Practice Quiz 15 (Problems on quiz 15 is based on sections 12, 13, and 14)

Example 1 : Test at the $\alpha = 5\%$ whether the **average life of Diehard batteries is less or equal than Everlast**. Sample from these two type of batteries are as such: Below is a sample information of these two brands.

Die Hard	(μ_1)	$n_{1} = 60$	$\overline{x}_1 = 48$	$s_1 = 8$	
Everlast	(μ_2)	$n_{2} = 40$	$\overline{x}_2 =$ 46	$s_2 = 10$	
SC : $\mu_1 \le \mu_2$ OC : $\mu_1 > \mu_2$		$H_0: \ \mu_1 - \mu_2 \le H_1: \ \mu_1 - \mu_2 \le H_1: \ \mu_1 - \mu_2$	≤ 0 Hint : Use > 0 It is a rig	e H_1 to determine if it is LTT ght tailed test.	,TTT or RTT test
When $\alpha = .05$, n > 30 and one -tailed test then by using bottom row of page Table 2 A					
Critical value = $CV=Z = 1.645$ 0 1.645					
CPoint Estimate $(\bar{x}_1 - \bar{x}_2) = (48 - 46) = 2$					
Test statistics = $z = \frac{(\overline{x_1} - \overline{x_2}) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{48 - 46}{\sqrt{\frac{8^2}{60} + \frac{10^2}{40}}} = 1.06$					

Conclusion: Accept or reject H_0 ? Accept or fail to reject H_0 because the TS falls in acceptable region. **Comment:** Accept or reject **SC**? Accept **SC** because H_0 and **SC** have the same format.

P-value: 0.145 is larger than $\alpha = 0.05$ Accept or fail to reject Ho

Example 2 : Research question: Do patients who receive our treatment weigh less than participants who do not receive our treatment? Participants were randomly assigned to the treatment condition or a control group. After our intervention, their weights were measured in pounds. Weight is a quantitative variable, so we are going to be comparing means in this example. Our treatment group has a sample size of 45, mean of 140 pounds, and standard deviation of 20 pounds. Our control group has a sample size of 40, sample mean of 150 pounds, and standard deviation of 25 pounds. Use $\alpha = 0.10$

Group 1 is those who receive our treatment and Group 2 is those who do not receive our treatment

SC: $\mu_1 < \mu_2$ \mathbf{H}_0 : $\mu_1 \ge \mu_2$ \mathbf{H}_0 : $\mu_1 - \mu_2 \ge 0$ Hint: Use \mathbf{H}_1 to determine if it is LTT, TTT or RTT test OC: $\mu_1 \ge \mu_2$ \mathbf{H}_1 : $\mu_1 < \mu_2$ \mathbf{H}_1 : $\mu_1 - \mu_2 < 0$ It is a LTT because in \mathbf{H}_1 we have < 0

When $\alpha = 10$, n > 30 and one –tailed test then by using bottom row of page Table 2

Critical value = CV=Z = -1.282

CPoint Estimate $(\bar{x}_1 - \bar{x}_2) = (140 - 150) = -10$

$$z = \frac{(\overline{x_1} - \overline{x_2}) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{140 - 150}{\sqrt{\frac{20^2}{45} + \frac{25^2}{40}}} = \frac{-10}{\sqrt{\frac{400}{45} + \frac{625}{40}}} = -2.02$$

Conclusion: Accept or reject H_0 ? Reject H_0 **Comment:** Accept **SC** because H_0 and **SC** are different. **P-value:** 0.022 that is less than $\alpha = 0.10$, therefore we reject Ho

Practice Quiz 15

Difference of Two Means

-1.282

Α

0