Abe Mirza

Formulas and Notations **Ungrouped Data**

Statistics

$$\mu = \frac{\sum x}{N}$$
 or $\overline{x} == \frac{\sum x}{n}$

$$\mu = \frac{\sum x}{N} \quad or \quad \overline{x} == \frac{\sum x}{n} \qquad S = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} \quad , \qquad S = \sqrt{\frac{n \sum_{x = -(\sum x)^2} x}{n(n - 1)}}$$

Variance (σ^2 , s^2): Variance is the square of standard deviation. To Estimate S: S = Range / 4

Inputting data in L1 (stat \rightarrow Option $1 \rightarrow$ enter) TI-83/84

then stat \rightarrow calc \rightarrow Option $1 \rightarrow$ enter $\rightarrow 2n d \rightarrow 1 \rightarrow$ enter

Grouped Data (Freq. Table)

$$\overline{X} = \frac{\sum (f \times m)}{\sum f}$$

$$\overline{X} = \frac{\sum (f \times m)}{\sum f}$$

$$S = \sqrt{\frac{n \sum (f \times m^2) - (\sum f \times m)^2}{n(n-1)}}$$

TI-83/84 Inputting midpoints in L1 and frequency in L2

then stat \rightarrow calc \rightarrow Option 1 \rightarrow enter \rightarrow L1, L2 \rightarrow enter

Empirical Rules: If the **box-plot is centered** then we can apply the **three** following empirical rules.

$$99.7\% = \overline{x} \pm 3 s$$
 \Rightarrow

99.7 % of data are within 3 S of the mean (\bar{x})

$$95\% = \overline{x} \pm 2 S$$

95 % of data are within 2 S of the mean (\bar{x})

$$68\% = \overline{x} \pm s$$

68 % of data are within 1 S of the mean (\bar{x})

Z-Score
$$Z = \frac{x - \overline{x}}{s}$$
 or $Z = \frac{x - \mu}{\sigma}$

Unusual Values: Z < -2

Ordinary Values: $-2 \le Z \le 2$

Unusual Values:

Z > 2

1

Correrlation Coefficient =
$$r = \frac{n\sum x y - \sum x \sum y}{\sqrt{n\sum x^2 - (\sum x)^2} \sqrt{n\sum y^2 - (\sum y)^2}}$$
 $-1 \le r \le 1$

Regression Equation: y = a x + b

a = Slope, b = y intercept

Slope =
$$a = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$
 $y - itc = b = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{n(\sum x^2) - (\sum x)^2}$

 $2n d \rightarrow 0 \rightarrow select \ Diagnostic \ on \rightarrow enter \rightarrow enter \ then \ Inputting \ x-values \ in \ L1 \ and \ y-values \ in \ L2$ then stat \rightarrow calc \rightarrow Option 4 \rightarrow enter \rightarrow L1, L2 \rightarrow enter

Using the regression equation to estimate or predict y and x that are shown by y' and x'

Multiplication Rule P(A and B and C and ...) = P(A)P(B)P(C)...