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For very precise scientific measurements, an instrument using an argon laser beam can
measure distance to one-billionth of a meter.

“Make everything as simple as possible, butl nol stmpler.”
Albert Linstein, German/Swiss/ American Physicist (1879-1955)

n this chapter we will establish an important foundation for the chemical concepts

and calculations discussed in later chapters. You are aware, of course, that we live in
an electronic age where calculators and computers are part of our daily lives. In addi-
tion, hundreds of instruments are available that use state-of-the-art technology. In the
laboratory, scientists use instruments that provide very sensitive measurements. For
instance, chemists routinely use electronic balances that are so sensitive you can weigh
your fingerprints!

Our discussion begins with the instruments commonly found in an infroductory
chemistry laboratory. Later, we will learn te add, subtract, multiply, and divide mea-
surements obtained from these instruments. Last, and perhaps most importantly, we
will learn a powerful method for solving problems in three simple steps.
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2.1 UNCERTAINTY IN MEASUREMENTS 13

2.1 UNCERTAINTY IN MEASUREMENTS | OBJECTIVES

» To identify typical
instruments in a
chemistry laboratory.

We can define a measurement as a number with an attached unit. For example, a 5¢
coin may have a mass of 5.005 grams. We measure the mass of the nickel with an
instrument called a balance. The exactness of the measurement depends on the bal-
ance. For instance, electronic balances are common that measure the mass of a sample ' ctrimental
to 1/1000 of a gram. | measurements are
Lab technicians routinely inject liquid samples with hypodermic syringes that | nhever exact.
measure volume to one-millionth of a liter, and electronic stopwatches are available
that measure time to a nanosecond, that is, one-billionth of a second. Nevertheless, it
is not possible to make exact measurements. An exact measurement is impossible
because no instrument measures exactly. That is, an instrument may give a very sensi-
tive reading, but every measurement has uncertainty or a degree of inexactness.
A measurement must always include a unit, such as inches, attached to a numerical
value. For example, a length measurement may be 12 inches. In general, we will avoid
English units such as inch (in.), pound (b}, and quart (gt), although they will be used on
occasion in reference to similar metric units. In chemistry measurements, we use metric
units such as centimeter (symbol cm), gram (symbol g), and milliliter (symbol mL).
In the metric system, a centimeter is a unit of length, a gram is a unit of mass, and
amilliliter is a unit of volume. For reference, it is interesting fo note that a 5¢ coin has
a diameter of about 2 cm and a mass of about 5 g. Twenty drops from an eyedropper is
approximately 1 mL. Figure 2.1 offers some common references for the estimation of
length, mass, and volume.

j}To explain why

Length Measurements

To help you understand uncertainty, suppose we measure a candy cane. We have two
metric rulers available that differ as shown in Figure 2.2. Both rulers are satisfactory
for the task. However, Ruler B provides a more exact measurement than Ruler A.

Notice that Ruler A has ten 1 c¢m divisions. Since the divisions are large, we can
imagine ten subdivisions. Thus, we can estimate to one-tenth of a division, that is,
0.1 cm. On Ruler A, we see that the candy cane measures about 4.2 cm. Since the
uncertainty is 0.1 cm, a reading of 4.1 cm or 4.3 cm is also acceptable.

- about35 g

—2cm

.

<4 Figure 2.1 Estimation of Length, Mass,
and Volume The diameter of a 5¢ coin is
( | about 2 ecm, and its mass is about 5 g. The
":"‘f“ volume of 20 drops from an eyedropper is
about 1 ml about 1 mL.
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B Figure 2.2 Metric Rulers
for Measuring Length On
Ruler A, each division is T cm.
On Ruler 8, each division is

1 em and each subdivision
is0.1 ¢m.
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Notice that Ruler B has ten 1 cm divisions and ten 0.1 cm subdivisions. On Ruler B,
the subdivisions are smaller. So, with Ruler B we can estimate to one-half of a subdivi-
sion, that is, we can estimate to =0.05 cm. On Ruler B, we see that the candy cane mea-
sures about 4.25 cm. Since the uncertainty is =0.05 cm, a reading of 4.20 cm or 4.30 cm is
also acceptable.

We can compare the length of the candy cane measured with Rulers A and B
as follows:

Ruler A: 42+0.1cm RulerB: 425+ 0.05cm

In summary, Ruler A has more uncertainty and gives less precise measurements.
Conversely, Ruler B has less uncertainty and gives more precise measurements. Example
Exercise 2.1 further illustrates the uncertainty in recorded measurements.

Ekample_'_EXércise A8 Uncertainty in Measurement

Which measurements are consistent with the melric rulers shown in Figure 2.2?

(a) Ruler A: 2 cm, 2.0 cm, 2.05 em, 2.5 cm, 2.50 cm.
(b) Ruler B: 3.0 cm, 3.3 ¢m, 3.33 cm, 3.35 cm, 3.50 cm

Solution
Ruler A has an uncertainiy of +0.1 cn, and Ruler B has an uncertainty of £0.05 cm. Thus,

(a) Ruler A can give the measurements 2.0 cm and 2.5 ¢cm.
{b) Ruler B can give the measurements 3.35 em and 3.50 cm.

Practice Exercise
Which measurements are consistent with the metric rulers shown in Figure 2.2?

(a) Ruler A: 1.5 cm, 1.50 cm, 1.55 cm, 1.6 cm, 2.00 cm
(b) Ruler B: 0.5 cm, G.50 ¢m, 0.055 ¢m, 0.75 cm, 0.100 cm

Answers: (a) 1.5 cam, 1.6 cm; (b) 0.50 cm, 0.75 cm

Concept Exercise
What high-tech instrument is capable of making an exact meastirement?

Answer: See Appendix G.

Mass Measurements

The mass of an object is a measure of the amount of matter it possesses. Mass is mea-
sured with a balance and is not affected by gravity. You can think of a balance as a
teeter-totter, or seesaw, with two pans. After an object is placed on one pan, weights
are added onto the other pan until the balance is level.

The measurement of mass has uncertainty and varies with the balance. A typical
mechanical balance in a laboratory may weigh a sample to 1,/100 of a gram. Thus, its
mass measurements have an uncertainty of +0.01 g. Many laboratories have electronic
balances with digital displays. These balances may have uncertainties ranging from
+0.1 g to =0.0001 g. Figure 2.3 shows three common types of balances.
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(0) {c)

Although the term “weight” is often used to mean “mass,” strictly speaking, the
two terms are not interchangeable. Weight is the force exerted by gravity on an object.
Since Earth is heavier than the Moon, Earth's gravity is greater and objects weigh
more, Similarly, the same object weighs more on the huge planet Jupiter than on Earth.
On the other hand, the mass of an object obtained using a balance is constant. This is
because gravity operates equally on both pans of the balance, thereby canceling its
effect. The mass of an object is constant whether it is measured on Earth, on the Moon,
or on any other planet. Figure 2.4 illustrates the distinction between mass and weight.

Mass=68 kg
Weight = 150 11; Py

Mass = 68 kg
Weight=251b ¢
7

A+

— Mass =68 kg
Barth Meon Weight=01b

@) {b) (@

<« Figure 2.3 Balances for
Measuring Mass (a) A platform
balance having an uncertainty
of 0.1 g. (b) A beam balance
having an uncertainty of
=0.01 g. {¢) A digital electronic
balance having an uncertainty
of x0.001 g.

4 Figure 2.4 Mass versus
Weight Weight is affected by
gravity, whereas mass is not.
{z) On Earth, the astronaut has
a mass of 68 kilograms (kg) and
a weight of 150 pounds (Ib).
{b) On the Moon, the mass
remains 68 kg, but the weight
is only 25 Ib. (¢} In space, the
mass is still 68 kg although the
astronaut is weightless.
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P Figure 2.5 Instruments for
Measuring Volume A gradu-
ated cylinder, a syringe, and a
buret are calibrated to mea-
sure a variable quantity of lig-
uid, whereas a volumetric pipet
and a volumetric flask measure
only fixed quantities, for exam-
ple, 10 mL and 250 mL.

OBJECTIVE i
» To identify the number of |

significant digits in a ]

given measurement.

Graduated Syringe Buret Pipet Volumetric

cylinder flask

Volume Measurements

The amount of space occupied by a solid, gas, or liquid is its volume. There are many
pieces of laboratory equipment available for measuring the volume of a liquid. Three
of the most common are a graduated cylinder, a pipet, and a buret. Figure 2.5 shows
commeon laboratory equipment used for measuring volume.

A graduated cylinder is routinely used to measure a volume of liquid. The most
common sizes of graduated cylinders are 10 mL, 50 ml, and 100 mL. The uncertainty
of a graduated cylinder measurement varies, but usually ranges from 1/10 to 1/2 of
a milliliter (+0.1 mL to 0.5 mL).

There are many types of pipets. The volumetric pipet shown in Figure 2.5 is used
to deliver a fixed volume of liquid. The liguid is drawn up until it reaches a calibra-
tion line etched on the pipet. The tip of the pipet is then placed in a container, and the
liquid is allowed to drain from the pipet. The volume delivered varies, but the uncer-
tainty usually ranges from 1/10 to 1/100 of a milliliter. For instance, a 10 mL pipet
can deliver 10.0 mL (0.1 mL) or 10.00 mL (x0.01 mL), depending on the uncertainty
of the instrument.

A buret is a long, narrow piece of calibrated glass tubing with a valve called a
“stopcock” at the bottom end. The flow of liquid is regulated by opening and closing
the stopcock, and the initial and final liquid levels in the buret are observed and
recorded. The volume delivered is found by subtracting the initial buret reading from
the final buret reading. Burets usually have uncertainties ranging from 1/10 to 1/100
of a milliliter. For instance, the liquid level in a buret can read 22.5 mL (+0.1 mL) or
22.55 mL (=0.01 mL), depending on the uncertainty of the instrument.

2.2 SIGNIFICANT DIGITS

In a properly recorded measurement, each number is a significant digit, also referred
to as a “significant figure.” For instance, suppose we find the mass of a 5¢ coin on a
platform balance, a beam balance, and an electronic balance. We may find that the
mass of the coin on the different balances is 5.0 g, 5.00 g, and 5.000 g, respectively.
Although the uncertainty of the mass varies for the three balances, every digit is sig-
nificant in each measurernent. Removing the last digit from any weighing changes the
uncertainty of the measurement. In this example, the measurements of mass have two,
three, and four significant digits, respectively.

In every measurement, the significant digits express the uncertainty of the instru-
ment. By way of example, let’s examine the chemical reaction shown in Figure 2.6.
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< Figure 2.6 Significant
Digits and a Timed Reaction
The data from the timed reac-
tion demonstrates the uncer-
tainty of three different
stopwatches. Althcugh each

Colorless Solution Blue Solution

Stopwatch A:  Os 358 of the measurements is cor-
Stopwatch B:  0.0s 351s rect, Stopwatch C has the
Stopwatch C: 0.00s 35.08s least uncertainty.

This is called a “clock reaction,” and we note that the solution changes from colorless
to blue after about 35 seconds (s). We can use three different stopwatches to time the
teaction. Since a stopwatch can be calibrated in seconds {(+1 s), tenths of a second (0.1 s),
or hundredths of a second (+0.01 5), we can use stopwatches having different uncer-
tainties to time the reaction.

Stopwatch A displays 35 s, Stopwatch B displays 35.1 s, and Stopwatch C displays
35.08 5. Therefore, Stopwatch A has more uncertainty than B, and Stopwatch B has
more uncertainty than C.

To determine the number of significant digits in a measurement, we simply count
the number of digits from left to right, starting with the first nonzero digit. Therefore,
35 s has two significant digits, 35.1 s has three significant digits, and 35.08 s has four
significant digits. Example Exercise 2.2 further illustrates how to determine the num-
ber of significant digits in a measurement.

T e TP Significant Digits

State the number of significant digits in the following measurements:

{a) 12,345 cm {b)0.123 g

ic) 0.5 mL {d)102.0s

Solution

In each example, we simply count the number of digits. Thus,
(@5 {b) 3

{01 (d) 4

Nofice that the leading zero in (b) and (c) is not part of the measurement but is inserted tc
call attention to the decimal point that follows.

Practice Exercise
State the number of significant digits in the following measurements:

(a) 2005 cmm {b) 25.000 g
{¢) 25.0 mL (dy0.25s

Answers: {a)4; (B)5; (03 (d)2

Concept Exercise
What type of measurement is exact?

Answer: See Appendix G.
e

Significant Digits and Placeholder Zeros

Ameasurement may contain placeholder zeros to properly locate the decimal point,
for example, 500 cm and 0.005 ¢cm. If the number is less than 1, a placeholder zero is
never significant. Thus, 0.5 con, 0.05 an, and 0.005 cm each contain only one signifi-
cant digit.

17
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If the number is greater than 1, a placeholder zero is usually not significant. To avoid
confusion, we will assume that placeholder zeros are never significant. Thus, 50 cm,
500 cm, and 5000 cm each contain only one significant digit. Example Exercise 2.3 fur-
ther illustrates how to determine the number of significant digits.

. Exémple Exer_cisé '2.‘_3 Significant Digits

State the number of significant digits in the following measurements:

(a) 0.025 cm (b) 02050 g

(c} 25.0 mL (d) 2500 s

Solution

In each example, we count the number of significant digits and disregard placeholder zeros.
Thus,

(a) 2 (b) 4

() 3 (@2

Practice Exercise
State the number of significant digits in the following measurements:

(a) 0.050 cin (b) 0.0250 g
(c) 50.00 mL (d) 1000 s

Answers: (a)2; 0)3; (© 4 ()1

Concept Exercise
What type of measurement has infinite significant digits?

Answer: See Appendix G,
| )

Note Ifaplaceholder zero is significant, we can express the number using a power of 10.
For example, if one zerc is significant in 100 cm, we can express the measurement as
1.0 % 10? em. If both zeros are significant, we can write 1.00 x 102 cm. If neither zero is sig-
nificant, we can write 1 x 102 ecm. The power of 10 does not effect the number of significant
digits; thus, 1.1 x 10° cm has two significant digits, and 1.11 x 1073 cm has three significant
digits. (Refer to Sections 2.6 and 2.7 for a discussion of exponents and scientific notation.)

P Exact Numbers We count
seven coins in the phote,
which is an exact number, This
is not a measurement; thus,
the number of significant dig-
its is infinite.
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Significant Digits and Exact Numbers
Since all measurements have uncertainty, a measurement never represents an exact
number. However, we can obtain exact numbers when counting items. For instance, a
chemistry laboratory may have 30 rulers, 3 balances, and 24 pipets. Since we have sim-
ply counted items, 30, 3, and 24 are exact numbers. As we soon learn, the rules of sig-
nificant digits do not apply to exact numbers; they apply only to measurements.

We can summarize the directions for determining the number of significant digits
with two simple rudes.

Determmlng Slgnlficant Dlglts

Rule 1: Count the number of digits in a measurement from left to right.
(a) Start with the first nonzero digit.
{(b) Do not count placeholder zeros (0.011, 0.00011, and 11,000 each have
two significant digits}.
Rule 2: The rules for significant digits apply only to measurements and not to
exact numbers.

2.3 ROUNDING OFF NONSIGNIFICANT DIGITS

! OBJECTIVE

All digits in a correctly recorded measurement, except placeholder zeros, are signifi-
cant. However, we often generate nonsignificant digits when using a calculator.
These nonsignificant digits should not be reported, but they frequently appear in the
calculator display. Since nonsignificant digits are not justified, we must eliminate
them. We get rid of nonsignificant digits through a process of rounding off. We round
off nonsignificant digits by following three simple rules.

its

Roundlng Off Nonsugmflcant Di

Rule 1: If the ﬁrst nonsignificant digit is less than 5 drop all n0n51gruflcant dlglts

Rule 2: If the first nonsignificant digit is greater than 5, or equal to 5, increase the
last significant digit by 1 and drop all nonsignificant digits.*

Rule 3: If a calculation has several multiplication or division operations, retain
nonsignificant digits in your calculator display until the last operation.
Not only is it more convenient, it is also more accurate.

* If the nonsignificant digit is 3, or 5 followed by zeros, an odd-even rule can be applied. That is, if the
last significant digit is odd, round up; if it is even, drop the nensignificant digits.

If a calculator displays 12.846239 and three significant digits are justified, we must
round off. Since the first nonsignificant digit is 4 in 12.846239, we follow Rule 1, drop
the nonsignificant digits, and round to 12.8. If a calculator displays 12.856239 and
three significant digits are justified, we follow Rule 2. In this case, since the first non-
significant digit is 5 in 12.856239, we round to 12.9.

Rounding Off and Placeholder Zeros

On occasion, rounding off can create a problem. For example, if we round off 151 to two
significant digits, we obtain 15. Since 15 is only a fraction of the original value, we must
insert a placeholder zero; thus, rounding off 151 fo two significant digits gives 150.
Similarly, rounding off 1514 to two significant digits gives 1500 or 1.5 X 10°. Example
Exercise 2.4 further illustrates how to round off numbers,

1>Tc> round off a glven value

; to a stated number of
I significant digits.

i
*T1-30Xa Solar

A Scientific Calculator A cal-
culator display often shows
nonsignificant digits, which
must be rounded off.
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Example Exert:lse24 Rounding Off

Reound off the following numbers to three significant digits:

(a) 22.250 (b) 0.34548
(c) 0.072038 (d) 12,267
Solution

To locate the first nonsignificant digit, count three digits from left to right. If the first non-
significant digit is less than 5, drop all nonsignificant digits. If the first nonsignificant digit is
5 or greater, add 1 to the last significant digit.

(a) 22.3 (Rule 2) (b) 0.345 (Rule 1)

(c) 0.0720 (Rule 1) (d) 12,300 (Rule 2)

In {d), notice that two placeholder zeros must be added to 123 to obtain the correct deci-
mal place.

Practice Exercise

Round off the following numbers to three significant digits:
(a) 12.514748 (b) 0.6015261

{c) 192.49032 (d) 14652.832

Answers: (a)12.5 (Rule 1}; (b) 0.602 (Rule 2); {c) 192 {Rule 1); {d) 14,700 (Rule 2)

Concept Exercise
How many significant digits are in the exact number 155?

Answer: See Appendix G.
e

2.4 ADDING AND SUBTRACTING
omsEcTive MEASUREMENTS

)To add and subtra;:'t

measurements and round When adding or subtracting measurements, the answer is limited by the value with the
off the answer to the - most uncertainty; that is, the answer is limited by the decimal place. Note the decimal
proper significant digits. = place in the following examples:

The mass of 5 g has the most uncertainty because it measures only +1 g. Thus, the
sum should be limited to the nearest gram. If we round off the answer to the proper
significant digit, the correct answer is 15 g. In addition and subtraction, the unit {cm, g,
mlL) in the answer is the same as the unit in each piece of data. Example Exercise 2.5
illustrates the addition and subtraction of measurements.

PSRRI Adldition/Subtraction and Rounding Off

Add or subtract the following measurements and round off your answer:
{a) 106.7g + 0.25g + 0.195¢g {b) 35.45 mL - 30.5 mL

Solution
In addition or subtraction cperations, the answer is limited by the measurement with the
most uncertainty.
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(a) Let’s align the decimal places and perform the addition.

Since 106.7 g has the most uncertainty (+0.1 g}, the answer rounds off to one decimal
place. The correct answer is 107.1 g and is read “one hundred and seven point
one grams.”

(b) Let’s align the decimal places and perform the subtraction.

Since 30.5 mL has the most uncertainty (0.1 mL), we round off to one decimal place. The
answer is 5.0 mL and is read “five point zero milliliters.”

Practice Exercise
Add or subtract the following measurements and round off your answer:

(a) 8.6cm + 50.05 cm (b)341s — 0555

Answers: (a)58.7 cm; (b)33.65

Concept Exercise
When adding or subtracting measurements, which measurement in a set of data limits
the answer?

Answer: See Appendix G.
ermEn

2.5 MULTIPLYING AND DIVIDING
MEASUREMENTS . OBJECTIVE

21

;mfammultiply and divide

Significant digits are treated differently in multiplication and division than in addi- | measurements and round
tion and subtraction. In multiplication and division, the answer is limited by the | off the answer to the
measirement with the least number of significant digits. Let’s multiply the following | proper significant digits.

length measurements:
5.15cm x 2.3 cm = 11.845 cm?

The measurement of 5.15 cm has three significant digits, and 2.3 ¢m has two. Thus,
the product should be limited to two digits. When we round off to the proper number
of significant digits, the correct answer is 12 cm?. Notice that the units must also be
multiplied together, which we have indicated by the superscript 2. Example Exercise 2.6
illustrates the multiplication and division of measurements.

Example ExerCIseZ 6 Multiplication/Division and Rounding Off

Multiply or divide the following measurements and round off your answer:
{a) 50.5 cm x 12 em (b) 103.37 g/20.5 mL

Solution
In multiplication and division operations, the answer is limited by the measurement with the
least number of significant digits.
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(a) In this example, 50.5 cm has three significant digits and 12 cm has two.
(50.5 cm) (12 cm) = 606 am?

The answer is limited to two significant digits and rounds off to 610 cm? after inserting a
placeholder zero. The answer is read “six hundred and ten square centimeters.”
(b} In this example, 103.37 g has five significant digits and 20.5 mL has three,
10337 ¢
20.5mL

= 5.0424 g/mL

The answer is limited to three significant digits and rounds off to 5.04 g/mL.
Netice that the unit is a ratic; the answer is read as “five point zero four grams
per milliliter.”

Practice Exercise
Multiply or divide the following measurements and round off your answer.

(2) (359 cm) (0.20 em) (b) 73.950 g/25.5 mL
Answers: {a}72 cm?; (b)2.90 g/mL

Concept Exercise
When multiplying or dividing measurements, which measurement in a set of data limits
the answer?

Answer: Sce Appendix G

OBJECTIVES . 2.6 EXPONENTIAL NUMBERS

» To explain the concept of |
exponents and i When a value is multiplied times ifself, the process is indicated by a number written

specifically powers of 10. | as a superscript. The superscript indicates the number of times the process is
repeated. For example, if the number 2 is multiplied two times, the product is
| expressed as 22. Thus, (2) (2) = 22 If the number 2 is multiplied three times, the prod-
. uct is expressed as 23. Thus, (2) (2) (2) = 23,
A superscript number indicating that a value is multiplied times itself is called an
exponent. If 2 has the exponent 2, the value 22 is read as “2 to the second power” or “2
squared.” The value 23 is read as “2 to the third power” or “2 cubed.”

b To express a value as a
power of 10 and as an
crdinary number.

Powers of 10

A power of 10 is a number that results when 10 is raised to an exponential power. You
know that an exponent raises any number to a higher power, but we are most inter-
ested in the base number 10. A power of 10 has the generat form

_exponent

107
base number

The number 10 raised to the n power is equal to 10 multiplied times itself # times.
For instance, 10 to the second power (10?) is equal to 10 times 10. When we write 10% as
an ordinary number, we have 100. Notice that the exponent 2 corresponds to the num-
ber of zeros in 100. Similarly, 109 has three zeros (1000) and 106 has six zeros (1,000,000).

The exponent is positive for all numbers greater than 1. Conversely, the exponent
is negative for numbers less than 1. For example, 10 to the negative first power (1077)
is equal to 0.1, 10 to the negative second power (107) is equal to 0.01, and 10 to the
negative third power (10-%) is equal to 0.001. Table 2.1 lists some powers of 10 along
with the equivalent ordinary number.

Although you can easily carry out operations with exponents using an inexpen-
sive scientific calculator, you will have greater confidence if you understand expo-
nents. Example Exercises 2.7 and 2.8 further illustrate the relationship between
ordinary numbers and exponential numbers.




