# Point and Interval Estimation for population mean (small samples $n \le 30$ )

# **Learning Objectives**

What do we estimate? **Population Mean** ( $\mu = ?$ )

Know all the new **terminologies** and related **notations** (Point estimate  $\overline{x}$ ) Know all the new **formulas** on **formula sheet** and their related **TI commands**. Know in estimating **population mean** ( $\mu = ?$ ) when to use **normal distribution** versus **t- distribution**. Know how to use TI (**option 8**) or (**formula**  $\mu = \overline{x} \pm E$ ) to estimate **population mean** ( $\mu = ?$ ).

# Definitions:

**Point estimate:** Sample statistics such as  $(\overline{X})$ 

**Confidence Interval:** A confidence interval (or interval estimate) is a range (or an interval) of values used to estimate the true value of a population parameter. A confidence interval is sometimes abbreviated as CI.

A confidence level: a confidences level is the probability  $(1 - \alpha)$  (often expressed as the equivalent percentage value) usually 90%, 95%, or 99%.that is the proportion of times that the confidence interval actually does contain the population parameter, assuming that the estimation process is repeated a large number of times. Percentage outside confidence level is called **critical area** ( $\alpha$ ). So for example with 95% =  $(1 - \alpha)$  confidence level then the critical **area** will be ( $\alpha = 5\%$ ).

Estimating Population Mean  $\mu = \overline{x} \pm E$ 

### Important: If confidence level is not given use 95% as a default.

| $\overline{x}$ = Point es | E = Margin of error(error bound)                                                                                                                       |                                                                    |  |  |  |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|
| n ≤ 30                    |                                                                                                                                                        |                                                                    |  |  |  |  |
| Margin of Error           | If $n \le 30$ use $t$ , from table on page 3 $E = t \frac{s}{\sqrt{n}}$                                                                                |                                                                    |  |  |  |  |
| Interval Estimate         | $\mu = \overline{x} \pm E$                                                                                                                             | $\mu = \overline{x} \pm E$                                         |  |  |  |  |
| TI-83/84                  | $stat \rightarrow tests \rightarrow Option 7(Z-interval)$                                                                                              | stat $\rightarrow$ tests $\rightarrow$ <b>Option 8(t-interval)</b> |  |  |  |  |
| Important relationship.   | Width (difference between upper and lower bounds) = $2E = UB - LB$ Margin of Error= $E = (UB - LB) / 2$ Point Estimate= $\overline{x} = (UB + LB) / 2$ |                                                                    |  |  |  |  |

# **T-Distribution vs. the Normal Distribution for Confidence Interval for Means**

## Main Point to Remember:

You must use the t-distribution table when working problems when the population standard deviation ( $\sigma$ ) is not known and the sample size is small  $n \leq 30$ .

### General Correct Rule:

If  $\sigma$  is not known, then using t-distribution is correct. If  $\sigma$  is known, then using the normal distribution is correct.

### What is Most Common Practice:

Since people often prefer to use the normal, and since the t-distribution becomes equivalent to the normal when the number of cases becomes large, common practice often is:

- If  $\sigma$  known, then use normal.
- If  $\sigma$  not known:
  - $\circ$  If n is large, then use normal.
  - If n is small, then use t-distribution.

## What is Another Common Way Textbooks Teach This:

Textbooks often simplify this to "large-sample" vs. "small-sample" methods; use normal distribution with large samples and t-distribution with small samples. This is right almost all the time, because in real sampling problems we seldom have a basis for knowing  $\sigma$ . However, there can be some situations when we do have a basis for assuming a value for  $\sigma$ , such as using a  $\sigma$  based on past data, and in those situations even if sample size is small the correct procedure would be to use the normal distribution, so the simplified "large-sample" vs. "small sample" approach would lead to an error.

# t distribution

 t distribution looks like a normal distribution, but has "thicker" tails. The tail thickness is controlled by the degrees of freedom



- The smaller the degrees of freedom, the thicker the tails of the *t* distribution
- If the degrees of freedom is large (if we have a large sample size), then the t distribution is pretty much identical to the normal distribution

# t distribution for small sample n < 30 Complete table on last page

| df = n-1                 |       | <     |       | alp   | ha $lpha$ |         | >      |         |   |  |
|--------------------------|-------|-------|-------|-------|-----------|---------|--------|---------|---|--|
| 2-Tailed                 | 0.40  | 0.30  | 0.20  | 0.10  | 0.05      | 0.02    | 0.01   | 0.005   |   |  |
| 1-Tailed                 | 0.20  | 0.15  | 0.10  | 0.05  | 0.025     | 0.01    | 0.005  | 0.0025  |   |  |
| Conf. Levl.              | 60%   | 70%   | 80%   | 90%   | 95%       | 98%     | 99%    | 99.5%   | ĺ |  |
| 1                        | 1.376 | 1.963 | 3.078 | 6.314 | 12.706    | 31.821  | 63.656 | 127.321 |   |  |
| 2                        | 1.061 | 1.386 | 1.886 | 2.920 | 4.303     | 6.965   | 9.925  | 14.089  |   |  |
| 3                        | 0.978 | 1.250 | 1.638 | 2.353 | 3.182     | 4.541   | 5.841  | 7.453   |   |  |
| 4                        | 0.941 | 1.190 | 1.533 | 2.132 | 2.776     | 3.747   | 4.604  | 5.598   |   |  |
| 5                        | 0.920 | 1.156 | 1.476 | 2.015 | 2.571     | 3.365   | 4.032  | 4.773   |   |  |
| 6                        | 0.906 | 1.134 | 1.440 | 1.943 | 2.447     | 3.143   | 3.707  | 4.317   |   |  |
| 7                        | 0.896 | 1.119 | 1.415 | 1.895 | 2.365     | 2.998   | 3.499  | 4.029   |   |  |
| 8 🔪                      | 0.889 | 1.108 | 1.397 | 1.860 | 2.306     | 2.896   | 3.355  | 3.833   |   |  |
| 9                        | 0.883 | 1.100 | 1.383 | 1.833 | 2.262     | 2.821   | 3.250  | 3.690   |   |  |
| 10                       | 0.879 | 1.093 | 1.372 | 1.812 | 2.228     | 2.764   | 3.169  | 3.581   |   |  |
| 11                       | 0.876 | 1.088 | 1.363 | 1.796 | 2.201     | 2.718   | 3.106  | 3.497   |   |  |
| 12                       | 0.873 | 1.083 | 1.356 | 1.782 | 2.179     | 2.681   | 3.055  | 3.428   |   |  |
| 13                       | 0.870 | 1.079 | 1.350 | 1.771 | 2.160     | 2.650   | 3.012  | 3.372   |   |  |
| 14                       | 0.868 | 1.076 | 1.345 | 1.761 | 2.145     | 2.624   | 2.977  | 3.326   |   |  |
| 15                       | 0.866 | 1.074 | 1.341 | 1.753 | 2.131     | 2.602   | 2.947  | 3.286   |   |  |
| 16                       | 0.865 | 1.071 | 1.337 | 1.746 | 2.120     | 2.583   | 2.921  | 3.252   |   |  |
| 17                       | 0.863 | 1.069 | 1.333 | 1.740 | 2.110     | 2.567   | 2.898  | 3.222   |   |  |
| 18                       | 0.862 | 1.067 | 1.330 | 1.734 | 2.101     | 2.552   | 2.878  | 3.197   |   |  |
| $p \ge 20 \Rightarrow 7$ | 0 842 | 1 036 | 1 282 | 1 645 | 1 96      | 2 3 2 6 | 2 576  | 2 807   |   |  |

# **Practice Problems 1**

Find the margin of error for the following problems by using the t-table, be sure you subtract 1 from n and then use (n-1) row to find the t-value

$$E = t\left(s / \sqrt{n}\right) \quad n \leq 30$$

**1)** Sample size n = 9, s = 6 and 95%/confidence level?

Degree of freedom  $\neq df = ? = 8$ , t = 2.306

- 2) Sample size n = 16, s = 8 and 99% confidence level?
- 3) Sample size n = 8, s = 20 and 90% confidence level?
- 4) Sample size n = 10, s = 4 and 97% confidence level?
- 5) Sample size n = 14, s = 10 and the 95% confidence level?

Answer: 4.612

$$E = 2.306 \frac{6}{\sqrt{9}} = 4.612$$

Answer: 5.894 Answer: 13.4 Answer: 3.568 Answer: 5.773

2)Sample size n = 16, s = 8, and 99% confidence level? df = ? = 15, t = 2.9473)Sample size n = 8, s = 20, and 90% confidence level? df = ? = 7, t = 1.8954)Sample size n = 10, s = 4, and 98% confidence level? df = ? = 9, t = 2.8215)Sample size n = 14, s = 10, and 95% confidence level? df = ? = 13, t = 2.16E =  $2.16\frac{10}{\sqrt{14}} = 5.77$ 

#### **Practice Problems 2**

- A) For the following problems based on sample size decide to use z or t value or neither?
  - **1)** Sample size n = 12, s = 4 and the population is normally distributed? z or t value : t value
  - 2) Sample size n = 39, s = 4 and the population is normally distributed? z or t value: z value
  - 3) Sample size n = 18, s = 4 and the population is normally distributed? z or t value : t value
  - 4) Sample size n = 40,  $\sigma = 4$  and the population is normally distributed? z or t value: z value
  - 5) Sample size n = 100, s = 4 and the population is normally distributed? z or t value: z value

#### **Practice Problems 3 with solution**

#### When $n \leq 30$

 $\mu = \overline{x} \pm E$   $E = t \left( \frac{s}{\sqrt{n}} \right)$ 

1) A random sample of 9 life insurance policy holders showed that the average premiums paid on their life insurance policies was \$340 per year with a standard deviation of \$24. Construct a 95% confidence interval for the population mean. n = 9  $\overline{x} = 340$  s = 24Because sample size is less than 30, we use t distribution

 $E = t\left(s / \sqrt{n}\right) = 2.306 \frac{24}{\sqrt{9}} = 18.45 \qquad \mu = \overline{x} \pm E \qquad \mu = 340 \pm 18.45 \qquad \$321.55 < \mu < \$358.45$ 

2) A company that produces white bread is concerned about the distribution of the amount of sodium in its bread. The company takes a simple random sample of 25 slices of bread and computes the sample mean to be 100 milligrams of sodium per slice. Construct a 90% confidence interval for the unknown mean sodium level assuming that the sample standard deviation is 10 milligrams.

$$n = 25 \qquad \overline{x} = 100 \qquad s = 10 \text{ Because sample size is less than 30, we use t distribution}$$
$$E = t\left(s / \sqrt{n}\right) = 1.711 \frac{10}{\sqrt{25}} = 3.42 \qquad \mu = \overline{x} \pm E \qquad \mu = 100 \pm 3.42 \qquad 96.58 < \mu < 103.42$$

3) The football coach randomly selected eight players and timed how long it took to perform a certain drill. The times in minutes were: 12, 9, 13, 7, 8, 13, 16, 10. Assuming that the times follow a normal distribution, find a 90% confidence interval for the population mean. n = 8  $\overline{x} = 11$  s = 3.02Because sample size is less than 30, we use t distribution

$$E = t\left(s / \sqrt{n}\right) = 1.895 \frac{3.02}{\sqrt{8}} = 2.02 \qquad \mu = \overline{x} \pm E \qquad \mu = 11 \pm 2.02 \qquad 8.98 < \mu < 13.02$$

4) The actual time it takes to cook a ten-pound turkey is a normally distributed. Suppose that a random sample of 9 ten-pound turkeys is taken. Given that an average of 2.9 hours and a standard deviation of .24 hours was found for a sample of 9 turkeys, calculate a 95% confidence interval for the average cooking time of a ten-pound turkey. n = 9  $\overline{x} = 2.9$  s = 2.4Because sample size is less than 30, we use t distribution

 $E = t\left(s / \sqrt{n}\right) = 2.306 \frac{0.24}{\sqrt{9}} = 0.18 \qquad \mu = 2.9 \pm 0.18 \qquad 2.72 < \mu < 3.08$ 

### Estimating based on raw data

Estimating the  $\mu$  = average life of Diehard batteries by using **95%** confidence Level when a sample of **6** batteries provides these data 48,54,57,45, 56,52 **Solution by Formula Hint**: to use the formula, you need to calculate  $\overline{\mathbf{x}} = ? \cdot s = ? \overline{\mathbf{x}} = 52$  months  $\cdot s = 4.69$  months  $(n \le 30)$  (for t- value use table page 4) df = 6-1  $t_{\alpha/2} = 2.571$   $E = 2.571 \frac{4.69}{\sqrt{6}}$  E = 4.92  $\mu = 52 \pm 4.92$  47.08 <  $\mu$  < 56.92 **Solution by TI 83/84 Calculator** input data in L1 then,  $(n \le 30) \rightarrow$  TI-83/84 stat  $\rightarrow$  tests  $\rightarrow$  Option 8 E = (UB - LB) / 2 = (56.92 - 47.08) / 2 = 4.92

### **Estimating one population Mean** $\mu = \overline{x} \pm E$

- a) What do we estimate? Population mean ( $\mu$ ) or sample mean ( $\bar{x}$ ) or both?
- b) What is the point estimate?
- c) What is the confidence level?
- d) What is the criteria of t-distribution?
- e) Under what condition we use t-distribution?
- f) What is the formula for degree of freedom df = ?
- g) What is the formula for margin of error?
- h) Where can you find the t table and under what condition you will be using this table? By usinf
- i) What is the width of a confidence interval?
- j) How can we use the upper and lower boundaries of a confidence interval to find point estimate?
- k) How can we use the width of a confidence interval to find margin of error?
- I) How to use **TI calculator** to find the boundaries of a confidence interval when we use **normal distribution**?
- m) How to use TI calculator to find the boundaries of a confidence interval when we use t-distribution?

C) Important properties about the relationship of sample size and confidence level and increase, decrease, of

$$E = z \frac{\sigma}{\sqrt{n}} \, .$$

- a) As the sample size (n) decreases, the margin of error (E) increases
- b) As the confidence level (C) decreases, the margin of error (E) decreases

### **Estimating one population Mean** $\mu = \overline{x} \pm E$

- a) What do we estimate? Population mean ( $\mu$ ) or sample mean ( $\bar{x}$ ) or both? Population mean ( $\mu$ )
- b) What is the point estimate?  $\overline{x}$
- c) What is the confidence level? **the percentage of probability, or certainty**, that the confidence interval would contain the true population parameter when you draw a random sample many times.
- d) What is the criteria of t-distribution? Like the normal distribution, the t-distribution has **a smooth shape**. Like the normal distribution, the t-distribution is symmetric. If you think about folding it in half at the mean, each side will be the same. Like a standard normal distribution (or z-distribution), the t-distribution has a mean of zero.
- e) Under what condition we use t-distribution? When  $n \leq 30$
- f) What is the formula for degree of freedom df = ? df = n 1
- g) What is the formula for margin of error?  $E = t \frac{s}{\sqrt{n}}$
- h) Where can you find the *t* table and under what condition you will be using this table?  $n \leq 30$
- i) What is the width of a confidence interval? = UB LB
- j) How can we use the upper and lower boundaries of a confidence interval to find point estimate?  $\frac{UB + LB}{2}$
- k) How can we use the width of a confidence interval to find margin of error?  $\frac{UB LB}{2}$
- I) How to use **TI calculator** to find the boundaries of a confidence interval when we use **normal distribution**?

stat  $\rightarrow$  tests  $\rightarrow$  Option 7(Z-interval)

m) How to use **TI calculator** to find the boundaries of a confidence interval when we use **t-distribution**?  $stat \rightarrow tests \rightarrow Option \ 8(t-interval$ 

| df = n-1    | <> alpha α> |       |       |       |        |        |        |         |
|-------------|-------------|-------|-------|-------|--------|--------|--------|---------|
| 2-Tailed    | 0.40        | 0.30  | 0.20  | 0.10  | 0.05   | 0.02   | 0.01   | 0.005   |
| 1-Tailed    | 0.20        | 0.15  | 0.10  | 0.05  | 0.025  | 0.01   | 0.005  | 0.0025  |
| Conf. Levl. | 60%         | 70%   | 80%   | 90%   | 95%    | 98%    | 99%    | 99.5%   |
| 1           | 1.376       | 1.963 | 3.078 | 6.314 | 12.706 | 31.821 | 63.656 | 127.321 |
| 2           | 1.061       | 1.386 | 1.886 | 2.920 | 4.303  | 6.965  | 9.925  | 14.089  |
| 3           | 0.978       | 1.250 | 1.638 | 2.353 | 3.182  | 4.541  | 5.841  | 7.453   |
| 4           | 0.941       | 1.190 | 1.533 | 2.132 | 2.776  | 3.747  | 4.604  | 5.598   |
| 5           | 0.920       | 1.156 | 1.476 | 2.015 | 2.571  | 3.365  | 4.032  | 4.773   |
| 6           | 0.906       | 1.134 | 1.440 | 1.943 | 2.447  | 3.143  | 3.707  | 4.317   |
| 7           | 0.896       | 1.119 | 1.415 | 1.895 | 2.365  | 2.998  | 3.499  | 4.029   |
| 8           | 0.889       | 1.108 | 1.397 | 1.860 | 2.306  | 2.896  | 3.355  | 3.833   |
| 9           | 0.883       | 1.100 | 1.383 | 1.833 | 2.262  | 2.821  | 3.250  | 3.690   |
| 10          | 0.879       | 1.093 | 1.372 | 1.812 | 2.228  | 2.764  | 3.169  | 3.581   |
| 11          | 0.876       | 1.088 | 1.363 | 1.796 | 2.201  | 2.718  | 3.106  | 3.497   |
| 12          | 0.873       | 1.083 | 1.356 | 1.782 | 2.179  | 2.681  | 3.055  | 3.428   |
| 13          | 0.870       | 1.079 | 1.350 | 1.771 | 2.160  | 2.650  | 3.012  | 3.372   |
| 14          | 0.868       | 1.076 | 1.345 | 1.761 | 2.145  | 2.624  | 2.977  | 3.326   |
| 15          | 0.866       | 1.074 | 1.341 | 1.753 | 2.131  | 2.602  | 2.947  | 3.286   |
| 16          | 0.865       | 1.071 | 1.337 | 1.746 | 2.120  | 2.583  | 2.921  | 3.252   |
| 17          | 0.863       | 1.069 | 1.333 | 1.740 | 2.110  | 2.567  | 2.898  | 3.222   |
| 18          | 0.862       | 1.067 | 1.330 | 1.734 | 2.101  | 2.552  | 2.878  | 3.197   |
| 19          | 0.861       | 1.066 | 1.328 | 1.729 | 2.093  | 2.539  | 2.861  | 3.174   |
| 20          | 0.860       | 1.064 | 1.325 | 1.725 | 2.086  | 2.528  | 2.845  | 3.153   |
| 21          | 0.859       | 1.063 | 1.323 | 1.721 | 2.080  | 2.518  | 2.831  | 3.135   |
| 22          | 0.858       | 1.061 | 1.321 | 1.717 | 2.074  | 2.508  | 2.819  | 3.119   |
| 23          | 0.858       | 1.060 | 1.319 | 1.714 | 2.069  | 2.500  | 2.807  | 3.104   |
| 24          | 0.857       | 1.059 | 1.318 | 1.711 | 2.064  | 2.492  | 2.797  | 3.091   |
| 25          | 0.856       | 1.058 | 1.316 | 1.708 | 2.060  | 2.485  | 2.787  | 3.078   |
| 26          | 0.856       | 1.058 | 1.315 | 1.706 | 2.056  | 2.479  | 2.779  | 3.067   |
| 27          | 0.855       | 1.057 | 1.314 | 1.703 | 2.052  | 2.473  | 2.771  | 3.057   |
| 28          | 0.855       | 1.056 | 1.313 | 1.701 | 2.048  | 2.467  | 2.763  | 3.047   |
| 29          | 0.854       | 1.055 | 1.311 | 1.699 | 2.045  | 2.462  | 2.756  | 3.038   |
| 30          | 0.854       | 1.055 | 1.310 | 1.697 | 2.042  | 2.457  | 2.750  | 3.030   |
| n>30 ⇒ Z    | 0.842       | 1.036 | 1.282 | 1.645 | 1.96   | 2.326  | 2.576  | 2.807   |

# t distribution for small sample $n \leq 30$