Hypothesis Testing Procedure

<u>Step 1</u>: Read the claim and write SC and OC

<u>Step 2</u>: H_0 (must have = or \leq or \geq) and H_1 (must have \neq or > or <)

Based on H_1 decide if it is (left tailed test, right tailed test, or two tailed test).

<u>Step 3</u>: Find the critical value (z or t by using Table 2) and label the region as R for rejection or A for acceptance of H_0

<u>Step 4</u>: Test statistics =TS = $\frac{\sqrt{n}(\overline{x} - \mu)}{s}$

Step 5: Conclusion: Accept or reject H₀? (H₀ will be rejected if TS falls in critical region otherwise accepted)
Step 6: Comment: Accept or reject SC? Hint: If H₀ and SC are similar same decision otherwise different decision.
Step 7: P-value is the area from test statistics and graphically, it is on the same side of critical value and it can be found by using your TI calculator.

Problem 1. At $\alpha = 0.05$, test the claim that **average** life of "Cyan" batteries **exceeds** 50 months. A sample of 64 batteries had a mean of 53 months with standard deviation of 9.5 months.

SC : μ	Ho: μ	$n = \overline{x} = s =$	
ΟC : μ	$H_{1:} \mu$	(left tailed test or two tailed test or right tailed test	t)
α = and n =	then $CV =$	$TS = \frac{\sqrt{n}(\overline{x} - \mu)}{s} == =$	<u> </u>

Conclusion : Accept or reject H_0	Comment: Accept or reject SC	<i>P-Value</i> =	α

Problem 3. At $\alpha = 0.05$, test the claim that **average** life of "Cyan" batteries is 50 months. A sample of 49 batteries had a mean of 54 months with standard deviation of 9.5 months.

Conclusion: Accor	t on noiset U	s Commo	t. A count on main of St	C D Value –	
α = and n = the theorem 1 = the theorem 1 = the theorem 2 = t	hen $CV = T$	$=\frac{\sqrt{n}(\overline{x}-\mu)}{2}=$	=	/	`
<i>ΟC</i> : μ Η	$I_{1:} \mu$ (left	tailed test or two taile	d test or right tailed t	est)	$\overline{\ }$
<i>SC</i> : μ Η	lo: μ n	$=$ $\overline{x} =$	s =	_	

Problem 4. At $\alpha = 0.05$, test the claim that average life of "Cyan" batteries is different than 50 months. A sample of 9 batteries had a mean of 55 months with standard deviation of 9.5 months.

SC: μ Ho: *μ* $\overline{x} =$ n =s =**ΟC**: μ $H_{1:} \mu$ (left tailed test or two tailed test or right tailed test) and n = $\alpha =$ **Conclusion**: Accept or reject H_0 Comment: Accept or reject SC P-Value = α

Problem 5. At $\alpha = 0.01$, test the claim that average life of "Cyan" batteries is at most 50 months. A sample of 49 batteries had a mean of 53 months with standard deviation of 8.8 months.

Problem 6. At $\alpha = 0.01$, test the claim that average life of "Cyan" batteries is at most 50 months. A sample of 16 batteries had a mean of 53 months with standard deviation of 9.4 months.

 $\overline{x} =$ *SC*: μ Ho: μ n =s =**ОС**: и $H_{1:} \mu$ (left tailed test or two tailed test or right tailed test) then CV = **TS**= $\frac{\sqrt{n}(\overline{x} - \mu)}{s} =$ = and n =

Comment: Accept or reject *SC* **Conclusion**: Accept or reject H_0

Problem 7. At $\alpha = 0.10$, test the claim that average life of "Cyan" batteries is at least 50 months. A sample of 36 batteries had a mean of 46 months with standard deviation of 10 months.

SC: μ Ho: μ $\overline{x} =$ n =s =**ОС**: µ (left tailed test or two tailed test or right tailed test) $H_{1:} \mu$ $\mathsf{TS} = \frac{\sqrt{n(\overline{x} - \mu)}}{s} = -----=$ then CV = $\alpha =$ and n =

Conclusion: Accept or reject H_0 **Comment:** Accept or reject **SC** *P-Value* = α

α

P-Value =

Problem 8: At $\alpha = 0.10$, test the claim that **average** life of "Cyan" batteries is **at least** 50 months. A sample of 16 batteries had a mean of 47 months with standard deviation of 10 months.

SC:
$$\mu$$
 Ho: μ
 $n = \overline{x} = s =$

 OC: μ
 H₁: μ
 (left tailed test or two tailed test or right tailed test)

 $\alpha =$ and $n =$ then $CV =$
 $TS = \frac{\sqrt{n}(\overline{x} - \mu)}{s} = ----= =$

 Conclusion: Accept or reject H_0
 Comment: Accept or reject SC
 P-Value =

Problem 9: At $\alpha = 0.025$, test the claim that average life of "Cyan" batteries is less than 50 months. A sample of 36 batteries had a mean of 46 months with standard deviation of 12 months.

Problem 10: At $\alpha = 0.025$, test the claim that **average** life of "Cyan" batteries is **less than** 50 months. A sample of 16 batteries had a mean of 48 months with standard deviation of 13 months.

SC : μ	Ho: μ	$n = \overline{x} = s =$
ΟC : μ	$\mathrm{H}_{1:}\;\mu$	(left tailed test or two tailed test or right tailed test)
α = and n =	then <i>CV</i> =	$TS = \frac{\sqrt{n}(\overline{x} - \mu)}{s} ==$

Conclusion: Accept or reject H_0 **Comment:** Accept or reject **SC P-Value** = α

α

TABLE 2

Distribution for small sample $n \leq 30$

	df = n-1 <> alpha α>									
t -	2-Tailed	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.005	
	1-Tailed	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.0025	
	Conf. Levl.	60%	70%	80%	90%	95%	98%	99%	99.5%	
	1	1.376	1.963	3.078	6.314	12.706	31.821	63.656	127.321	
	2	1.061	1.386	1.886	2.920	4.303	6.965	9.925	14.089	
	3	0.978	1.250	1.638	2.353	3.182	4.541	5.841	7.453	
	4	0.941	1.190	1.533	2.132	2.776	3.747	4.604	5.598	
	5	0.920	1.156	1.476	2.015	2.571	3.365	4.032	4.773	
	6	0.906	1.134	1.440	1.943	2.447	3.143	3.707	4.317	
	7	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.029	
	8	0.889	1.108	1.397	1.860	2.306	2.896	3.355	3.833	
	9	0.883	1.100	1.383	1.833	2.262	2.821	3.250	3.690	
	10	0.879	1.093	1.372	1.812	2.228	2.764	3.169	3.581	
	11	0.876	1.088	1.363	1.796	2.201	2.718	3.106	3.497	
	12	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.428	
	13	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.372	
	14	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.326	
	15	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.286	
	16	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.252	
	17	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.222	
	18	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.197	
	19	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.174	
	20	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.153	
	21	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.135	
	22	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.119	
	23	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.104	
	24	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.091	
	25	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.078	
	26	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.067	
	27	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.057	
	28	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.047	
	29	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.038	
	30	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.030	
for	n>30 ⇒ Z	0.842	1.036	1.282	1.645	1.96	2.326	2.576	2.807	Critical-value
<i>n</i> > 30	Z -T	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.005	_ n >30
Use Bottom	1-T	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.0025	
row	Conf. Levl.	00%	/0%	80%	90%	95%	98%	99%	99.5%	£

Solution

Hypothesis Testing Procedure (Rejection Region Method)

Step 1:SC and OCStep 2: H_0 and H_1 . Decide if it is (left tailed test, right tailed test, or two tailed test).Step 3:Find the critical value (z or t by using Table 2) and label the region as R for rejection or A for acceptance of H_0 Step 4:Test statistics =TS = $\frac{\sqrt{n}(\overline{x} - \mu)}{s}$ Step 5:Conclusion: Is H_0 accepted or rejected? (H_0 will be rejected if TS falls in critical region otherwise accepted)

Step 6: Comment: Is SC accepted or rejected?

Step 7: Find P-value- by using your TI calculator.

Problem 1. At $\alpha = 0.05$, test the claim that **average** life of "Cyan" batteries **exceeds** 50 months. A sample of 64 batteries had a mean of 53 months with standard deviation of 9.5 months.

Problem 2. At $\alpha = 0.05$, test the claim that **average** life of "Cyan" batteries **exceeds** 50 months. A sample of 9 batteries had a mean of 53 months with standard deviation of 9.5 months.

Problem 3. At $\alpha = 0.05$, test the claim that **average** life of "Cyan" batteries is 50 months. A sample of 49 batteries had a mean of 54 months with standard deviation of 9.5 months.

Problem 4. At $\alpha = 0.05$, test the claim that **average** life of "Cyan" batteries is different than 50 months. A sample of 9 batteries had a mean of 55 months with standard deviation of 9.5 months.

Problem 5. At $\alpha = 0.01$, test the claim that **average** life of "Cyan" batteries is **at most** 50 months. A sample of 49 batteries had a mean of 53 months with standard deviation of 8.8 months.

Problem 6. At $\alpha = 0.01$, test the claim that **average** life of "Cyan" batteries is **at most** 50 months. A sample of 16 batteries had a mean of 53 months with standard deviation of 9.4 months.

Problem 7. At $\alpha = 0.10$, test the claim that **average** life of "Cyan" batteries is **at least** 50 months. A sample of 36 batteries had a mean of 46 months with standard deviation of 10 months.

Problem 8: At $\alpha = 0.10$, test the claim that **average** life of "Cyan" batteries is **at least** 50 months. A sample of 16 batteries had a mean of 47 months with standard deviation of 10 months.

Problem 9: At $\alpha = 0.025$, test the claim that average life of "Cyan" batteries is less than 50 months. A sample of 36 batteries had a mean of 46 months with standard deviation of 12 months.

Problem 10: At $\alpha = 0.025$, test the claim that average life of "Cyan" batteries is less than 50 months. A sample of 16 batteries had a mean of 48 months with standard deviation of 13 months.

SC:
$$\mu < 50$$
 Ho: $\mu \ge 50$ $n = 16$ $\overline{x} = 48$ $s = 13$
OC: $\mu \ge 50$ H₁: $\mu < 50$ (left tailed test, two tailed test, or right tailed test)
 $\alpha = 0.025$ and $n = 16$ then $CV = -2.131$ TS = $\frac{\sqrt{n}(\overline{x} - \mu)}{s} = \frac{\sqrt{16}(48 - 50)}{13} = -0.615$
Conclusion: Accept or reject H_0 Comment: Accept or reject SC P-Value = 0.2738 > α