
A Decision Tree for Predicting Diabetes

October 11, 2017

The Data and Prediction Challenge

We will build a decision tree to predict diabetes for subjects in the Pima Indians dataset based on predictor variables such
as age, blood pressure, and bmi. A subset of the Pima Indians data from the UCIrvine Machine Learning Repository is a
built-in dataset in the MASS library. The Pima data in MASS contains 532 complete records from the original dataset.
These 532 records have been broken down into two dataframes: Pima.tr (200 subjects) and Pima.te (332 subjects). All
records with zeros that don’t make sense have been cleaned out of these datasets.

> library(MASS) #Pima indians data is in this package

> #Lets familiarize ourselves with the data

> ?Pima.tr

> dim(Pima.tr)

[1] 200 8

> head(Pima.tr)

npreg glu bp skin bmi ped age type

1 5 86 68 28 30.2 0.364 24 No

2 7 195 70 33 25.1 0.163 55 Yes

3 5 77 82 41 35.8 0.156 35 No

4 0 165 76 43 47.9 0.259 26 No

5 0 107 60 25 26.4 0.133 23 No

6 5 97 76 27 35.6 0.378 52 Yes

> str(Pima.tr) #gives the structure of the dataframe, easy way get types of data in each column

'data.frame': 200 obs. of 8 variables:

$ npreg: int 5 7 5 0 0 5 3 1 3 2 ...

$ glu : int 86 195 77 165 107 97 83 193 142 128 ...

$ bp : int 68 70 82 76 60 76 58 50 80 78 ...

$ skin : int 28 33 41 43 25 27 31 16 15 37 ...

$ bmi : num 30.2 25.1 35.8 47.9 26.4 35.6 34.3 25.9 32.4 43.3 ...

$ ped : num 0.364 0.163 0.156 0.259 0.133 ...

$ age : int 24 55 35 26 23 52 25 24 63 31 ...

$ type : Factor w/ 2 levels "No","Yes": 1 2 1 1 1 2 1 1 1 2 ...

> summary(Pima.tr)

npreg glu bp skin

Min. : 0.00 Min. : 56.0 Min. : 38.00 Min. : 7.00

1st Qu.: 1.00 1st Qu.:100.0 1st Qu.: 64.00 1st Qu.:20.75

Median : 2.00 Median :120.5 Median : 70.00 Median :29.00

Mean : 3.57 Mean :124.0 Mean : 71.26 Mean :29.21

3rd Qu.: 6.00 3rd Qu.:144.0 3rd Qu.: 78.00 3rd Qu.:36.00

Max. :14.00 Max. :199.0 Max. :110.00 Max. :99.00

bmi ped age type

Min. :18.20 Min. :0.0850 Min. :21.00 No :132

1st Qu.:27.57 1st Qu.:0.2535 1st Qu.:23.00 Yes: 68

Median :32.80 Median :0.3725 Median :28.00

1

Mean :32.31 Mean :0.4608 Mean :32.11

3rd Qu.:36.50 3rd Qu.:0.6160 3rd Qu.:39.25

Max. :47.90 Max. :2.2880 Max. :63.00

> dim(Pima.te)

[1] 332 8

The First Tree

We Want to predict the variable“type”which indicates whether or not the subject has diabetes using all the other variables
as predictors.

> library(tree) #Loads the tree package

> pimatree <- tree(type~.,data=Pima.tr) #Contructs the tree model based on all training data

> plot(pimatree)

> text(pimatree)

> summary(pimatree) #compact summary of tree

Classification tree:

tree(formula = type ~ ., data = Pima.tr)

Variables actually used in tree construction:

[1] "glu" "age" "npreg" "bp" "bmi" "ped"

Number of terminal nodes: 20

Residual mean deviance: 0.4425 = 79.66 / 180

Misclassification error rate: 0.115 = 23 / 200

> #pimatree #detailed verbal description of tree

2

|
glu < 123.5

age < 28.5

npreg < 2.5
bp < 79npreg < 3.5

glu < 90

bmi < 33.4
bp < 71bmi < 35.85

npreg < 4.5

ped < 0.3095

glu < 166

ped < 0.2545
bmi < 27.35

bmi < 28.65

ped < 0.61ped < 0.628

bp < 71

age < 40

NoNoNoNo
No

NoNo

Yes
NoYes

NoNo

No
Yes

YesNo

Yes
NoYes

Yes

We want to see how well the tree classifies subjects into diabetes or no diabetes categories so we use the tree constructed
based on Pima.tr, the training data, to make predictions for the subjects in Pima.te, the test data. This is a more fair
test of the tree model since a model usually predicts much better on the dataset used to construct it than on new data.

> head(Pima.te) #Take a look at the test data

npreg glu bp skin bmi ped age type

1 6 148 72 35 33.6 0.627 50 Yes

2 1 85 66 29 26.6 0.351 31 No

3 1 89 66 23 28.1 0.167 21 No

4 3 78 50 32 31.0 0.248 26 Yes

5 2 197 70 45 30.5 0.158 53 Yes

6 5 166 72 19 25.8 0.587 51 Yes

> set.seed(223)

> pima.pred <- predict(pimatree,newdata=Pima.te,type="class") #Use the tree we just made to predict for the test data

> #pima.pred #look at predictions

> #rbind(pima.pred,Pima.te$type) #compare predictions to actual diabetes status

> table(pima.pred,Pima.te$type) #diagonal are correct predictions, off-diagonal are incorrect

pima.pred No Yes

No 173 44

Yes 50 65

> (44+50)/332 #proportion misclassified

[1] 0.2831325

3

Cross-validation to determine optimal size of the tree

The tree has lots of terminal nodes and is quite bushy. It is likely that it overfits to the training data. We prune the
tree down to make it easier to interpret and better at predicting outside the training data without losing much predictive
accuracy. We use cross-validation to choose the amount of pruning, i.e. how much we cut down the size of the tree.

> set.seed(561) #saves the randomization used in cv.tree, you need not do this

> pima.cv <- cv.tree(pimatree,,FUN=prune.misclass,K=10) #K=10 is the default value

> pima.cv

$size

[1] 20 14 11 9 5 4 3 2 1

$dev

[1] 53 53 51 48 46 55 56 61 70

$k

[1] -Inf 0.0000000 0.6666667 1.0000000 1.5000000 4.0000000 5.0000000

[8] 11.0000000 15.0000000

$method

[1] "misclass"

attr(,"class")

[1] "prune" "tree.sequence"

> plot(pima.cv) #Plot of $size vs $dev - any choice of $size from 5 to 9 inclusive seems to make $dev the smallest possible. We'll use 5.

4

size

m
is

cl
as

s

50
55

60
65

70

5 10 15 20

15.00 4.00 1.00 0.00 −Inf

Note the object produced by cv.tree() is pima.cv. pima.cv holds a summary of cross-validation results. $size is the
number of terminal nodes or leaves in the tree. $dev is a measure of how much you lose by reducing the original tree
to the corresponding value in $size. Large $dev (deviance) indicates a large loss of information when the original tree is
reduced to the corresponding $size. Choose $size to correspond to the smallest value of $dev.

The Improved, Pruned Tree

Cross-validation is used to help you find the size of the best pruned tree. Now we need to construct the best pruned tree
using the training data in Pima.tr.

> pima.prune <- prune.misclass(pimatree,best=5) #here best is the number of terminal nodes you want in the pruned tree

> summary(pima.prune)

Classification tree:

snip.tree(tree = pimatree, nodes = c(12L, 15L, 14L, 2L))

Variables actually used in tree construction:

[1] "glu" "ped" "bmi"

Number of terminal nodes: 5

Residual mean deviance: 0.9063 = 176.7 / 195

Misclassification error rate: 0.165 = 33 / 200

> plot(pima.prune)

> text(pima.prune,pretty=T)

> pima.prune.pred <- predict(pima.prune,newdata=Pima.te,type="class") #Predict test data using pruned tree

> table(pima.prune.pred,Pima.te$type)

5

pima.prune.pred No Yes

No 193 51

Yes 30 58

> (30+51)/332 #Proportion misclassified with pruned tree, compare to (44+50)/332 with full tree

[1] 0.2439759

|
glu < 123.5

ped < 0.3095

glu < 166 bmi < 28.65

No

No Yes

No Yes

So the pruned tree misclassifies 24% of the test dataset, while the first, unpruned tree misclassified about 28%.

6

Random Forest and Bagging

Now to try to improve our predictions by growing a forest of bushy trees.

> library(randomForest)

> set.seed(387)

> pimaForest <- randomForest(type ~.,data=Pima.tr) #Number of variables tried at each split was 2

> pimaForest

Call:

randomForest(formula = type ~ ., data = Pima.tr)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 2

OOB estimate of error rate: 28.5%

Confusion matrix:

No Yes class.error

No 108 24 0.1818182

Yes 33 35 0.4852941

One of the arguments you might like to change in randomForest() is mtry. At each split, a subset of size mtry is
chosen from all predictors. The split is determined based only on the predictors in this subset. We’ll use the error from
the test data to find the best value of mtry.

> error.by.mtry <- numeric(7)

> oob.error <- numeric(7)

> for (i in 1:7)

+ {pimaForest2 <- randomForest(type~.,data=Pima.tr,mtry=i,ntree=400)

+ oob.error[i] <- pimaForest2$err.rate[400]

+

+ pred.mtry <- predict(pimaForest2,newdata=Pima.te,type="class")

+ num.misclassified <- sum(Pima.te$type!=pred.mtry) #number misclassified in test set

+ error.by.mtry[i] <- num.misclassified

+ print(i)}

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

> error.by.mtry/332

[1] 0.2319277 0.2349398 0.2379518 0.2409639 0.2469880 0.2439759 0.2469880

> oob.error

[1] 0.260 0.275 0.260 0.280 0.280 0.275 0.270

> plot(1:7,oob.error,col="blue",pch=19,type="b",ylim=c(0,.3))

> points(1:7,error.by.mtry/332,col="red",pch=19,type="b")

Random forests doesn’t improve performance on test data very much.

Importance of Predictors

Roughly, the importance of each variable or predictor is determined by determining how much splits in this variables
reduces the Gini Index for classification trees. The larger the Gini Index, the more “mixed” the observation in each
terminal node are across the classes. The Gini Index is small when all the observations in each terminal node tend to be
from the same class.

7

> importance(pimaForest)

MeanDecreaseGini

npreg 8.999907

glu 21.581238

bp 7.908906

skin 9.820643

bmi 12.637090

ped 13.544807

age 14.637802

> varImpPlot(pimaForest)

bp

npreg

skin

bmi

ped

age

glu

0 5 10 15 20

pimaForest

MeanDecreaseGini

8

