
LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters

LAB OBJECTIVES
 1. Introduction to latches and the D type flip-flop
 2. Use of actual flip-flops to help you understand sequential logic
 3. Become more familiar with simulation
 4. Understand the function of a "clock"
 5. Understand flip-flop clock inputs using rising edge or falling edge

LAB PROCEDURE

PART 1: NAND gate version of the RS latch
Write a Data Flow model description in Verilog HDL for a NAND gate version of the RS latch as shown in
Figure 4-1. You should write the Verilog before lab class using a TEXT EDITOR. Bring the file to Lab class
and compile and simulate your design. IF satisfied with the results, download your Verilog solution to the
Spartan3E board. Test the latch and fill in the RS latch truth table. Be sure to show your simulation
waveform in your lab report.

With a text editor, design the following:
Create the following file, save as rs_latch.v (bring file to lab).

 module rs_latch (R,S,Q, NQ);
 input R, S;
 output Q, NQ;
 assign Q = ~(S & NQ); // S (SET) is active low
 assign NQ = ~(R & Q); // R (RESET) is active low
 endmodule

/S /R Qold Qnew

 0 0 0
 0 0 1
 0 1 0
 0 1 1
 1 0 0
 1 0 1
 1 1 0
 1 1 1

Off-Line - The S and R inputs for the NAND version latch in Part I are active low. This is the opposite
logic for the S and R inputs of the NOR version latch (active high). Often inputs, such as switches, can be
"true" when they are closed and shorted to ground giving a logic “0” as shown in the diagram below.

QUESTION#1: What is the purpose of the two resistors in the schematic below?
 {Be sure to put all the answers to the Questions in your conclusion.
 Please number each question}

Figure 4-1: NAND gate version of the RS latch

PART 2: NOR gate version of the RS latch
Write a Data Flow model description in Verilog HDL for a NOR gate version of the RS latch. Again, you
should write the Verilog before lab class using a TEXT EDITOR. Bring the file to Lab class and compile
and simulate your design. IF satisfied with the results, download your Verilog solution to the Spartan3E
board. Test the latch and create an RS latch function table like the one in lecture. BE SURE to show the
simulation waveform in your lab report.

Question#2: What is the difference between NOR gate version and NAND gate version when using
the S and R inputs?

S R Qold Qnew

 0 0 0
 0 0 1
 0 1 0
 0 1 1
 1 0 0
 1 0 1
 1 1 0
 1 1 1

PART 3: NOR gate version of the D Flip-Flop
Write a Data Flow model description in Verilog HDL for a NOR gate version of the D Flip-Flop. The logic
diagram for the NOR gate version is on Figure 4-2. Draw a diagram for your report with the signal names
you used in your Hardware Description. Again, you should write the Verilog before class using a TEXT
EDITOR. Bring the file to lab class and compile and download your Verilog solution to the Spartan3E
board. (You will not need a simulation for Part 3)

 Hint: you will have 4 equations, two of them are:
 Q = ~ (R | QN) QN = ~ (S | Q)
 You will also need equations for R and S.

Test the D Flip-Flop and record your results in a function table like the one we did in lecture. You should
begin to understand the true meaning of some being “edge-triggered”. Watch the outputs of the gates
changing as the clock changes. The Q output will change to the D input during the clock transition.

Question#3: Which edge of the clock can cause the Q output of the D Flip-Flop (NOR version) to
change, the positive / rising edge of the clock (from 0 to 1 transition) or the negative / falling edge
transition) of the clock?

Figure 4-2: NOR gate version of the D Flip-Flop

Figure 4-3: Simulation ‘timing diagram’ of a D Flip-Flop:

FAQ - I find all this latch and flip-flop stuff confusing. Why?
Answer: with combinational logic, when you change an input you automatically expect an output to
change! With latches and flip-flops it is not this simple. Sometimes when inputs change, the output
remains unchanged - and this can be correct. It takes time to fully understand sequential logic. Be patient
and concentrate.

Figure 4-4: NAND gate version of the D Flip-Flop with Preset (PR) and Clear (CR)

PART 4: NAND gate version of the D Flip-Flop with Preset (PR) and Clear (CR)
Write a Data Flow model description for a NAND gate version of the D Flip-Flop with Preset (PR) and
Clear (CR). The logic diagram for the NAND gate version is on Figure 4-4. Draw a Block diagram for your
report with the signal names you used in your Hardware Description. Again, you should write the Verilog
before lab class. Bring the file to lab class, compile and simulate. Download your Verilog solution to the
Spartan3E board. Test the D Flip-Flop and record your results in a function table like the one we did in
lecture. Your function table should have the PR and CR signals. Show the waveform display (Simulation)
in your lab report.

Question#4: Which edge of the clock can change the Q output of our D Flip-Flop (NAND version),
the positive / rising edge (from 0 to 1 transition), or the negative / falling edge transition)?

Question#5: What are the logic levels of Q and QN when PR and CR are BOTH active at the same
time? (NAND version)

Question#6: What is the difference between the NAND version and NOR version of the D Flip- Flop
when using the Preset (PR) and Clear (CR)?

PART 5: Circuit using four D-type flip-flops
The diagram in Figure 4-5 shows a circuit using four D-type flip-flops. Write the Verilog equation for each
of the four "D" inputs. For example, in FF_0 the equation for it's D input is

 D0 = ~Q0;

In a similar manner, in FF_1 the equation for it's D input is:

 D1 = (~Q1 & Q0) | (~Q0 & Q1);

Compile with ISE and then simulate. Notice that the only input is the "clock" for the flip-flops. Describe in
your report the behavior of this design. Use the simulator and create a timing waveform with at least 20
clock pulses; observe the flip-flop outputs in the bit order Q3, Q2, Q1, Q0.

Figure 4-5: Circuit using four D-type flip-flops

Assign the Q outputs of the flip-flops to pins that output to light emitting diodes. Be sure to assign the
clock pin of your design to a clock pin on your Xilinx PLD; the momentary contact switches on the
Spatan3E board are connected to clock pins on the Xilinx PLD. Download to the Spartan3E board. Does
your hardware match the ISE simulation? Describe the circuit’s function in your report. Use at least 20
clock pulses with your simulation waveform display.

The above circuit in part 5 is 4 bits wide. Write a Verilog Description for a 16 bit circuit. You will now have
16 Q outputs that will go to the LEDs. You do not have to simulate this circuit.

The above circuit is 16 bits wide. Write a Verilog Description for a 32 bit circuit. You will now have 32 Q
outputs that will go to LEDs.

You do not have to simulate this circuit.

PART 6: Three-Stage Shift Register
The logic diagram in Figure 4-6 illustrates a three-stage shift register. Using this idea, expand the circuit
into a eight stage shift register. Design Verilog code to model your design. Assign outputs to LEDs,
compile, simulate, and download and test. Record your results for you lab report with your simulation
waveform.

Figure 4-6: Three-Stage Shift Register

PART 7: Eight Bit Shift Register Design
Design an eight bit shift register that can be synchronously pre-loaded via a control line called “PL”
(Parallel Load). You need to write “equations” for each of the D F/F inputs as a function of the previous
flip-flop output, the “PL” signal and the parallel load data signals (call them P7, P6, P5, P4, P3, P2, P1,
P0). The D F/F signals (D7 – D0) should be displayed on the LEDs next to the Q outputs (Q7 – Q0). For
this part you need to use eight assign statements for D7 – D0. Record your results and show the
simulation waveform in your report.

 P7 P6 P5 P4 P3 P2 P1 P0

PL (Parallel Load)

 SI (Serial data in)

 Clock

 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

Figure 4-7: Eight Bit Shift Register

Which way is your circuit “Shifting”? Is your circuit Shifting Left or Shifting Right. Write a Verilog
Description (any style) so your circuit does BOTH. You will need an additional control line called SHL or
SHR, meaning Shift Left or Shift Right respectively.

Write a Verilog Description (any style) so your circuit does the SHIFT Left and SHIFT Right function and
also the ROTATE Left and ROTATE Right function. You will need additional control lines called SHL or
SHR, (meaning Shift Left or Shift Right respectively) and ROL or ROR, meaning Rotate Left or Rotate
Right respectively.

FAQ - What does it take to make a "manual" clock? The circuit below is a latching circuit. Instead of two
switches, this circuit uses what is called a single pole, double throw switch. Pick resistors between 1K and
4.7K.

Figure 4-8: "Manual" Clock with Momentary Contact Switches

Remember in part 5 you used the momentary switches as a manual clock for the first time to increment
your 4-bit counter. You found that there was a difference between the right momentary switch and the left.
Do you remember the difference? Do Part 5 again using the left momentary switch as your clock input.
Your 4-bit counter must be able to count 0-Fh without skipping any counts using the left momentary
switch as your clock input.

Useful EXAMPLES of Verilog HDL for Lab 4

switchin(s,r,q,module i1,i2,led1,led2);
// Design for 6 sets of latched switches
// leds are simply connected to inputs i1 and i2
input i1,i2;
input [5:0] s,r;
output [5:0] q;
output led1,led2;

reg [5:0] q;
reg [5:0] qq;
wire led1, led2;

assign led1 = i1;
assign led2 = i2;

always@(s or r or qq)
begin
 qq <= ~s | (r & qq);
 q <= qq;
end

endmodule
__

module D_ff (D,clock,Q,Qbar);

input D,clock;
output Q,Qbar;

reg Q,Qbar;

always@(posedge clock) // will build a complete D-type flip-flop
begin
 Q <= D;
 Qbar<= ~D;
end

endmodule

module counter (reset,clock,y0,y1,y2,y3);

input reset,clock;
output y0,y1,y2,y3;
reg y0,y1,y2,y3;
always@(posedge clock or posedge reset)
 begin
 if (reset)
 {y3,y2,y1,y0} <= 4'b0000;
 else
 {y3,y2,y1,y0} <= {y3,y2,y1,y0} + 1; // "+" is the Verilog addition operator
end

endmodule

