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Sequences

Definition: A sequence 
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Example:   Prove Sn = 
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Solution:

· Choose 
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Then 
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· If we choose 
[image: image11.wmf]2

1

n

e

>

, then 
[image: image12.wmf]11

1

nn

nnnnn

e

-=<<

++


For   
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· Therefore : Sn = 
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1. Theorem: 
Convergent sequences are bounded 

Proof:
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Choose ( = 1, then     ( N(           such that         n  > N(     (  d ( Sn , L ) < ( = 1

· Let  r = max { 1, d ( S1 , L ) , d ( S2 , L )       …. , d ( Sn , L ) }

Then take the ball B( L, r+1). This will contain all terms of the sequence. 

· Sequence  
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Note:

1. Intervals of the form  
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i.e: The interval an (- neighborhood of a.

Denote (a -r, a+ r ) by the open ball B(a, r) centered at a with radius r 

· B(a, r) = 
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· A subset U of Rn is open set (  ( a ( U, there is some r = r(a)> 0  so that U ( B(a, r)  

2.
A set S (  R n  is bounded ( ( r > 0 such that  S ( B( o, r)
2. Theorem:  If 
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      Then  s = t 

Proof:

· Since 
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Since 
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· Let  N = max{ N1, N 2 }

Then   n > N (
 | s-t | 
 =  | s- Sn + Sn – t |

· | s- Sn |  +  | Sn – t |

=
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This is true for any choice of 

[image: image31.wmf]e

 (    s =  t. 

Theorem:  A real sequence 
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                              then every open ball  B ( s , r )  contains all ,

                             but a finite members of terms form the sequence.

Definition Non-decreasing Of  Sequence

A real sequence 
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A real sequence 
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A real sequence 
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     (    non- decreasing or non- increasing.

Theorem:  A monotone real value sequence is convergent

 (
 It is bounded

Proof:

Convergent ( Bounded.

Bounded ( Convergent.

Suppose 
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Let  
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Since 
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 is bounded, the set S = { S n | n  =  1,2,3,4,.. }is bounded above.

( S  has a suppremum.

· Let L = sup S.

· From definition of suppremum, 

Given ( > 0 , (  element 
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· Since  
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· 
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ie:
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 such that  n > n* (
d ( L, s n ) < (
· 
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Note: All we need have is that the sequence is eventually bounded  and  monotone.
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