Arithmetic and Geometric Sequences

A sequence is a list of numbers or objects, called terms, in a certain order. In an arithmetic sequence, the difference between one term and the next is always the same. This difference is called a common difference. The common difference is added to each term to get the next term.
$2,5,8,11,14, \ldots$
This is an increasing arithmetic sequence with a common difference of 3 .
$32,26,20,14,8, \ldots$
This is a decreasing arithmetic sequence with a common difference of -6 .

Example: What are the next three terms in the sequence?
$1,5,9,13, \ldots$ I can see that this is an arithmetic sequence with a common difference of 4 . To get the next three terms, add 4 to 13 which equals 17, the next term in the sequence. Then add 4 to 17 to get the next term to get 21 , etc. So the next three terms are 17,21 , and 25.

Use the following formula to find any term of an arithmetic sequence.

$$
a_{n}=a_{1}+(n-1) d
$$

$a_{n}=$ the term in the sequence you are trying to find (n represents the desired term number)
$\mathrm{a}_{1}=$ the first term in the sequence
$d=$ the common difference
Example: What is the $10^{\text {th }}$ term of the following sequence?
$1,5,9,13, \ldots$
$a_{10}=1+(10-1) 4=1+9 \cdot 4=1+36=37$

So the $10^{\text {th }}$ term of this sequence is 37 .
Example: What is the $12^{\text {th }}$ term of the following sequence?
$34,31,28,25,22, \ldots$
$a_{12}=34+(12-1)(-3)=34+11(-3)=34+(-33)=1$

The $12^{\text {th }}$ term of this sequence is 1 .

Practice:

1. Find the next three terms: $3,10,17,24,31$, \qquad , \qquad
\qquad
2. Find the $25^{\text {th }}$ term: $53,50,47,44,41, \ldots$ \qquad
3. Find the $20^{\text {th }}$ term: $25,40,55,70,85, \ldots$ \qquad
4. Find the $75^{\text {th }}$ term: $88,81,74,67,60, \ldots$ \qquad
A geometric sequence is a sequence of numbers where the ratio of consecutive terms is constant. This ratio is called the common ratio (r). Sometimes the terms of a geometric sequence get so large that you may need to express the terms in scientific notation rounded to the nearest tenth.
$2,6,18,54, \ldots$ This is an increasing geometric sequence with a common ratio of 3 .
$1,000,200,40,8, \ldots$ This is a decreasing geometric sequence with a common ratio or 0.2 or $\frac{1}{5}$.

Example: What are the next three terms of the following sequence?

$$
500 \cdot 5=2500
$$

$4,20,100,500, \ldots \quad 2500 \cdot 5=12,500$ The next three terms are $2,500,12,500$, and 62,500 .

$$
12,500 \cdot 5=62,500
$$

Explicit sequences also have a formula for finding any term in a sequence.

$$
a_{n}=a_{1} r^{(n-1)}
$$

$a_{n}=$ the term in the sequence you are trying to find (n represents the desired term number)
$a_{1}=$ the first term in the sequence
$r=$ the common ratio
Example: Find the $7^{\text {th }}$ term in the following sequence: $6,18,54,162, \ldots$
Finding the common ratio can be harder than finding the common difference. One way to find it is the divide each term by the term before it.
$18 \div 6=3,54 \div 18=3,162 \div 54=3$ So the common ratio is 3 .
$a_{7}=6 \cdot 3^{(7-1)}=6 \cdot 3^{6}=6 \cdot 729=4,374$
So the $7^{\text {th }}$ term of the sequence is 4,374 .

Example: Find the $8^{\text {th }}$ term in the following sequence: $96,48,24,12,6, \ldots$
To find the common ratio, divide each term by the one before it.
$48 \div 96=\frac{1}{2}, 24 \div 48=\frac{1}{2}, 12 \div 24=\frac{1}{2}$ The common ratio is $\frac{1}{2}$.
$a_{8}=96 \cdot \frac{1}{2}^{(8-1)}=96 \cdot \frac{1}{2}^{7}=96 \cdot \frac{1}{128}=0.75 \quad$ The $8^{\text {th }}$ term of the sequence is 0.75 .

Practice:

1. Find the next three terms: $128,64,32,16,8$, \qquad , \qquad , \qquad .
2. Find the $9^{\text {th }}$ term: $0.01,0.1,1,10,100, \ldots$ \qquad
3. Find the $7^{\text {th }}$ term: $1,6,36,216,1,296, \ldots$ \qquad
4. Find the $11^{\text {th }}$ term: $1,-2,4,-8,16, \ldots$ \qquad

Arithmetic and Geometric Sequences

Determine if the sequence is arithmetic or geometric, and then find the next three terms.

1. $-2,-4,-8,-16$, \qquad , _ , \qquad 2. $65,60,55,50,45$, \qquad , \qquad
\qquad
2. $8,13,18,23,28$, \qquad , \qquad , \qquad 4. $1,1.5,2.25,3.375$, \qquad , \qquad , \qquad
Determine if the sequence is arithmetic or geometric, and then find the given term.
3. $11^{\text {th }}$ term: $5,3,1,-1, \ldots$ \qquad
4. $23^{\text {rd }}$ term: $0.1,0.15,0.2,0.25, \ldots$ \qquad
5. $6^{\text {th }}$ term: $25,75,225,675, \ldots$ \qquad
6. $22^{\text {nd }}$ term: $-2,-5,-8,-11,-14, \ldots$ \qquad
7. $10^{\text {th }}$ term: $\mathrm{a}_{1}=320, \mathrm{r}=0.5$
8. $50^{\text {th }}$ term: $-9,2,13,24,35, \ldots$ \qquad
9. Mariano received a bonus of $\$ 50$ for working the day after Thanksgiving, plus his regular wage of $\$ 9.45$ an hour. If his total wages for the day were $\$ 135.05$, how many hours did he work?
10. Heather makes $\$ 6.50$ per hour. Every three months, she is eligible for a 2% raise. How much will she make after 2 years if she gets a raise every time she is eligible?

Date: \qquad

Arithmetic and Geometric Sequences Worksheet

Arithmetic Sequence - is a sequence of terms that have a common \qquad between them.

General Term:
$\mathrm{a}_{\mathrm{n}}=$

Geometric Sequence - is a sequence of terms that have a common \qquad between them.

General Term:

1. Are the following sequences arithmetic, geometric, or neither? If they are arithmetic, state the value of d. If they are geometric, state r.
a) $\quad 6,12,18,24, \ldots$
b) $\quad 6,11,17, \ldots$
c) $\quad 2,14,98,686, \ldots$
d) $\quad 160,80,40,20, \ldots$
e) $\quad-40,-25,-10,5, \ldots$
f) $7,-21,63,-189, \ldots$
2. For the following arithmetic sequences, find a and d and state the formula for the general term. Don't forget to simplify!
a) $-10,-4,2,8,14, \ldots$
b) $10,8,6,4, \ldots$
c) $36,31,25,21, \ldots$
3. Use your formula from question $2 c$ to find the values of a_{7} and a_{20}.
4. For the following geometric sequences, find a and r and state the formula for the general term.
a) $1,3,9,27, \ldots$
b) $12,6,3,1.5, \ldots$
c) $9,-3,1, \ldots$
5. Use your formula from question 4 c) to find the values of the a_{4} and a_{12}
6. Find the number of terms in the following arithmetic sequences. Hint: you will need to find the formula for t_{n} first!
a) $2,5,8, \ldots ., 299$
b) $9,5,1, \ldots .-251$.
[^0]
Arithmetic and Geometric Series - Worksheet

General formula for an arithmetic series:

General formula for a geometric series:

1) Find the designated sum of the arithmetic series
a) S_{14} of $3+7+11+15+\cdots$
b) S_{11} of $-13-11-9-7-\cdots$
c) S_{9} of $22+20+18+16+\cdots$
d) S_{35} of $-2-5-8-11-\cdots$
2) Determine the sum of each arithmetic series
a) $6+13+20+\cdots+69$
b) $4+15+26+\cdots+213$
c) $5-8-21-\cdots-190$
d) $100+90+80+\cdots-100$
3) Find the designated sum of the geometric series
a) S_{7} of $4+8+16+32+\cdots$
b) S_{13} of $1-6+36-216+\cdots$
c) S_{17} of $486+162+54+18+\cdots$
d) S_{6} of $3+15+75+375+\cdots$
4) Determine S_{n} for each geometric series
a) $a=6, r=2, n=9$
b) $f(1)=2, r=-2, n=12$
c) $f(1$ ₹ $729, r=-3, n=15$
d) $f(1)=2700, r=10, n=8$
5) If the first term of an arithmetic series is 2 , the last term is 20 , and the increase constant is $+2 \ldots$
a) Determine the number of terms in the series
b) Determine the sum of all the terms in the series
6) A geometric series has a sum of 1365 . Each term increases by a factor of 4 . If there are 6 terms, find the value of the first term.

Answers

1) a) 406
b) -33
c) $126 \quad$ d) -1855
2) a) 375
b) 2170
c) -1480
d) 0
$\begin{array}{lllll}\text { 3) a) } 508 & \text { b) } 1 & 865 & \text { c\$ } 1729 & \text { d) } 11\end{array}$
3) a) 3066 b) $-2730 \quad$ c) 2615088483 d) $2.99999997 \times 10^{!}$"
$\begin{array}{ll}\text { 5) a) } n=10 & \text { b) } S_{!} "=110\end{array}$
4) $t_{!}=1$

[^0]: Answers:
 1a) arithmetic $d=6 \quad$ b) neither \quad c) geometric $r=7 \quad$ d) geometric $r=0.5$ or $r=1 / 2 \quad$ e) arithmetic $d=15 \quad$ f) geometric $r=-3 \quad 2 a) a=-10 ; d=6 ;$ $t_{n}=6 n-16$ b) $a=10 ; d=-2 ; t_{n}=-2 n+12 \quad$ c) $a=36 ; d=-5 ; t_{n}=-5 n+413 . t_{7}=6 ; t_{20}=-59 \quad$ 4. a) $\left.a=1 ; r=3 ; t_{n}=1(3)^{n-1} \quad b\right) a=12 ; r=$
 $\frac{1}{2} ; t_{n}=12\left(\frac{1}{2}\right)^{n-1}$
 c) $\mathrm{a}=9 ; \mathrm{r}=-3 ; \mathrm{t}_{\mathrm{n}}=9(-3)^{\mathrm{n}-1} \quad 5 . \mathrm{t}_{4}=-243 \quad \mathrm{t}_{12}=-177147$
 6. a) $t_{n}=3 n-1 ; n=100$ b) $t_{n}=-4 n+13 ; n=66$

