Important: If confidence level is not given use 95% as a default.

Estimating One Population Mean $\mu = \overline{x} \pm E$

\overline{X} = Point estimate (Sample Mean)			E = Margin of error(error bound)		
Decision making process based on sample size					
Margin of Error	If <i>n > 30</i>	$E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = z_{\alpha/2} \frac{s}{\sqrt{n}}$	(For $\mathbf{z}_{\alpha/2}$, use Table page 1)		
	If <i>n</i> ≤ <i>30</i>	$E = t_{\alpha/2} \frac{s}{\sqrt{n}}$	(For $t_{\alpha/2}$, use Table page 2)		
Interval Estimate	$\mu = \overline{x} \pm E$				
TI-83/84	$stat \rightarrow tests \rightarrow Option 7(Z-interval)$		$stat \rightarrow tests \rightarrow Option \ 8(t-interval)$		
Width (difference between upper and lower bounds) = $2E = UB - LB$ $E = (UB - LB) / 2$					
Point Estimate (middle of upper and lower bounds) = $\overline{x} = (UB + LB) / 2$					

Estimating One Population **Proportion** $P = \hat{p} \pm E$

Estimating Population Proportion $P = \hat{p} \pm E$					
$\hat{\mathbf{P}} = \frac{\mathbf{x}}{\mathbf{n}}$	(Called p-hat is sample proportion and	E = Margin of error	$\mathbf{E} = \mathbf{z}_{\alpha/2} \sqrt{\frac{\hat{\mathbf{p}}(1-\hat{\mathbf{p}})}{n}}$		
	point estimate for population proportion)	3 <i>α</i> /2 √ n			
Width (difference between upper and lower bounds) = $2E = UB - LB$ so $E = (UB - LB) / 2$					
Point Estimate (middle of upper and lower bounds) = $\hat{p} = (UB + LB) / 2$					
TI-83 $stat \rightarrow test \rightarrow Option A$					

Estimating the difference between Two Populations Means or Proportions			
Mean $\mu_1 - \mu_2$	Proportion $P_1 - P_2$		
$\mu_1 - \mu_2 = (\overline{x}_1 - \overline{x}_2) \pm E$	$P_1 - P_2 = (\hat{p}_1 - \hat{p}_2) \pm E$		
Point estimate $= (\overline{x}_1 - \overline{x}_2)$	Point estimate $=(\hat{p}_1 - \hat{p}_2)$		
$E = Z_1 \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	$E = Z\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$		
TI-83/84 stat \rightarrow test \rightarrow Option 9	TI-83/84 stat \rightarrow test \rightarrow B		

1

Part 3 Topics Review Last Update: 02/02/2020