7.2 Sampling Plans and Experimental Design

Statistics 1, Fall 2008

Inferential Statistics

- Goal: Make inferences about the population based on data from a sample
- Examples
 - Estimate population mean, μ or σ , based on data from the sample

Methods of Sampling

- I'll cover five common sampling methods, more exist
 - Simple random sampling
 - Stratified random sampling
 - Cluster sampling
 - Systematic 1-in-k sampling
 - Convenience sampling

Simple Random Sampling

- Each sample of size n from a population of size
 N has an equal chance of being selected
- Implies that each subject has an equal chance of being included in the sample
- Example: Select a random sample of size 5 from this class.

Computer Generated SRS

- Obtain a list of the population (sampling frame)
- Use Excel
 - Generate random number for each subject using rand() function
 - copy|paste special|values to fix random numbers
 - sort on random number, sample is the first n in this list
- Use R (R is a free statistical software package)
 - sample(1:N,n), N=population size, n=sample size
 - Returns n randomly selected digits between 1 and N
 - default is sampling WOR

Stratified Random Sampling

- The population is divided into subgroups, or strata
- A SRS is selected from each strata
- Ensures representation from each strata, no guarantee with SRS

Stratified Random Sampling

- Example: Stratify the class by gender, randomly selected 3 female and 3 male students
- Example: Voter poll stratify the nation by state, randomly selected 100 voters in each state

Cluster Sampling

- The subjects in the population may be grouped, or clustered, in some natural way
 - Eggs at a supermarket are clustered into cartons
 - People in the US are clustered into households
 - Students in an elementary school are clustered into classes
- Cluster sampling involves taking a SRS of clusters, then surveying all items in the cluster

Cluster Sampling

Example

- You have a shipment of 100 cartons, each containing a dozen eggs
- You want to estimate the proportion of broken eggs
- SRS of 10 cartons of eggs
- Survey all 12 eggs in each of the 10 cartons and note whether it is broken or not (categorical data)

Systematic 1-in-k Sample

- Easiest way to draw a sample
- Obtain an ordered list of the population
- Select a random start point from 1,2,...,k
- Select every kth item in the list after your start point
- Caution: sample could be biased
 - Example: Number of customers at a supermarket

Systematic 1-in-k Sample

Example: 1-in-6 sample from this class

- Toss die to get start point
- Use roster to select start point and every 6th student thereafter

Convenience Sample

- A sample that is simple or easy to obtain without randomization
 - Internet polls
 - Shopping mall polls
 - A poll of your 5 closest friends
- These samples are often biased
- You can't make inferences about the population from them

SRS only in this class

All the procedures we study are for SRS only

Study Design

- Observational Study vs Designed Experiment
- Treatment: any manipulation of the subject's environment
- Examples
 - Does music reduce pain for respiratory therapy patients? Treatment = music
 - Do magnets reduce pain? Treatment = magnet
 - Does exercise reduce the risk of getting a cold?
 Treatment=exercise

Observational Study

- Data for each subject is simply recorded or measured with no treatment being imposed
- Examples:
 - Political polls
 - Opinions polls: prestigious occupations
 - Exercise and risk of getting a cold if you just record the amount of exercise and the number of colds for each person on a year

Designed Experiment

- Experimental treatment or condition is imposed on experimental units, then data are collected or measured
- Characteristics of a good designed experiment
 - Randomization into Control group/treatment group
 - Placebo: a fake treatment, Placebo effect
 - Double-blinding: neither subjects nor researchers know who is in the treatment/control group

Examples of Designed Expt

- Clinical trials: give patients a new drug, then observe whether they are cured or not
- Manufacturing: apply a new tool or machine, then observe whether defects are reduced
- Exercise and colds: have subjects exercise then observe the number of colds

Cause and Effect

Can only be proved in a Designed experiment!!!