Let's start off with scientific notation...

```
54,670,000,000 \rightarrow 5.467 \times 10^{10}
1a)
                                                      (decimal was moved left, so positive exponent)
                                \rightarrow -5.5267x10<sup>3</sup>
                                                      (decimal was moved left, so positive exponent)
1b)
          -5526.7
                                \rightarrow 3.289x10<sup>-2</sup>
1c)
          0.03289
                                                      (decimal was moved right, so negative exponent)
                                \rightarrow 1.0000 \text{x} 10^2
          100.00
                                                      (decimal was moved left, so positive exponent)
1d)
                                \rightarrow -9.3740x10<sup>-5</sup>
                                                      (decimal was moved right, so negative exponent)
1e)
          -0.000093740
                                \rightarrow 9.999606x10<sup>3</sup>
1f)
          9999,606
                                                      (decimal was moved left, so positive exponent)
                                \rightarrow 2.8x10<sup>3</sup>
          2800
                                                      (decimal was moved left, so positive exponent)
1g)
          -0.00000005883 \rightarrow -5.883 \text{x} 10^{-8}
                                                      (decimal was moved right, so negative exponent)
1h)
                                \rightarrow 8x10<sup>-5</sup>
1i)
          0.00008
                                                      (decimal was moved right, so negative exponent)
          0.11250
                                \rightarrow 1.1250 \times 10^{-1}
                                                      (decimal was moved right, so negative exponent)
1j)
```

How many significant figures in a number:

```
\rightarrow2
2a) 6200
2b) 1.032
                          \rightarrow 4
                          \rightarrow3
2c) 420.
2d) 3.750x10<sup>-6</sup>
                          \rightarrow 4
2e) 0.0006000
                          \rightarrow 4
2f) 1x10^4
                          \rightarrow1
2g) 35000000
2h) 23.4400
                          \rightarrow 6
2i) 100.0003
2J) 100.
```

Significant figures in calculations

3a)
$$160 \times 0.3490 \times 23.1 = 1289.904$$
 $160 = 2 \text{ s.f.}, 0.3490 = 4 \text{ s.f.}, 23.1 = 3 \text{ s.f.}, \text{ so answer can only have } 2 \text{ s.f.} \rightarrow 1300 \text{ or } 1.3 \times 10^3$

$$\begin{array}{c}
2.3806 \\
+0.01 \\
\hline
2.3906 \\
\Rightarrow 2.39
\end{array}$$

3c)
$$\frac{0.2689}{0.000159} = 1691.19497$$
 $0.2689 = 4 \text{ s.f.}, 0.000159 = 3 \text{ s.f.}, \text{ answer has 3 s.f.} \rightarrow 1690 \text{ or } 1.69 \times 10^3$

3b)
$$\begin{array}{r}
11 & 3 \\
-2 \\
9 & 3
\end{array}$$

3e)
$$1500. \div 25 = 60$$
 $1500. = 4 \text{ s.f.}, 25 = 2 \text{ s.f.}, \text{ answer has } 2 \text{ s.f.} \rightarrow 60. \text{ or } 6.0 \times 10^{1}$

3f)
$$3.65 \times 10^{-3} \times 9.822 \times 10^{4} = 360.693$$
 $3.65 \times 10^{-3} = 3 \text{ s.f.}, 9.822 \times 10^{4} = 4 \text{ s.f.}, \text{ answer has } 3 \text{ s.f.} \rightarrow 361$

3g)
$$\frac{2.21100 \times 10^2}{32.1 \times 0.002000} = 3443.92523$$
 2.21100x10² = 6 s.f., 32.1 = 3 s.f., 0.002000 = 4 s.f., answer = 3 s.f. \Rightarrow 3440 OR 3.44x10³

```
3h)

\begin{array}{c}
0.34864 \\
+1 \\
1.34864
\end{array}

\begin{array}{c}
26.1 \\
-.00030000 \\
26.09970000
\end{array}

\begin{array}{c}
26.1 \text{ (you are subtracting a very small number from a large number; it doesn't make a difference here)} \\
3j)

\begin{array}{c}
1200 \\
49.49 \\
+1.004 \\
1250.494
\end{array}

\begin{array}{c}
1250.494 \\
12[50.494 = 1.2[50494x10^3 \Rightarrow 1.3x10^3 \\
\end{array}

(again, put into scientific notation THEN round off)
```

 $33.3 \times 3.0 = 99.9$ 33.3 = 3 s.f., 3.0 = 2 s.f., answer = 2 s.f. 99.9 rounds to 100, but MUST have 2 s.f. \rightarrow 1.0x10²

3k)