Part II Section 5 Practice Problems

A. The table below shows 200 shirts in terms of colors and size. (All answers in percentage and round in 2 decimal)

	Blue	Red	White
Large	50	40	20
Small	40	20	30

If one shirt is randomly selected then find the following probability that

- 1) It is red or small Ans: 65%
- 3) It is white or blue Ans: 70%

2) It is white or large Ans; 70%4) It is red or white or large Ans: 80%

5) If two shirts are randomly selected then find the probability that both shirts are small. Ans:20.13%

6) If two shirts are randomly selected then find the probability that both shirts are nonwhite. Ans: 56.16% All solutionss. on page 3.

B.

b) From a deck of 52 cards, If we draw one card at random, then what is the probability that it is Ace or Red? *Ans: 53.84 %*

- a) From a deck of 52 cards, If we draw one card at random, then what is the probability that it is Ace or King? *Ans: 15.39*
- C. Let Random Variable X = the number of digital camcorders sold in a given day at an electronic store.

		В		P(x)%								
x	f											
3	8											
4	11											
5	14											
6	19											
7	20											
8	12											
9	9											
10	7				3	4	5	6	7	8	9	10
		1.00 = ?]								
		Mean = 6	5.39									

- Complete the table, draw probability distribution (Answers/P.16) and find the probability that,

- 1. At least there will be 7 camcorders sold in a given day. Ans: 48 %
- 2. At most there will be 8 camcorders sold in a given day. Ans: 84 %
- 3. Find the mean of number of camcorders sold in a given day. Mean = 6.39

C. A \$0.5 slot machine in a casino has a winning prize of \$10 for each play with winning probability 1/100. What are the expected results for the players and the house each time the game is played. How much will be the expected to generate revenue if a typical casino has 100 slot machines and each slot machine is played 1000 times a day and 360 days Ans: \$142,200 per year.

Counting

1) If a password should consist of 2 letters first and 3 digits after, then how many different	1) <i>676,000</i>
 passwords are possible? <u>L L D D D</u> 2) If a password should consist of non-repeating of 2 letters first and non-repeating 3 digits after, then how many different passwords are possible? 	2) 468,000
<u>L L D D D</u>	
3) How many different 3-letter words can be written ending with vowels (a,e,i,o,u)?	3) <i>3,380</i>
4) How many different 3-letter words can be written not ending with vowels (a,e,i,o,u)?	4) <i>14,196</i>
5) How many different 3-digits odd number can be written by using 0,2,1,3,7,8 digits?	5) <i>90</i>
6) How many different 3-letter words can be written ending with letters (e, n, d)?	6) 2,028
7) How many different 3-digits even number can be written by using 0,2,1,3,7,8 digits?	7) 90
<i>T</i>) frow many different 5-digits even number can be written by using 0,2,1,5,7,8 digits.	7) 90
8) In how many ways Joe can dress up, if he has 6 shirts, 7, pants, and 5 pair of shoes?	8) <i>210</i>
,,	
9) If a password should consist of non-repeating of 3 letters first and non-repeating 2 digits after, then how many different passwords are possible?	9) 1,404,000
,,,,	
10) If a password should consist of 2 letters first and 2 digits after, then how many different passwords are possible?	s 10) 67,600
11) How many different 3-letter words can be written ending with letters (a,c,e,t,o,p)?	11) 4,056
12) How many different 3-digits even number divisible by 5 can be written by using 0,2,1,3,7,5,8 digi	ts? 12) 42
13) How many different 3-digits number divisible by 5 can be written by using 0,2,1,3,7,5,8 digits?	13) 84
14) How many different area codes can we have?	14) <i>1000</i>
D . In	

Pratice Problems Part 2 10/10/2020

Answers

	В	R	W	
L	50	40	20	110
S	40	20	30	90
	90	60	50	200
$P(R \ or \ S) = $	$\frac{60}{200} + \frac{90}{200} - \frac{20}{200} = \frac{13}{20}$	$\frac{60}{00} = 65\%$ 2	2) $P(W \text{ or } L) = \frac{50}{200}$	$+\frac{110}{200} - \frac{20}{200} = \frac{140}{200} = 70\%$
3) $P(W \text{ or } B) = \frac{1}{2}$	$\frac{50}{200} + \frac{90}{200} - \frac{0}{200} = \frac{140}{200} =$	= 70%		
4) P(R or W or	$L) = \frac{60}{200} + \frac{50}{200} + \frac{110}{200}$	$-\frac{0}{200} - \frac{40}{200} - \frac{20}{200} = \frac{16}{200}$	$\frac{50}{00} = 80\%$	
5) $P(both small) = P($	first small and sec ond	$d \ small) = \frac{90}{200} \cdot \frac{89}{199} = 20$	0.1265%	
6) P(both non white)	= P(first non white and	d sec ond non white) =	$\frac{150}{200} \cdot \frac{149}{199} = 56.156\%$	
1) 65% 2) 7	3) 70%	4) 80%	5) 20.13% 6) 56.16%
a) P(A or R) = P(A	(1) + P(R) - P(A and R)	$R) = \frac{4}{52} + \frac{26}{52} - \frac{2}{52} = \frac{2}{5}$	$\frac{18}{12} = \frac{7}{13} = 53.84\%$	
	$A \rightarrow D(K) \rightarrow D(A = 1)$	$K(K) = \frac{4}{52} + \frac{4}{52} - \frac{0}{52} =$	8 - 2 - 15 30%	

	В						
X	f	P(x)%	x P(x)	X ² P(x)			
3	8	0.08	0.24	0.72			
4	11	0.11	0.44	1.76			
5	14	0.14	0.70	3.50			
6	19	0.19	1.14	6.84			
7	20	0.20	1.40	9.80			
8	12	0.12	0.96	7.68			
9	9	0.09	0.81	7.29			
10	7	0.07	0.70	7.00			
	100	1.00	6.39	44.59			
Mean = 6.39 St. Dev = 1.94							

Outcome	x	p(x)	x p(x)		
Win	\$10	1/100	\$.10		
Lose	\$-0.5	99/100	\$495		
		$\sum p(x) = 1?$	$\sum xp(x) = \$395$		
(.395)(1000)(100)(360) = \$14,220,000					

3

Counting

1) If a password should consist of 2 letters first and 3 digits after, then how many different passwords are possible? 2) 676,000 $26 \times 26 \times 10 \times 10 \times 10 = 676,000$

2) If a password should consist of non-repeating of 2 letters first and non-repeating 3 digits after, then how many 1) 468,000 Pratice Problems Part 2 10/10/2020 different passwords are possible?

$$26 \times 25 \times 10 \times 9 \times 8 = 468,000$$

3) How many different 3-letter words can be written ending with vowels (a,e,i,o,u)?

$$26 \times 26 \times 5 = 3,380$$
3) 3,380

4) How many different 3-letter words can be written not ending with vowels (a,e,i,o,u)? $26 \times 26 \times 21 = 14,196$ 4) 14,196

5) How many different 3-digits odd number can be written by using 0,2,1,3,7,8 digits? 5) 90

 $5 \times 6 \times 3 = 90$

6) How many different 3-letter words can be written ending with letters (e, n, d)? 6) 2,028

$$26 \times 26 \times 3 = 2,028$$

7) How many different 3-digits even number can be written by using 0,2,1,3,7,8 digits? 7) 60

$$5 \times 6 \times 3 = 90$$

8) In how many ways Joe can dress up, if he has 6 shirts, 7, pants, and 5 pair of shoes? 8) 210

 $6 \times 7 \times 5 = 210$

9) If a password should consist of non-repeating of 3 letters first and non-repeating 2 digits after, then9) 1,404,0009) 1,404,000

$$26 \times 25 \times 24 \times 10 \times 9 = 1,404,006$$

10) If a password should consist of 2 letters first and 2 digits after, then how many different passwords 10) 67,600 are possible?

 $26 \times 26 \times 10 \times 10 = 67,600$

- **11)** How many different 3-letter words can be written ending with letters (a,c,e,t,o,p)? $26 \times 26 \times 6 = 4,056$ 11) 4,056
- 12) How many different 3-digits even number divisible by 5 can be written by using 0,2,1,3,7,5,8 digits? 12) 42 $6 \times 7 \times 1 = 42$
- **13)** How many different 3-digits number divisible by 5 can be written by using 0,2,1,3,7,5,8 digits? $6 \times 7 \times 2 = 82$ **13)** 84

14) How many different area codes can we have?

14) 1000

 $10 \times 10 \times 10 = 1000$