Abe Mirza Topics Review Statistics

Hypothesis Testing

7 – Step Process

- 1. Starting Claim, Opposite Claim
- 2. Standard Set –up, H_0 , H_1
- 3. Establishing Guideline
- 4. Collecting Sample (Test Statistics)
- 5. Drawing Conclusion
- 6. Comment
- 7. P-value

Topics	Page
Learning Objectives	2
General Outline	3
Formuls	5
Large Sample Size (about Mean)	5
Small Sample Size (about Mean)	6

Learning Objectives

What do we hypothesize? **Population Parameter** such as **Mean** (μ = ?) or **Proportion** (P = ?) Why do we hypothesize? To investigate any claim about **Population Parameter** Is **average** weight of cereal boxes 24 oz? Do **average** life of Die hard batteries exceed 60 months? Is less than **10%** of drivers text while driving? Will more than **45%** of people vote in the next election?

7-Step Process (overview)

Very very important:

From topics review you <u>must</u> read and practice one **step at a time**. Read the first step from topics review and then go to pages 3 through 6 and see how that step is done and then continue doing that for all the 7 steps

Step 1: Finding what the starting claim is. Is that about the **average** (μ) or proportopn(P); Write the starting claim as **SC** and try to oppose it as **OC** in statistical notation

Step 2: Rewriting **SC** and **OC** as H_0 and H_1

 H_0 (must have one of the = or \leq or \geq sign) and H_1 (must have one of the \neq or < or > sign). Draw the appropriate graph as *Left tail*, *two tails* or *right tail*.

Step 3: Finding critical value or values by using the t-table,. Critical value depends on three factors

- a) significance level (α)
- b) being one-tailed or two-tailed.
- c) sample size (Hint: if n > 30 use the bottom of the table otherwise use the top.)

Step 4: (called **Test Statistics**) is using the evidence from our sample and converting that to **Z** or **t** score that can be done by **formula or Ti**

- **Step 5:** (called conclusion) is about **step 2** to see if to accept or reject H_0 .
- Step 6: (called comment) is about step 1 to see if to accept or reject SC (Starting Claim).

Step 7: (p-value) to read the p-value from TI screen on step 4 and to find out if it is smaller or larger that significance level (α).

7-Steps of hypothesis testing (Detailed Outline)

1) From the problem write (SC: Starting Claim) and then write its (OC: Opposing Claim) in statistical notation.

		SC	OC	
Examples:	Average life of "Diehard" batteries exceeds 60 months	$\mu > 60$	$\mu \leq 60$	
	Average time to do a certain task is less than 25 minutes	μ < 25	$\mu \geq 25$	
	Average net weight of a certain cereal is 24 oz.	$\mu = 24$	$\mu \neq 24$	

2) The next step is rewriting SC, and OC in a new set up called H₀ (Null Hypothesis), and H₁ (Alternative Hypothesis): As how to change SC, and OC to H₀, and H₁, you need to follow the next rule remembering that H₀ (Null Hypothesis) must contain some form of equality, and H₁ (Alternative Hypothesis) must contain no form of equality. The mathematical setup is explained right below,

 H_0 (Null Hypothesis): (contains equal sign) = or \geq or \leq H_1 (Alternative Hypothesis): (contains not equal sign) \neq or < or >

There are **three-possibilities** for setting up the hypothesis (a left-tailed test, two-tailed, right-tailed).

Hint: if $\mathbf{H_1}$: μ < it is a left-tailed test

if H_1 : $\mu \neq it$ is a two-tailed test

if H_1 : μ > it is a right-tailed test

Label the region, as A (Accepting H₀), or R (Rejecting H₀) Rejections or acceptances labels are based on H₀.

three -possibilities	H_0 : $\mu \geq 60$	$H_0: \mu = 60$	$H_0: \mu \leq 60$
	H_1 : $\mu < 60$	$\mathbf{H}_1: \ \mu \neq 60$	$H_1: \mu > 60$
left-tailed (LTT)	2.55		
two-tailed, (TTT)	(LTT) A	$ \begin{array}{c c} (TTT) & A & (TTT) \\ R & R \end{array} $	A R R
right-tailed (RTT)	60	60	60

3) What is Critical value(s) and how to find it?
Critical value(s) is limit(s) or boundary(ies) that if it is exceeded (by our sample data) then H₀ will be rejected.

How to find it? By looking up **t- table**, when we know the followings;

a) Significance level = α (Alpha Level) = Critical Region = Critical area = type I error In other words the determining the probability of rejection \mathbf{H}_0 , when \mathbf{H}_0 is true.

It is like finding some one to be quilty when he is innocent.

So not that to let that happen we choose **significance level** or α value to be small between 1% to 10%.

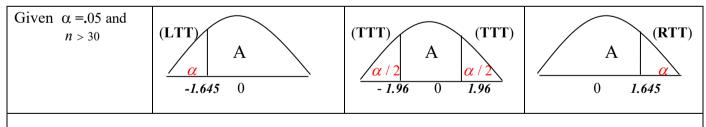
Hint: If significance level = α is not given assume $\alpha = .05 = 5\%$

Critical Region is also the area designated by Significance level and is shown by α or R

Also remember if our sample size is 30 or less, then on **Table 2** use $\mathbf{df} = \text{degree}$ of freedom = n-1

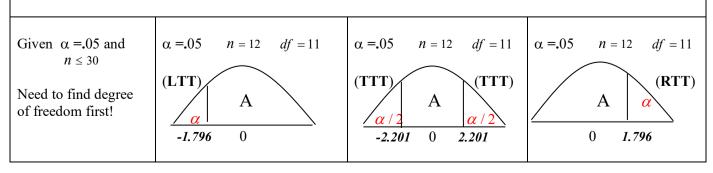
b) One-tailed or two-tailed, and

For <u>sample sizes</u> n > 30 then use last row of Table 2 to find the critical value(s)...



For <u>sample sizes</u> $n \le 30$ then use **Table 2**, to find critical value(s).

Be sure you find df= degree of freedom = n-1



- 4. Compute **Test Statistics** (based on sample information) from the following formulas.
- To test the Mean (μ) for large sample sizes $stat \rightarrow test \rightarrow Option 1$ TI-83/84

TI-83/84

b.
$$t = \frac{\sqrt{n}(\overline{x} - \mu)}{s}$$
 To test the Mean (μ) for $n \le 30$ and, when σ is unknown TI-83/84 $stat \to test \to Option 2$

'5) Conclusion: The decision is made by comparing Test Statistics with Critical value, and find where the test statistics falls (inside the CR: Critical Region or not);

If **Test Statistics** falls inside the CR: Critical Region the decision is to Reject H_0 or saying that there is sufficient evidence to Reject H₀. If it falls outside the CR: Critical Region the decision is to Fail to Reject H₀ or Accept H₀ that there is not sufficient evidence to Reject H₀. When the result of a hypothesis test are determined to be significant then we reject the null hypotheses.

- 6) Comment: Decision as to accept or reject SC(the stated claim)? Two possibilities:
 - 1) If SC and H₀ are the same then any decision you make for H₀ will be the same for SC and you write that as your comment.
 - 2) If SC and H₀ are different then whatever decision you make for H₀, you should make the opposite decision of that for **SC** and you write that as your comment.
- 7) P-value: It is the area corresponding to the test statistics and is always shown on the display of TI-8 3/84 as P =(when you compute the test statistics). Basically it is the minimum α - value that is needed to reject the Null hypothesis H_0 . As a rule you reject reject the Null hypothesis when P-value is smaller than α - value

Type I and Tpe II errors

Remember that we do not know for certain that if H_0 is true or false but after the test is set up, data collected, then we either Accept H_0 : or Reject H_0 :

The table below summarizes all possible scenarios that might happen when testing procedure is completed.

	H ₀ : True	H ₀ : False
Accept H ₀ :	Correct Decision	Type II error or called Beta (β)
Reject H ₀ :	Type I error or called $\mathbf{Alpha}(\alpha)$	Correct Decision = Power of a test $1-\beta$

Large Samples about Mean

Example 1. Average life of "Die Long" batteries exceeds 60 months. A sample of 64 batteries had an average life of 63 months and st. dev. of 10 months. Let $\alpha = .05$

 $H_0: \mu \leq 60$ SC: $\mu > 60$ Hint: Use H₁ to determine if it is LTT, TTT or RTT test OC: $\mu \leq 60$ $H_1: \mu > 60$ Note: μ in H₁ is more than, then it is a RTT n = 64 $\alpha = .05$ When $\alpha = .05$, n > 30 and one –tailed test then by using bottom row of *Table 2*. R Critical value = CV = Z = 1.645Test Statistics = $z = \frac{\sqrt{n}(\overline{x} - \mu)}{s} = \frac{\sqrt{64}(63 - 60)}{10} = 2.4$ Falls inside CR

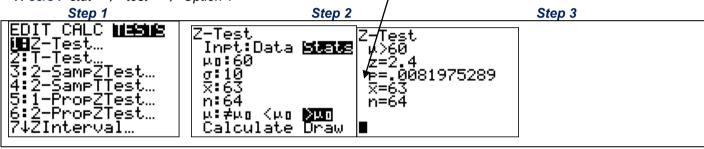
p-value(area from test statistics)

Conclusion: Accept or reject H₀? Inside CR then reject H₀

Comment: Accept or reject SC? Accept that the average life of batteries exceeds 60 months.

P-value: 0.008 less than $\alpha = .05$ reject Ho (remember when p-value is less than α , we reject Ho)

P-value can be found by TI calculator TI-83/84 stat \rightarrow test \rightarrow Option 1



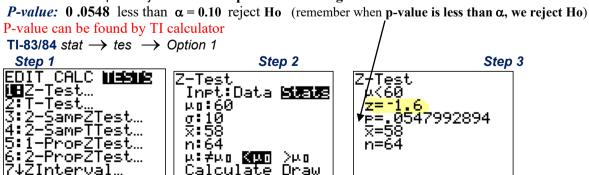
Example 2. Average life of "Die Long" batteries is less than 60 months. A sample of 64 batteries had an average life of 58 months and st. dev. of 10 months. Let $\alpha = 0.10$

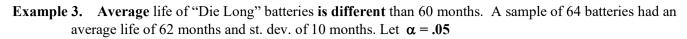
SC: $\mu < 60$ H_0 : $\mu \geq 60$ **Hint**: Use H_1 to determine if it is LTT, TTT or RTT test. **OC**: $\mu \geq 60$ H_1 : μ < 60 Note: μ in H₁ is less than, then it is a LTT When $\alpha = .10$, n > 30 and one -tailed test then by using bottom row of Table 2. Α 0 Critical value = CV = Z = -1.2821.282

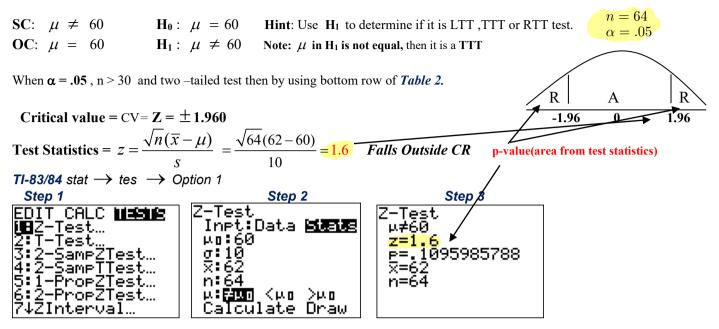
Test Statistics = $z = \frac{\sqrt{n(\overline{x} - \mu)}}{s} = \frac{\sqrt{64}(58 - 60)}{10} = \frac{-1.6}{\text{Falls inside CR}}$ p-value(area from test statistics)

Conclusion: Accept or reject H_0 ? Inside CR then reject H_0

Comment: Accept or reject SC? Accept that the average life of batteries is less than 60 months







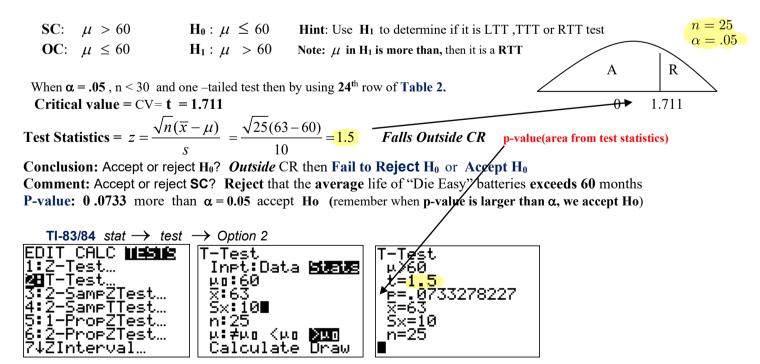
Conclusion: Accept or reject H_0 ? Outside CR then Fail to Reject H_0 or Accept H_0

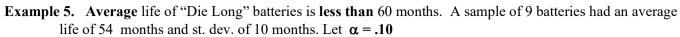
Comment: Accept or reject SC? Reject that the average life of batteries is different than 60 months

P-value: 0.1096 more than $\alpha = 0.05$ accept Ho (remember when p-value is larger than α , we accept Ho)

Small Samples about Mean $n \le 30$

Example 4. Average life of "Die Long" batteries exceeds 60 months. A sample of 25 batteries had an average life of 63 months and st. dev. of 10 months. Let $\alpha = .05$





SC: $\mu < 60$ H_0 : $\mu \geq 60$ **Hint**: Use H₁ to determine if it is LTT, TTT or RTT test OC: $\mu > 60$ H₁: $\mu < 60$ Note: μ in H₁ is less than, then it is a LTT n=9When $\alpha = .10$, n < 30 and one –tailed test then by using 8th row of Table 2. Critical value = CV = t = -1.397Test Statistics = $z = \frac{\sqrt{n(\overline{x} - \mu)}}{s} = \frac{\sqrt{9(54 - 60)}}{10} = \frac{-1.8}{\text{Falls inside } CR}$ p-value(area from test statistics) TI-83/84 stat \rightarrow test \rightarrow Option 2 Step 3 Step 1 Step 2 EDIT CALC MISSING T-Test Inpt:Data **Missi**s 1:Z-Test… μα:60 **XB**T-Test. 0547765037 <u>SampZ</u> SampTTesţ… 5:1-PropZTest… -PropZTest…

Conclusion: Accept or reject H₀? Inside *CR* then reject H₀

Comment: Accept or reject SC? Accept that the average life of "Die Easy" batteries is less than 60 months

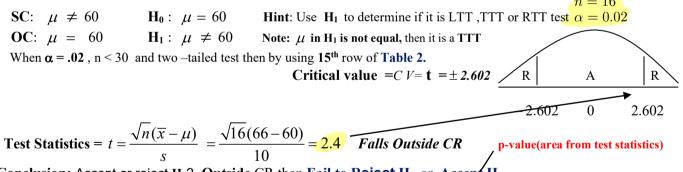
Draw

Calculate

P-value: 0.05478 less than $\alpha = 0.10$ reject Ho

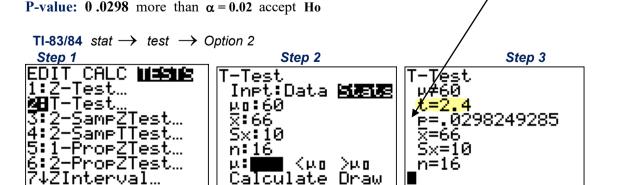
7↓ZInterval…

Example 6. Average life of "Die Long" batteries is different than 60 months. A sample of 16 batteries had an average life of 66 months and st. dev. of 10 months. Let $\alpha = .02$

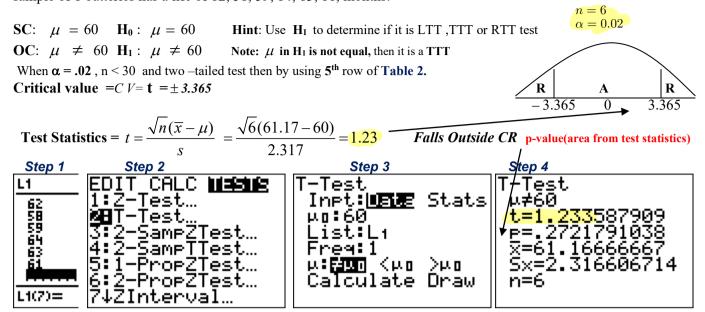


Conclusion: Accept or reject H₀? Outside CR then Fail to Reject H₀ or Accept H₀

Comment: Accept or reject SC? Reject that the average life of "Die Easy" batteries is different than 60 months.



Example 7) Leno Co. claims that the mean life of their batteries is 60 months. Test this claim with $\alpha = 0.02$ if a sample of 6 batteries has a life of 62, 58, 59, 64, 63, 61, months.



Conclusion: Accept or reject Ho? Outside CR then Fail to Reject Ho or Accept Ho

Comment: Accept or reject **SC?** Fail to Reject or Accept that the average life of "Die Easy" batteries exceeds 60 months

P-value: 0.0272 more than $\alpha = 0.02$ accept Ho