Where E is a predicate meaning “equals” or “identical to”. 
There is nothing really wrong with this, but it doesn’t allow 
us to make any inferences based on well known properties 
of identity.  For example, if we know that Marilyn Monroe is 
Norma Mortenson, then we also know that Norma 
Mortenson is Marilyn Monroe.  But right now we can’t prove 
that.



Introduction 2
The second extension of Q is the idea of a function.  A 
function is really just a specific kind of relation, but it is a
relation with special properties.  Basically, a function relates
two objects as input to output.  Functions are very important 
in mathematics, but they are also essential to our 
understanding of English.
For example, until now if we wanted to express a statement 
like:

Mary is the mother of Jesus.
We could only have done so like this:

Mmj
This is fine, but it turns out to be very useful to be able to 
treat the phrase “mother of Jesus” as indicating a particular 
person, just as the phrase “square of 10” indicates a 
particular number. 



Identity
To introduce the concept of identity, we simply introduce two new 
symbols:  = and ≠.  
Identity is a binary relation.  In Q it does not hold between 
predicates or sentences.  Rather it holds between individual 
constants and variables.

a = b
∃x∀y x ≠y

but not
Fa = Gb
p = q  (where p and q stand for sentences)
F = G

Also note that while this is a formula: 
¬a=a

We only use it when we have more than one negation associated 
with identity.  For example:

¬a≠a



Identity vs. Predication

In English, the word “is” can be used in two 
importantly different ways.  To see this, consider 
the following statements.

Tony Stark is clever.
Tony Stark is Iron Man.

The first use is what we call the ‘is’ of 
predication.  It simply predicates the property of 
cleverness to a person named Tony Stark:  Ct
The second use is what we call the ‘is’ of 
identity.  It says that Tony Stark and Iron Man 
are the same guy:    t = s



Identity statements 1

With identity we can now say all sorts of exciting 
things that we could not say before.
For example:

Tony is the only one who is having fun.
This sentence doesn’t just say that Tony is 
having fun.  It says that Tony is having fun, and
nobody else is.  We can express this as follows:

Ft & ∀x (Fx → x=t).
In English, this says:

Tony is having fun, and for all x, if x is having fun, then 
x is identical to Tony.



Identity statements 2
Pages 227-229 show you ways that we can now 
characterize certain kinds of quantitative 
statements.  For example:

There are at least two apples.
can be expressed as 

∃x∃y ((Ax & Ay) & x≠y)
Alternatively

There are at most two apples
can be expressed as 

∀x∀y∀x( (Ax & Ay & Az ) → (x=y v y=z v x = z))
Notice that the author has here adopted the 
common convention of dropping parentheses 
for strings of conjunctions or disjunctions.



Identity statements 3

We can also express superlatives like:
Big Brown is the fastest horse.

This is essentially to say that Big Brown is 
faster than every horse not identical to 
Big Brown.  Symbolically:
∀x (x≠b, then Fbx)



Rules for identity

We introduce new rules of inference for identity.  
The truth tree rules and the natural deduction 
rules are slightly different, but the basic ideas 
are the same.  
There are two new rules for each system.

One kind of rule allows you to make inferences from 
the fact that two things are identical.  Specifically, if 
you know something like Fa and you know that a=b, 
then you can infer Fb.
The other kind or rule allows you to exploit the fact 
that something is always identical to itself:  a=a.  



Truth tree rules:  identity (=)
The first truth tree rule allows you to exploit the identity 
relation.  It can be reused, so you only mark it with a * after 
you have used it.   It works like this.

Fab or  Fab or Faa
*a=b                *a=b               *a=b
Fbb Faa Fba

Fbb is simply the result of substituting b for a in the first 
expression sentence Fab, and it is justified by the fact that 
a=b.  You can created Faa by the same process as shown
Importantly, you do not actually have to substitute for every
occurrence of the constant, as shown by the third example. 



Truth tree rules: negated identity (≠)
Negated identity allows you to cancel any line 
that contains a statement of the form a ≠ a.  
Because it is always the case that a=a, this is 
tantamount to a mathematical contradiction.
Example:

*a=b
b=c
a≠c
*a=c
a≠a
x



Natural deduction rules: =I

The first natural deduction rule for identity 
is called identity introduction or (=I).  It is 
the analog of the negated identity rule for 
truth trees.
=I simply allows you to introduce any 
sentence of the form 

a=a

whenever you like.  There will be no line 
number in the justification.  Simply write 
=I.



Natural deduction:  =E
The second natural deduction rule for identity is 
the same as the identity truth tree rule.
Here we call it =E.  So, if you have a proof that 
looks like this:

n.     Fab
m.    a=b

then on some later line you can write 
o.     Fbb =I, n,m.

However you can only perform this rule on 
constants.  You can’t do this:

n.   ∀x∀yFxy
m.  ∀x∀y x=y
o.   ∀xFxx =I, n,m.



An example
Let’s do a translation example and then prove it using both 
methods.

Brian is the only one who doesn’t shower.
Only someone who doesn’t shower stinks.
So, if anyone stinks, it’s Brian.

We will translate this on the assumption that the domain of 
discourse is people.  This means that every object referred 
to here is a person, so we don’t have to keep using the 
predicate ‘is a person’.  
On this assumption, the argument translates as follows.

∀y(¬Sy → y=b)
∀x(Ts → ¬Sx)
∀x (Tx → x=b)



Truth tree solution

∀y(¬Sy → y=b)
∀x(Tx → ¬Sx)

¬∀x (Tx → x=b)



Truth tree solution

∀y(¬Sy → y=b)
∀x(Tx → ¬Sx)
√ ¬∀x (Tx → x=b)
√¬(Ta → a=b) 

Ta
a≠b



Truth tree solution

*∀y(¬Sy → y=b)
*∀x(Tx → ¬Sx)
√ ¬∀x (Tx → x=b)
√¬(Ta → a=b) 

Ta
a≠b

¬Sa → a=b
Ta → ¬Sa



Truth tree solution
*∀y(¬Sy → y=b)
*∀x(Tx → ¬Sx)
*¬∀x (Tx → x=b)
√¬(Ta → a=b) 

Ta
a≠b

√ ¬Sa → a=b
√ Ta → ¬Sa

¬ Ta                    ¬Sa
x 

¬¬Sa                   a=b
x                          x



Truth tree solution
*∀y(¬Sy → y=b)
*∀x(Tx → ¬Sx)
√ ¬∀x (Tx → x=b)
√¬(Ta → a=b) 

Ta
a≠b
¬Sa → a=b
√ Ta → ¬Sa

¬ Ta                    ¬Sa
x 



Natural Deduction Solution
1.  ∀y (¬Sy → y=b)             A
2.  ∀x (Tx → ¬Sx)               A
3.  Show: ∀x (Tx → x=b)
4.  Show:  Ta → a=b
5.   Ta                                  ACP
6.   Ta → ¬Sa ∀E,2
7.  ¬Sa → a=b ∀E,1 
8.   ¬Sa →E, 5,6
9.   a=b                               →E, 7,8

Cancel show lines.



Example 2

Here is a proof that requires the use of 
identity exploitation.
Whatever is pooping on the porch is big. 
Marty is not big.  So, Marty is not the one 
pooping on the porch. 

Translation:
Let P stand for “pooping on the porch”

∀x(Px → Bx)
¬Bm
Therefore, ∀x(Px → x≠m)



Truth tree solution
*∀x(Px → Bx)
¬Bm
√¬ ∀x(Px → x≠m)
√¬(Pa → a≠m)

Pa
√¬a≠m

*a=m
(Pm → Bm)

¬Pm Bm
Pm ¬Ba

x x



Natural deduction solution
1.  ∀x(Px → Bx) A
2.  ¬Bm A
3.  Show  ∀x(Px → x≠m)
4.     Show Pa → a≠m
5.      Pa ACP
6.      Show  a≠m
7.      a=m AIP
8.     ¬Ba =E 2,7
9.      Pa → Ba ∀E, 1
10.    ¬Pa →E* 8,9
11.    Pa R, 5



Functions
It is surprisingly easy to introduce functions into Q, and they 
actually require no new rules. 
You probably remember that in mathematics we sometimes 
represent a function as follows

f(x)
For example, we might say that

f(x) = x2

This would allow us to write, for example that 
f(3) = 9

We basically do the same thing in Q, with the provision that 
variable be bound.  
So, suppose we let 

f(x) =  “father of x”
Now suppose we know that the father of Sarah is Michael. 
We can represent this as:

f(s) = m



Understanding function symbolism
As we noted in the beginning, functions are basically just certain kinds of 
relations, and function symbolism is just a way of representing a relation 
that is conducive to certain kinds of inferences. 
The statement:  “Michael is the father of Sarah” can be represented as

Fms
or  

f(s) = m

By representing the statement in the latter form we can combine function 
statements with the rules of identity to produce inferences we could not 
produce before.
If you recall the distinction between identity and predication, you may note 
that it’s not entirely correct to say that the two expressions above mean 
exactly the same thing.  
To preserve the distinction, we can say that ms means “Michael fathered 
Sarah,” so that the father-offspring relation is being predicated of Michael 
and Sarah.  
On the other hand f(s) = m  says that the “Michael is identical to the father 
of Sarah”



Understanding function symbolism 2
Because function symbols go in the place of constants and 
variables, they are treated in the same manner.  This is why 
we don’t need any new rules for them.
For example, if we say something like:

Billy’s father loves Sarah’s mother.
We would write this as:

Lf(b)m(s)
Read as:  The father of Billy loves the mother of Sarah.
If we knew that Billy’s father is Alvin and that Sarah’s 
mother is Denise, then we would write this as 

f(b) = a
m(s) = d

We can then use =E to show that.
Lad



Understanding function symbolism 3
The other interesting thing about functions is that they can 
be iterated.
Again, you may remember from mathematics that we can 
say things like this.

f(g(x))
Suppose f(x) = x2 and g(x) = 1/x

then f(g(2))= ¼.
In logic we can represent functions of functions in the same 
way.  For example, we can represent “paternal grandfather”
as g(x) or as f(f(x)).
Hence, we can write

g(x) = f(f(x))
Hence, if we know that Alvin is the paternal grandfather of 
Betty, we’ll be able to easily prove that Alvin is the father of 
the father of Betty.



Function conditions

It’s important to understand that functions 
are special kinds of relations.  There are 
two conditions they must meet.
The first is called the existence condition.
The second is called the uniqueness 
conditions.



The existence condition

The existence condition on functions 
requires that every input produces an 
output.
The relation “father of” (understood as 
biological father) is reasonably construed 
as a function because every human has a 
biological father.  
On the other hand “brother of” is not a 
function, because not every person has a 
brother.



The uniqueness condition

The uniqueness condition requires that a 
function have exactly one output for every 
input. 
Again, “father of” (biological) is 
reasonably construed as a function 
because everyone has exactly one father.
But even though “grandfather of” meets 
the existence condition, it does not meet 
the uniqueness condition, because 
everyone has two biological grandfathers. 



Perils of ignoring existence and uniqueness

We can get into a lot of trouble ignoring these two conditions. 
It’s a lot like ignoring the fact that you can’t divide by zero.  
Division is technically not a function because the fact that you
can’t divide by zero means it fails the existence condition, at 
least if division is defined on the set of integers. Here’s the proof 
in case you have forgotten it:

1. a=b   A  (a and b not equal to 0)
2. Show:  2 = 1
3. a2=ab multiplying both sides equally. 
4. a2 – b2 =  ab - b2 subtracting from both sides equally.
5. (a – b)(a +b) = b(a –b)          distributive property of multiplication
6. (a + b) = b                             dividing both sides by (a-b)
7. (b+b) = b =E, 1,6
8. 2b=b addition
9. 2 = 1 divide both sides equally



Bogus function proofs
In the same way, you can do bogus function proofs if you 
ignore these conditions.  For example, if you ignore the 
uniqueness condition you can prove the folowing:

Juan’s dog is his pet.
Juan’s cat is his pet.
Therefore, Juan’s dog is Juan’s cat.

This inference would never go through if “dog of” and “cat 
of” and “pet of” were translated as binary predicates.  But if 
they are allowed to pose as functions, we would translate 
the argument and prove it as follows:

1. d(j) = p(j) A
2. c(j) = p(j) A
3. Show d(j) = p(j)
4. d(j) = c(j) =E, 1,2
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