Name	KEY	Ÿ

Chem. 4 – Fall 2008 Quiz #3

1)	Give the names or formulae of the following:				
	a) lead (IV) carbonate	b) $Ni(C_2H_3O_2)_2$	c) nitrous acid		
	Pb(CO ₃) ₂	nickel (II) acetate	HNO _{2(aq)}		

2) The density of platinum is 20.4 g per cm³. What is the volume, in cubic millimeters (mm³), of 0.3267 g of platinum?

$$0.3267 \ \mathbf{g} \times \frac{1 \ \mathbf{cm}^3}{20.4 \ \mathbf{g}} \times \left(\frac{1 \times 10^{-2} \ \mathbf{m}}{1 \ \mathbf{cm}^3}\right)^3 \times \left(\frac{1 \ \mathbf{mm}}{1 \times 10^{-3} \ \mathbf{m}}\right)^3 = 16.0 \ \mathbf{mm}^3$$

3) How many nanoseconds (ns) are there in 4.12 megaseconds (Ms)?

$$4.12 \, Ms \times \frac{1 \times 10^6 \, s}{1 \, Ms} \times \frac{1 \, ns}{1 \times 10^{-9} \, s} = 4.12 \times 10^{15} \, ns$$

4) Perform this calculation:
$$\frac{(-0.4680 + 135.79) \times 16.0}{(128.42 - 129.226)}$$

$$\frac{(-0.4680 + 135.79) \times 16.0}{(128.42 - 129.226)} \Rightarrow \frac{135.322 \times 16.0}{-0.806} = -\overline{2686.292804} = -\overline{2.686292804} \times 10^3 \Rightarrow -2.7 \times 10^3$$

- 5) **Read carefully!** Do <u>NOT</u> solve this problem. Answer <u>ONLY</u> the questions below, which are based on the following: The Trans Alaskan Pipeline pumps enough crude oil every day to make about 3.53×10^5 barrels of gasoline. If you own a car that gets 8.19 miles per liter, how many years can you drive at 2906 cm/s before you use up the 3.53×10^5 barrels of gas? (1 barrel = 42 gallons exactly, 1 km = 0.6214 mile, 1 L = 0.2642 gal)
 - a) What is given (including units)?

3.53x10 ⁵ barrels	8.19 mile/L	2906 cm/s
1 barrel = 42 gal	1 km = 0.6214 mile	1 L = 0.2642 gal

b) What are the units on the answer going to be?

time to use all of the gas is YEARS

c) What other information do you know that might be useful?

$1 \text{ km} = 1 \text{x} 10^3 \text{ m}$	$60 \text{ s} = 1 \min$	60 min = 1 hr
24 hr = 1 day	365 day = 1 yr	

d) Where are you going to start and what is your "game plan"?

 3.53×10^5 barrels \rightarrow gal \rightarrow L \rightarrow mile \rightarrow km \rightarrow m \rightarrow cm \rightarrow s \rightarrow min \rightarrow hr \rightarrow day \rightarrow yr

BONUS Question worth 2 points. Set-up and solve the above problem. Show all work for credit!

 $3.53 \times 10^{5} barrel \times \frac{42 \text{ gal}}{1 \text{ barrel}} \times \frac{1 \text{ L}}{0.2642 \text{ gal}} \times \frac{8.19 \text{ mile}}{1 \text{ L}} \times \frac{1 \text{ km}}{0.6214 \text{ mile}} \times \frac{1 \times 10^{3} \text{ m}}{1 \text{ km}} \times \frac{1 \text{ cm}}{1 \times 10^{-2} \text{ m}} \times \frac{1 \text{ s}}{2906 \text{ cm}} \times \frac{1 \text{ min}}{60 \text{ s}} \times \frac{1 \text{ hr}}{60 \text{ min}} \times \frac{1 \text{ day}}{24 \text{ hr}} \times \frac{1 \text{ yr}}{365 \text{ day}} = 807 \text{ yr}$