Clicker Questions: Monday, October 29

1) Which statement is false?
 A) "1 mole = 6.022 x 10^{23} things" in the same way that "1 dozen = 12 things".
 B) Another name for the "mole" is "Avogadro's number".
 C) Avogadro's number converts between the number of moles of a substance and the number of atoms.
 D) Molar mass can be used to directly convert between the mass of a sample and the number of atoms present in the sample.
 E) The numerical value of the mole is equal to the number of atoms in exactly 12 g of pure carbon-12.
 F) An element's molar mass tells us the mass of 1 mole of atoms of that element.

2) Calculate the number of moles of Br if you have 1.06 x 10^{24} Br atoms.
 A) 1.76 mol Br
 B) 1.760 mol Br
 C) 1.76 x 10^{24} mol Br
 D) 1.760 x 10^{46} mol Br
 E) 6.38 x 10^{47} mol Br
 F) 6.383 x 10^{47} mol Br

3) What is the mass, in g, of 3.97 x 10^{20} Kr atoms
 A) 6.59 x 10^{-4} g Kr
 B) 5.52 x 10^{44} g Kr
 C) 3.33 x 10^{22} g Kr
 D) 0.0333 g Kr
 E) 6.59 x 10^{42} g Kr
 F) 0.0552 g Kr

4) Burning coal is a major source of added atmospheric CO\textsubscript{2}, a greenhouse gas. Assuming a sample of coal is pure carbon, how many carbon atoms are in a 41 kg sample of coal?
 A) 2.06 x 10^{21} C atoms
 B) 2.1 x 10^{21} C atoms
 C) 2.5 x 10^{22} C atoms
 D) 3.0 x 10^{23} C atoms
 E) 2.96 x 10^{23} C atoms
 F) 2.06 x 10^{24} C atoms
 G) 2.1 x 10^{27} C atoms

5) A sample of Ne contains 5.4 x 10^{21} atoms. What is the volume of the sample in mL? The density of Ne is 0.90 g/L.
 A) 1.6 x 10^{2} Ne
 B) 1.6 x 10^{48} Ne
 C) 2.0 x 10^{48} mL Ne
 D) 2.0 x 10^{2} mL Ne
 E) 0.49 mL Ne
 F) 4.9 x 10^{45} Ne

Answers: 1) D 2) A* 3) F* 4) G* 5) D*
* See answer worked out on next page
Clicker Questions: Monday, October 29

Selected answers with work shown

2) Calculate the number of moles of Br if you have 1.06 x 10^{24} Br atoms.

Answer: Flowchart: atoms Br → moles Br

\[
(1.06 \times 10^{24} \text{ Br atoms}) \left(\frac{1 \text{ mol Br}}{6.022 \times 10^{23} \text{ Br atoms}} \right) = 1.760212554 \text{ mol Br} = 1.76 \text{ mol Br}
\]

3sf 4sf (keep 3sf)

3) What is the mass, in g, of 3.97 x 10^{20} Kr atoms

Answer: Flowchart: # atoms Kr → moles Kr → g Kr

\[
(3.97 \times 10^{20} \text{ Kr atoms}) \left(\frac{1 \text{ mol Kr}}{6.022 \times 10^{23} \text{ Kr atoms}} \right) \left(\frac{83.80 \text{ g Kr}}{1 \text{ mol Kr}} \right) = 0.0552 \text{ g Kr}
\]

3sf 4sf 4sf (keep 3sf)

4) Burning coal is a major source of added atmospheric CO\(_2\), a greenhouse gas. Assuming a sample of coal is pure carbon, how many carbon atoms are in a 41 kg sample of coal?

Answer: kg C → g C → moles C → atoms C

\[
(41 \text{ kg C}) \left(\frac{10^3 \text{ g C}}{1 \text{ kg C}} \right) \left(\frac{1 \text{ mol C}}{12.01 \text{ g C}} \right) \left(\frac{6.022 \times 10^{23} \text{ C atoms}}{1 \text{ mol C}} \right) = 2.055803467 \times 10^{27} \text{ C atoms}
\]

2sf 4sf 4sf

= 2.1 \times 10^{27} \text{ C atoms} (keep 2sf)

5) A sample of Ne contains 5.4 x 10^{21} atoms. What is the volume of the sample in mL? The density of Ne is 0.90 g/L.

Answer: # Ne atoms → moles Ne → g Ne → L Ne → mL Ne

\[
5.4 \times 10^{21} \text{ Ne atoms} \cdot \frac{1 \text{ mol Ne}}{6.022 \times 10^{23} \text{ Ne atoms}} \cdot \frac{20.18 \text{ g Ne}}{1 \text{ mol Ne}} \cdot \frac{1 \text{ L}}{0.90 \text{ g}} \cdot \frac{1 \text{ mL}}{10^{-3} \text{ L}} = 2.0 \times 10^2 \text{ mL Ne}
\]

2sf 4sf 4sf 2sf (keep 2sf)