Fibonacci Sequence & Golden Ratio

Fibonacci was an Italian mathematician from Pisa, who invented the following sequence in the year 1202:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ...

After the first two terms, each term is formed by **adding the two previous terms**. Fibonacci used 1 and 1 as his starting numbers, but any two numbers can be used

So here,

2 = 1 + 1 3 = 2 + 1 5 = 3 + 2 8 = 5 + 313 = 8 + 5 etc....

Example

Work out the missing term in this Fibonacci sequence:

2, 2, 4, ?, 10, 16 ?...

<u>Answer</u>

Look at the first two terms, which add to give 4, the third term. The missing term is therefore 2 + 4 = 6

Check that the next terms works too 4+6=10 and 6+10=16.

Notation for terms in Fibonacci sequence.

$$F_{0} = 0$$

$$F_{1} = 1$$

$$F_{2} = F_{0} + F_{1} = 0 + 1 = 1$$

$$F_{3} = F_{1} + F_{2} = 1 + 1 = 2$$

$$F_{4} = F_{2} + F_{3} = 1 + 2 = 3$$

$$F_{5} = F_{3} + F_{4} = 2 + 3 = 5$$

$$F_{6} = F_{4} + F_{5} = 3 + 5 = 8$$

$$F_{7} = F_{5} + F_{6} = 5 + 8 = 13$$

Question 1) How to find the third term out of 3 terms in Fibonacci sequence, if we know the last two.

Answer. Just add the last two.

Example: If $F_{12} = 144$ and $F_{13} = 233$, find $F_{15} = ?$ First we need to find $F_{14} = F_{12} + F_{13} = 144 + 233 = 377$, then $F_{15} = F_{13} + F_{14} = 233 + 377 = 610$.

Practice: $F_{20} = 6765$ and $F_{21} = 10946$, find $F_{24} = ?$ Answer is 46368

Question 2) How to find the first term out of 3 terms in Fibonacci sequence, if we know the last two terms. Answer. Just subtract the smaller from the larger.

Example: If $F_{12} = 144$ and $F_{13} = 233$, find $F_{11} = ?$

 $F_{11} = F_{13} - F_{12} = 233 - 144 = 89$, in the same fashion, we can find $F_{10} = F_{12} - F_{11} = 144 - 89 = 55$

then $F_{15} = F_{13} + F_{14} = 233 + 377 = 610$.

Practice: $F_{20} = 6765$ and $F_{21} = 10946$, find $F_{19} = ?$ and $F_{18} = ?$ Answers: $F_{19} = 4181$ and $F_{18} = 4181$

Golden ratio, also known as the divine proportion, golden mean, or golden section, is a number often encountered when taking the ratios of two consecutive terms in Fibonacci sequence.

Notation for Golden ratio is the Greek alphabet φ (pronounced fee).

How to **approximate** φ by dividing each term by its previous one.

Example: $\varphi = \frac{F_{10}}{F_9} = \frac{55}{34} = 1.617647$ or $\varphi = \frac{F_{27}}{F_{26}} = \frac{196418}{121393} = 1.618033$

Find $\varphi = \frac{F_7}{F_6} = \frac{?}{?} =$

Application of Golden ratio: The **Golden Ratio** is a common mathematical **ratio** found in nature, which can be used to create pleasing, organic-looking compositions in your design projects or artwork

- Some examples: Flower petals. number of petals in a flower is often one of the following numbers: 3, 5, 8, 13, 21, 34 or 55. ...
- Faces. Faces, both human and nonhuman, abound with examples of the Golden Ratio. ...
- Body parts. ...
- Seed heads. ...
- 5. Fruits, Vegetables and Trees. ...
- Shells. ...
- Spiral Galaxies. ...
- Hurricanes.

F(n) F(n-1)		F(n)/F(n-1)		
1	1	1		
2	1	2		
3	2	1.5		
5	3	1.666666667		
8	5	1.6		
13	8	1.625		
21	13	1.615384615		
34	21	1.619047619		
55	34	1.617647059		
89	55	1 618181818		

13 8

21

CE.

Section	, Date	, Name
) =	,

Discovering Golden Ratio

				Number
F1		Round to 3 Decimal	F1	Use the x(golden raio)
F2	F2/F1		F2	
53	52/52		52	$\frac{x^3}{\sqrt{5}} =$
F3	F3/F2		F3	√5 4
F4	F4/F3		F4	$\frac{x}{\sqrt{5}} =$
				$\frac{x^5}{\sqrt{x}} =$
F5	F5/F4		F5	$\sqrt{5}$
F6	F6/F5		F6	$\frac{x^{0}}{\sqrt{5}} =$
				x ⁷
F7	F7/F6		F7	$\overline{\sqrt{5}} =$
50	50/57		50	$\frac{x^8}{\sqrt{5}} =$
Fð	F8/F/		Fð	ν ⁵ 9
F9	F9/F8		F9	$\frac{x}{\sqrt{5}} =$
				x^{10}
F10	F10/F9		F10	$\overline{\sqrt{5}} =$
				$\frac{x^{11}}{x} =$
F11	F11/F10		F11	$\sqrt{5}^{-}$
				$\frac{x^{12}}{x} =$
F12	F12/F11		F12	$\sqrt{5}$
				x^{13} _
F13	F13/F12		F13	$\sqrt{5}$
				x ¹⁴ _
F14	F14/F13		F14	$\sqrt{5}^{-}$
				$\frac{x^{15}}{x}$ –
F15	F15/F14		F15	$\sqrt{5}^{-}$

Round to the whole

Please write what the nembers on the last column approaches to?

Golden Ratio = X=

See if you can draw an spiral by using numbers in Fibonacci Sequance 1, 1, 2, 3, 5,8,13,21

