Full Adder Logic

Input bit for number A	Input bit for number B	Carry bit input C _{IN}	Sum bit output S	Carry bit output C _{OUT}		The <u>full adder</u> logic relationship from the truth table at left is: $S = \overline{ABC_{IN}} + \overline{ABC_{IN}} + A\overline{BC_{IN}} + ABC_{IN}$ Factoring out \overline{A} and A : $S = \overline{A(BC_{IN}} + B\overline{C_{IN}}) + A(\overline{BC_{IN}} + BC_{IN})$ which is $S = \overline{A(B \oplus C_{IN})} + A(\overline{B \oplus C_{IN}})$ If $X = B \oplus C_{IN}$ $S = \overline{AX} + A\overline{X}$ which can be written as $S = A \oplus [B \oplus C_{IN}]$
0 0 0 1 1 1 1 1	0 1 1 0 0 1 1	1 0 1 0 1	1 0 1 0 0 1	0 0 1 0 1 1 1		
:	= A B	C _{in} +	A B C	in ⁺ A + A l A B		