It is given that $P(E_1)=P(E_2)=1.5$ and $P(E_3)=.40$. Since $\sum_{i}P(E_i)=1$, we know that 4.2

$$P(E_4) + P(E_5) = 1 - .15 - .15 - .40 = .30$$
 (i)

Also, it is given that

$$P(E_4) = 2P(E_5) \tag{ii}$$

We have two equations in two unknowns which can be solved simultaneously for $P(E_4)$ and $P(E_5)$. Substituting equation (ii) into equation (i), we have

$$2P(E_5) + P(E_5) = .3$$
 $3P(E_5) = .3$ so that $P(E_5) = .1$ Then from (i), $P(E_4) + .1 = .3$ and $P(E_4) = .2$.

b To find the necessary probabilities, sum the probabilities of the simple events:

$$P(A) = P(E_1) + P(E_3) + P(E_4) = .15 + .4 + .2 = .75$$

 $P(B) = P(E_2) + P(E_3) = .15 + .4 = .55$

- **c-d** The following events are in either A or B or both: $\{E_1, E_2, E_3, E_4\}$. Only event E_3 is in both A and B.
- 4.42 Each simple event is equally likely, with probability 1/5.

a
$$A^{C} = \{E_{2}, E_{4}, E_{5}\}$$
 $P(A^{C}) = 3/5$

b
$$A \cap B = \{E_1\}$$
 $P(A \cap B) = 1/5$

c
$$B \cap C = \{E_4\}$$
 $P(B \cap C) = 1/5$

d
$$A \cup B = S = \{E_1, E_2, E_3, E_4, E_5\}$$
 $P(A \cup B) = 1$

e
$$B \mid C = \{E_4\}$$
 $P(B \mid C) = 1/2$

f
$$A \mid B = \{E_1\}$$
 $P(A \mid B) = 1/4$

$$\mathbf{g} \qquad A \cup B \cup C = S \qquad \qquad P(A \cup B \cup C) = 1$$

$$\mathbf{h} \qquad (A \cap B)^{C} = \{E_{2}, E_{3}, E_{4}, E_{5}\} \qquad \qquad P(A \cap B)^{C} = 4/5$$

h
$$(A \cap B)^c = \{E_2, E_2, E_4, E_5\}$$
 $P(A \cap B)^c = 4/5$

The two-way table in the text gives probabilities for events A, A^C, B, B^C in the column and row marked 4.56 "Totals". The interior of the table contains the four two-way intersections as shown below.

$A \cap B$	$A \cap B^{C}$
$A^{C} \cap B$	$A^{c} \cap B^{c}$

The necessary probabilities can be found using various rules of probability if not directly from the table.

- P(A) = .4а
- P(B) = .37
- c $P(A \cap B) = .10$
- **d** $P(A \cup B) = .4 + .37 .10 = .67$
- **e** $P(A^C) = 1 .4 = .6$
- **f** $P(A \cup B)^{C} = 1 P(A \cup B) = 1 .67 = .33$
- $P(A \cap B)^{c} = 1 P(A \cap B) = .90$
- **h** $P(A | B) = P(A \cap B)/P(B) = .1/.37 = .27$
- $P(B | A) = P(A \cap B)/P(A) = .1/.4 = .25$
- 4.66 Similar to Exercise 4.56.
 - P(F) = .35 + .36 = .71

- **b** P(G) = .20 + .09 = .29
- c $P(F|M) = \frac{P(F \cap M)}{P(M)} = \frac{.35}{.55} = .63$ d $P(F|W) = \frac{P(F \cap W)}{P(W)} = \frac{.36}{.45} = .80$
- e $P(M \mid F) = \frac{P(M \cap F)}{P(F)} = \frac{.35}{.71} = .49$ e $P(W \mid G) = \frac{P(W \cap G)}{P(G)} = \frac{.09}{.29} = .31$