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A gas pump measures the
amount of gasoline delivered.

OBJECTIVE:

A measurement must always
consist of a number and a unit.
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As we peinted out in Chapter 1, making observations is a key part
of the scientific process. Sometimes observations are qualitative (“the sub-
stance is a yellow solid”) and sometimes they are gquantitative (“the
substance weighs 4.3 grams”). A quantitative observation is calied a mea-
surement. Measurements are very important in our daily lives. For exam-
ple, we pay for gasoline by the gallon, so the gas pump must accurateiy
measure the gas delivered to our fuel tank. The efficiency of the modern
automobile engine depends on various measurements, including the
amount of oxygen in the exhaust gases, the temperature of the coolant,
and the pressure of the lubricating oil. in addition, cars with traction con-
trol systems have devices to measure and compare the rates of rotation
of all four wheels. As we will see in the "Chemistry in Focus” discussion
in this chapter, measuring devices have become very sophisticated in deal-
ing with our fast-moving and complicated society.

As we will discuss in this chapter, a measurement always consists of
two parts: a number and a unit. Both parts are necessary to make the
measurement meaningful. For example, suppose a friend tells you that
she saw a bug 5 long. This statement is meaningless as it stands. Five
what? if it's 5 millimeters, the bug is quite small. If it's 5 centimeters, the
bug is quite large. If it's 5 meters, run for cover!

The point is that for a measurement to be meaningful, it must con-
sist of both a number and a unit that tells us the scale being used.

tn this chapter we will consider the characteristics of measurements
and the calculations that involve measurements.

Scientific Notation

To show how very large or very small numbers can be expressed as the
product of a number between 1 and 10 and a power of 10.

The numbers associated with scientific measurements are often very large
or very small. For example, the distance from the earth to the sun is ap-
proximately 93,000,000 {93 million) miles. Written out, this number is
rather bulky. Scientific notation is a method for making very large or very
small numbers more compact and easier to write.

To see how this is done, consider the number 125, which can be writ-
ten as the product

125 = 1.25 X 100
Because 100 = 10 X 10 = 10?, we can write
125 = 1.25 X 100 = 1.25 X 1¢?
Similarly, the number 1700 can be written
1700 = 1.7 X 1000
and because 1000 = 10 X 10 X 10 = 10°, we can write

1700 = 1.7 X 1000 = 1.7 X 10°
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16 Chapter 2 Measurements and Calculations

When describing very small
distances, such as the diameter
of a swine flu virus (shown here
magnified 16,537 times), it is
convenient to use scientific
notation.

MATH SKILL BUILDER
Keep one digit to the left of the
| decimal point,

MATH SKILL BUILDER
Moving the decimal point to the
left requires a positive exponent.

| MATH SKILL BUILDER
Moving the decimal point to the
| right requires a negative exponent.

| MATH SKILL BUILDER
Read the Appendix if you need a
further discussion of exponents and
| scientific notation.

Scientific notation simply expresses a number as g product of a num-
ber between 1 and 10 and the appropriate power of 10. For example, the num-
ber 93,000,000 can be expressed as

93,000,000 = 9.3 x 10,000,000 = 9.3 X 107

MNumber Appropriate
between power of 10
1and 10 (10,000,000 = 107)

The easiest way to determine the appropriate power of 10 for scien-
tific notation is to start with the number being represented and count the
number of places the decimal point must be moved to obtain a number be-
tween 1 and 10. For example, for the number

930000600

L e

£ 54 3 2

we must move the decimal point seven places to the left to get 9.3 (a num-
ber between 1 and 10). To compensate for every move of the decimal point
to the left, we must multiply by 10. That is, each time we move the deci-
mal point to the left, we make the number smaller by one power of 10. So
for each move of the decimal point to the left, we must multiply by 10 to
restore the number fo its original magnitude. Thus moving the decimal
point seven places to the left means we must multiply 9.3 by 10 seven times,
which equals 107:

@3,000,000 = 9.3 X 107
We maoved the decimal point seven
places to the left, so we need
107 to compensate.

Remember: whenever the decimal point is moved to the left, the exponent
of 10 is positive.

We can represent numbers smaller than 1 by using the same conven-
tion, but in this case the power of 10 is negative. For example, for the num-
ber 0.010 we must move the decimal point two places to the right to obtain
a number between 1 and 10:

This requires an exponent of —2, s0 0.010 = 1.0 X 107% Remember: when-
ever the decimal point is moved to the righi, the exponent of 10 is negative.

Next consider the number 0.000167. In this case we must move the
decimal point four places to the right to obtain 1.67 (a number between 1
and 10):

0.0001.67

T

1234

Moving the decimal point four places to the right requires an exponent
of —4. Therefore,

0.000167 = 1.67 X 107*
We maved the decimal
point four places to the right.
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We suminarize these procedures below.

______ iy ScieniifeNotation’ 1= oo o el T
| MATH SKILL BUILDER e Any number can be represented as the product of a number between 1
| 100 = 1.0 X 10? and 10 and a power of 10 (either positive or negative).
10010 = 1.0 X 1072 » The power of 10 depends on the number of places the decimal point is

moved and in which direction. The number of places the decimal point is
moved determines the power of 10. The direction of the move determines
| MATH SKILL BUILDER whether the power of 10 is positive or negative. If the decimal point is
| Left Is Positive; remember LIP. moved to the left, the power of 10 is positive; if the decimal point is
moved to the right, the power of 10 is negative.

EXAMPLE 2.1 (Scientific Notation: Powers of 10 (Positive) "

| MATH SKILL BUILDER Represent the following numbers in scientific notation.
.[ A number that is greater than 1

| . - a. 238,000
f will always have a positive expo-
|_ nent when wtitten in scientific b. 1,500,000
! notation.
SOLUTION
a. First we move the decimal point until we have a number between 1
and 10, in this case 2.38.
238000
R T
54 3 2.1 The decimal paint was moved five places to the left.
Because we moved the decimal point five places fo the left, the
power of 10 is positive 5. Thus 238,000 = 2.38 x 10°.
b.1500000
R M A A AL A
6 54 321 The decimal point was moved
six places to the left, so the
power of 10 is B.
Thus 1,500,000 = 1.5 X 10° =
GEINTHNEPIP) | scientific Notation: Powers of 10 (Negative)
| MATH SKILL BUILDER Represent the following numbers in scientific notation.
A number that is Iessj than 1 will A 0.00043
ﬁ always have a negative exponent
| when written in scientific notation. b. 0.089
SOLUTION

a. First we move the decimal point until we have a number between 1
and 10, in this case 4.3.

6.00043

A AL AL LS
1234 The decimal point was moved four places to the right.

Because we moved the decimal point four places to the right, the
power of 10 is negative 4. Thus 0.00043 = 4.3 x 107%
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EXERCISE 2.1

OBIJECTIVE:

b.0.089

S A
1 2 The power of 10 is negative 2 because the decimal point was moved

two places to the right.

Thus 0.089 = 8.9 x 1072,

Write the numbers 357 and 0.0055 in scientific notation. If you are having
difficulty with scientific notation at this peint, reread the Appendix.

See Problems 2.5 through 2.14. B

Units

To learn the English, metric, and Sl systems of measurement.

The units part of a measurement tells us what scale or standard is being
used fo represent the results of the measurement. From the earliest days of
civilization, trade has required common units. For example, if a farmer from
one region wanted to trade some of his grain for the gold of a miner who
lived in another region, the two people had to have common standards
{units} for measuring the amount of the grain and the weight of the gold.

The need for common units also applies to scientists, who measure
quantities such as mass, length, time, and temperature. If every scientist
had her or his own personal set of units, complete chaos would result. Un-
fortunately, although standard systems of units did arise, different systems
were adopted in different parts of the world. The two most widely used sys-
tems are the English system used in the United States and the metric
system used in most of the rest of the industrialized world.

The metric system has long been preferred for most scientific work. In
1960 an international agreement set up a comprehensive system of units
called the International System {le Systéme Infernationale in French), or SL.
The SI units are based on the metric system and units derived from the met-
ric system. The most important fundamentai ST units are listed in Table 2.1,
Later in this chapter we will discuss how to manipulate some of these units.

Because the fundamental units are not always a convenient size, the
SI system uses prefixes to change the size of the unit. The most commonly
used prefixes are listed in Table 2.2. Although the fundamental unit for
length is the meter (m), we can also use the decimeter {dm), which repre-
sents one-tenth (0.1} of a meter; the centimeter (cm}, which represents one
one-hundredth (0.01) of a meter; the millimeter (mm}, which represents
cne cne-thousandth (0.001) of a meter; and so on. For example, it’s much
more convenient to specify the diameter of a certain contact lens as 1.0 cm
than as 1.0 X 1072 m.

|| Some Fundamental SI Units

Physical Quantity Name of Unit Abbreviation

mass kilogram kg
length meter m
time second $

temperature kelvin K
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Critical Units!

How important are conversions from one unit
to another? If you ask the Natiomal Aeronautics
and Space Administration (NASA), very impor-
tant! In 1999 NASA lost a $125 million Mars Cli-
mate Orbiter because of a failure to convert
from English to metric units.

The problem arose because two teams
working on the Mars mission were using differ-
ent sets of units. NASA's scientists at the Jet
Propulsion Laboratory in Pasadena, California,
assumed that the thrust data for the rockets on
the Orbiter they received from Lockheed Martin
Astronautics in Denver, which buiit the space-
craft, were in metric units. In reality, the units
were English. As a result the Orbiter dipped 100
kilometers lower into the Mars atmosphere than
planned and the friction from the atmosphere
caused the craft to burn up.

NASA’s mistake refueled the controversy
over whether Congress should require the

United States to switch to the metric system.
About 95% of the world now uses the metric sys-

tem, and the United States is slowly switching
from English to metric. For example, the auto-
mebile industry has adopted metric fasteners
and we buy our soda in two-liter bottles.

Units can be very important. In fact, they
can mean the difference between life and death
on some occasions. In 1983, for example, a Cana-
dian jetliner almost ran out of fuel when some-
one pumped 22,300 pounds of fuel into the air-
craft instead of 22,300 kilograms. Remember to
watch your units!

HASE

Artist’s conception of the lost Mars Climate
Orbiter.

DELIE PR The Commonly Used Prefixes in the Meiric System

Power of 10 for

Prefix Symbol Meaning Scientific Notaticn
mega M 1,000,000 108

kilo k 1000 10°

deci d 0.1 107!

centi < 0.01 1072

milli m 0.001 1073

micro ) 0.000001 1075

nano n 0.000000001 1077

Measurements consist of both a number and a unit, and both are cru-
cial. Just as you would not report a measurement without a numerical value,
you would not report a measurement without a unit. You already use units
in your daily life, whether you tell somebody, “Let’s meet in one hour”
(hour is the unit), or you and your friends order two pizzas for dinner (pizza

is the unit).

19
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OBJECTIVE:

The meter was originally
defined, in the eighteenth
century, as one ten-millionth of
the distance from the equator to
the North Pole and then, in the
late nineteenth century, as the
distance between two parallel
marks on a special metal bar
stored in a vault in Paris. More
recently, for accuracy and
convenience, a definition
expressed in terms of light
waves has been adopted.

Comparison of English and metric

units for length on a ruler.

Chapter 2 Measurements and Calculations

Measurements of Length, Volume,
and Mass

To understand the metric system for measuring fength, volume, and
mass.

The fundamental SI unit of length is the meter, which is a little longer
than a yard (1 meter = 39.37 inches). In the metric system fractions of a
metfer or multiples of a meter can be expressed by powers of 10, as sum-
marized in Table 2.3.

The English and metric systems are compared on the ruler shown in
Figure 2.1. Note that

1 inch = 2.54 centimeters

Other English-metric equivalences are given in Section 2.6.

Volume is the amount of three-dimensional space occupied by a sub-
stance. The fundamental unit of volume in the SI system is based on the
velume of a cube that measures 1 meter in each of the three directions.
That is, each edge of the cube is 1 meter in length. The volume of this
cube is

IlmXImX1lm=(Im®=1md

o, in words, on¢ cubic meter.

In Figure 2.2 this cube is divided into 1000 smaller cubes. Each of these
small cubes represents a volume of 1 dm?, which is commonly called the
liter (rhymes with “meter” and is slightly larger than a quart) and abbre-
viated L.

DS PIER The Metric System for Measuring Length

e

Symbol Meter Equivalent
kilometer km 1000 m or 10° m
meter m 1 m
decimeter dm 0.1 mor 107 m
centimeter cm 0.01 mor 107% m
millimeter mm 0.001l mor 102 m
micrometer Lm 0.000001 m or 10°% m
nanometer nm 0.000000001 m or 107° m
1 in.
Inches i'

\l\l\l“

\|||111
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Centimeters |
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An electronic analytical balance
used in chemistry labs.

2.3 Measurements of Length, Volume, and Mass 21

The largest drawing represents a
cube that has sides 1 m in length
angd a volume of 1 m%. The
middie-size cube has sides 1 dm

in length and a volume of 1 dm?, \ lcml

or 1 L. The smallest cube has st

sides 1 ¢m in length and a lch lem?=1mL
volume of 1 cm?, or 1 mL. —

The cube with a volume of 1 dm? (1 liter) can in turn be broken into
1000 smaller cubes, each representing a volume of 1 cm®. This means that
each liter contains 1000 cm®. One cubic centimeter is called a milliliter
{abbreviated mL), a unit of volume used very commonly in chemistry. This
relationship is summarized in Table 2.4.

The graduated cylinder (see Figure 2.3), commonly used in chemical lab-
oratories for measuring the volumes of liquids, is marked off in convenient
units of volume (usually milliliters). The graduated cylinder is filled to the
desired volume with the liquid, which then can be poured out,

Another important measurable quantity is mass, which can be de-
fined as the quantity of matter present in an object. The fundamental SI
unit of mass is the kilogram. Because the metric system, which existed
before the SI system, used the gram as the fundamental unit, the prefixes
for the various mass units are based on the gram, as shown in Table 2.5,

in the laboratory we determine the mass of an object by using a bal-
ance. A balance compares the mass of the object to a set of standard masses
(“weights”). For example, the mass of an object can be determined by us-
ing a single-pan balance (Figure 2.4).

To help you get a feeling for the common units of length, volume,
and mass, some familiar objects are described in Table 2.6.

D ELIEPITT The Relationship of the Liter and Milliliter

Unit Symbol Equivalence
liter L 1L = 1000 mL
milliliter mL o L =101 = 1mL

| The Most Commonly Used Metric Units for Mass

Unit Symbol Gram Equivalent
kilogram kg 1000 g = 10° g = 1 kg
gram 8 lg
milligram mg 0.001 g=10"°g=1mg




Measurement: Past, Present,
and Future

Measurement lies at the heart of doing science.
We obtain the data for formulating laws and
testing theories by doing measurements. Mea-
surements also have very practical importance;
they tell us if our drinking water is safe, whether
we are anemic, and the exact amount of gaso-
line we put in our cars at the filling station.

Although the fundamental measuring de-
vices we consider in this chapter are still widely
used, new measuring technigues are being devel-
oped every day to meet the challenges of our
increasingly sophisticated world. For example,
engines in modern automobiles have oxygen sen-
sors that analyze the oxygen content in the ex-
haust gases. This information is sent to the com-
puter that controls the engine functions so that
instantaneous adjustments can
be made in spark timing and
air-fuel mixtures to provide effi-
cient power with minimum air
pollution.

As another example, con-
sider airline safety: How do we
rapidly, conveniently, and accu-
rately determine whether a
given piece of baggage contains
an explosive device? A thorough
hand-search of each piece of
luggage is out of the gquestion.
Scientists are now developing a
screening procedure that bom-
bards the luggage with high-

A poflution control officer measuring
the oxygen content of river water.

energy particles that cause any substance pre-
sent to emit radiation characteristic of that sub-
stance. This radiation is monitored to identify
luggage with unusually large quantities of ni-
trogen, because most chemical explosives are
based on compounds containing nitrogen.

Scientists are also examining the natural
world to find supersensitive detectors because
many organisms are sensitive to tiny amounts of
chemicals in their environments—recall, for ex-
ample, the sensitive noses of bloodhounds. One
of these natural measuring devices uses the sen-
sory hairs from Hawaiian red swimming crabs,
which are connected to electrical analyzers and
used to detect hormones down to levels of
1078 g/L. Likewise, tissues from pineapple cores
can be used to detect tiny amounts of hydrogen
peroxide.

These types of advances in measuring de-
vices have led to an unexpected
problem: detecting all kinds of
substances in our food and
drinking water scares us. Al-
though these substances were
always there, we didn’t worry so
much when we couldn’t detect
them. Now that we know they
are present what should we do
about them? How can we assess
whether these trace substances
are harmful or benign? Risk as-
sessment has become much
more complicated as our so-
phistication in taking measure-
ments has increased.

TR

3

| Some Examples of Commonly Used Units
A dime is 1 mm thick.

A quarter is 2.5 cm in diameter.
The average height of an adult man is 1.8 m.

A nickel has a mass of about 5 g.

A 120-1b woman has a mass of about 55 kg.

A 12-0z can of soda has a volume of about 360 mL.

A half gallon of milk is equal to about 2 L of milk.

22



COBJECTIVES:

Every measurement has some
degree of uncertainty.

23

2.4 Uncertainty in Measurement

Uncertainty in Measurement

To understand how uncertainty in a measurement arises. * To learn to
indicate a measurement’s uncertainty by using significant figures.

When vou measure the amount of
something by counting, the mea-
sufement is exact. For example, if
you asked your friend to buy four ap-
ples from the store and she came
back with three or five apples, you
would be surprised. However, mea-
surements are not always exact. For
example, whenever a measurement
is made with a device such as a ruler
or a graduated cylinder, an estimate
is required. We can illustrate this by
measuring the pin shown in Figure
2.5a. We can see from the ruler that
the pin is a little Jonger than 2.8 cm
and a little shorter than 2.9 cm. Be-
cause there are no graduations on the
ruler between 2.8 and 2.9, we must
estimate the pin’s length between 2.8
and 2.9 cm. We do this by imagining
that the distance between 2.8 and 2.9
is broken into 1G equal divisions (Fig-
ure 2.5b) and estimating to which division the end of the pin reaches. The
end of the pin appears to come about halfway between 2.8 and 2.9, which
corresponds to 5 of our 10 imaginary divisions. S0 we estimate the pin’s length
as 2.85 cm. The result of our measurement is that the pin is approximately
2.85 am in length, but we had to rely on a visual estimate, so it might actu-
ally be 2.84 or 2.86 cin.

Because the last number is based on a visual estimate, it may be dif-
ferent when another person makes the same measurement. For example, if
five different people measured the pin, the results might be

A student performing a titration in the
lahoratory.

Person Result of Measurement
1 2.85 cm
2 2.84 cm
3 2.86 cm
4 2.85 cm
5 2.86 cm

Note that the first two digits in each measurement are the same re-
gardless of who made the measurement; these are called the certain num-
bers of the measurement. However, the third digit is estimated and can vary;
it is called an wncertain number. When one is making a measurement, the
custom is to record all of the certain numbers plus the first uncertain num-
ber. ft would not make any sense to try to measure the pin to the third dec-
imal place (thousandths of a centimeter), because this ruler requires an es-
timate of even the second decimal place (hundredths of a centimeter).

It is very important to realize that a mweasurement always has some
degree of uncertainty. The uncertainty of a measurement depends on the

land Picture Litrarg/Alamy

Antleaw Lambert/Le
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The length is between
2.8 cm and 2.9 cm.

Imagine that the distance

between 2.8 and 2.9 is

|
divided into 10 equal parts. E‘W__
The end of the pin occurs |

after about 5 of these
divisions.

OBIECTIVE:

)

ey

~.

|
;

Measuring a pin.

measuring device. For example, if the ruler in Figure 2.5 had marks indi-
cating hundredths of a centimeter, the uncertainty in the measurement of
the pin would occur in the thousandths place rather than the hundredths
place, but some uncertainty would still exist.

The numbers recorded in a measurement (all the certain numbers plus
the first uncertain number) are called significant figures. The number of
significant figures for a given measurement is determined by the inherent un-
certainty of the measuring device. For example, the ruler used to measure the
pin can give results only to hundredths of a centimeter. Thus, when we record
the significant figures for a measwement, we automatically give information
about the uncertainty in a measurement. The uncertainty in the last number
{the estimated number) is usually assumed to be =1 unless otherwise indi-
cated. For example, the measurement 1.86 kilograms can be interpreted as
1.86 £ 0.01 kilograms, where the symbol = means plus ¢r minus. That is, it
could be 1.86 kg — 0.01 kg = 1.85 kg or 1.86 kg + 0.01 kg = 1.87 kg,

Significant Figures

To learn to determine the number of significant figures in a calculated
result.

We have seen that any measurement involves an estimate and thus is un-
certain to some extent. We signify the degree of certainty for a particular
measurement by the number of significant figures we record.

Because doing chemistry requires many types of caiculations, we must
consider what happens when we do arithmetic with numbers that contain
uncertainties. It is important that we know the degree of uncertainty in the
final result. Although we will not discuss the process here, mathematicians
have studied how uncertainty accumulates and have designed a set of rules



' MATH SKILL BUILDER
Leading zeros are never significant
figures.

MATH SKILL BUILDER
Captive zeros are always significant
figures.

MATH SKILL BUILDER
Trailing zeros are sometimes signifi-
cant figures.

| MATH SKILL BUILDER
Exact numbers never limit the
number of significant figures in
a calculation,

| MATH SKILL BUILDER
Significant figures are easily indi-
cated by scientific notation.

) | Counting Sigﬁiﬁcant Fig.ures

2.5 Significant Figures 25

to determine how many significant figures the result of a calculation should
have. You should follow these rules whenever you carry out a calculation.
The first thing we need to do is learn how to count the significant figures
in a given number. To do this we use the following rules:

1. Nonzero integers. Nonzero integers afways count as significant figures. For
example, the number 1457 has four nonzero integers, all of which count as
significant figures.

2. Zeros. There are three classes of zeros:

a. Leading zeros are zeros that precede all of the nonzero digits. They
never count as significant figures. For example, in the number 0.0025,
the three zeros simply indicate the position of the decimal point. The
number has only two significant figures, the 2 and the 5.

b. Captive zeros are zeros that fall between nonzero digits. They afways
count as significant figures. For example, the number 1.008 has four
significant figures.

¢. Trailing zeros are zeros at the right end of the number. They are
significant only if the number is written with a decimal point. The
number one hundred written as 100 has only one significant figure, but
written as 100., it has three significant figures.

3. Exact numbers. Often calculations involve numbers that were not obtained
using measuring devices but were determined by counting: 10 experiments,
3 apples, 8 molecules. Such numbers are called exact numbers. They can be
assumed to have an unlimited number of significant figures. Exact numbers
can also arise from definitions. For example, 1 inch is defined as exactly
2.54 centimeters. Thus in the statement 1 in. = 2.54 cm, neither 2.54 nor
1 limits the number of significant figures when it is used in a calculation.

Rules for counting significant figures also apply to numbers written
in scientific notation. For example, the number 100. can also be written
as 1.00 X 10%, and both versions have three significant figures. Scientific
notation offers two major advantages: the number of significant figures
can be indicated easily, and fewer zeros are needed to write a very large or
a very small number. For example, the number 0.000060 is much more
conveniently represented as 6.0 X 107, and the number has two signifi-
cant figures, written in either form.

Give the number of significant figures for each of the following measurements.
a. A sample of orange juice contains 0.0108 g of vitamin C.

b. A forensic chemist in a crime lab weighs a single hair and records its
mass as 0.0050060 g.

¢. The distance between two points was found to be 5.030 x 10 ft.
d. In yesterday's bicycle race, 110 riders started but only 60 finished.
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SOLUTION

a. The number contains three signiticant figures. The zeros to the left
of the 1 are leading zeros and are not significant, but the remaining
zero (& captive zero) is significant.

b. The number contains five significant figures. The leading zeros {to
the left of the 5) are not significant. The captive zeros between the
5 and the 6 are significant, and the trailing zero to the right of the
6 is significant because the number contains a decimal point.

¢. This number has four significant figures. Both zeros in 5.030 are
significant.

d. Both numbers are exact (they were obtained by counting the riders).
Thus these numbers have an unlimited number of significant
figures.

These rules reflect the way
calculators round off.

EXERCISE 2.2 Give the number of significant figures for each of the ¥0110wing measure-

ments.
a. 0.00100 m
b. 2.0800 X 10° L
c. 480 Corvettes
See Problems 2.33 and 2.34. @

Rounding Off Numbers

When you perform a calculation on vour calculator, the number of digits
displayed is usually greater than the number of significant figures that the
result should possess. 50 you must “round off” the number (reduce it to
fewer digits). The rules for rounding off follow.

" Rules for Rounding Off

1. If the digit to be removed

a. is less than 5, the preceding digit stays the same. For example, 1.33
rounds to 1.3.

b. is equal to or greater than 5, the preceding digit is increased by 1. For
example, 1.36 rounds to 1.4, and 3.15 rounds to 3.2.

2. In a series of calculations, carry the extra digits through to the final resuit
and then round off.* This means that you should carry-all of the digits that
show on your calculator until you arrive at the final number (the answer)
and then round off, using the procedures in Rule 1.

We need to make one more point about rounding off to the correct
number of significant figures. Suppose the number 4.348 needs to be

*This practice will not be [ollowed in the worked-out examples in this text, because we
want to show the correct number of significant figures in each step of the example.
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Do not round off sequentially. The

| number 6.8347 rounded to three
significant figures is 5.83, not 6.84.

2.5 Significant Figures 27

rounded to two significant figures. In doing this, we look only at the first
number to the right of the 3:

4.348
T

Look at this

number to round off

to two significant figures.
The number is rounded to 4.3 because 4 is less than 5. It is incorrect to
round sequentially. For example, do #ot round the 4 to 5 to give 4.35 and
then round the 3 to 4 to give 4.4.

When rounding off, use only the first number to the right of the last sig-

nificant figure.

Determining Significant Figures in Calculations

Next we will learn how to determine the correct number of significant fig-
ures in the result of a calculation. To do this we will use the following
rules.

1. For multiplication or division, the number of significant figures in the result
is the same as that in the measurement with the smaflest number of
significant figures. We say this measurement is fimiting, because it limits
the number of significant figures in the result. For example, consider this
calculation:

456 X 14  =6384 6.4
Three Limiting {two Twao significant

significant  significant figures) figures
figures

Because 1.4 has only two significant figures, it limits the result to two
significant figures. Thus the product is correctly written as 6.4, which has

e 835
twao significant figures. Consider another example. In the division T
how many significant figures should appear in the answer? Because 8.315
has four significant figures, the number 298 (with three significant figures)
limits the result. The calculation is correctly represented as

Four
significant
figures
8.315
Tt = 0.0279027 |Roundoff > 2.79 X 1072
298
Limiting (three Result Three
significant shown on significant
figures) calculator figures

{(continued)
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MATH SKILL BUILDER 2. For addition or subtraction, the limiting term is the one with the smallest

if you need help in using your number of decimal places. For example, consider the following sum:
calculator, see the Appendix. 12.11

18.0  Limiting term [has one decimal place)

1.013
31.123 311
. i

One decimal place

Why is the answer limited by the term with the smallest number of decimal
places? Recall that the last digit reported in a measurement is actually an
uncertain number. Although 18, 18.0, and 18.00 are treated as the same
quantities by your calculator, they are different to a scientist. The problem
above can be thought of as follows:

12.11? mL
18.077 mL
1.013 mL
311727 mL

Because the term 18.0 is reported only to the tenths place, our answer must be
reported this way as well.
The correct result is 31.1 (it is limited to one decimal place because 18.0
has only one decimal place). Consider another example:

0.6875

—0.1 _ Limiting term (one decimal place)

(.5875
Round off > 0.6

Note that for multiplication and division, significant figures are counted. For ad-
dition and subtraction, the decimal places are counted.

Now we will put together the things you have learned about signifi-
cant figures by considering some mathematical operations in the following
examples.

) | Counting Significant Figures in Calculations

Without performing the calculations, tell how many significant figures each
answer should contain.

a. S5.19 b. 1081 — 7.25 c. 2.3 x3.14
1.9 :
+0.842 d. the total cost of 3 boxes of candy at $2.50 a box
SOLUTION

a. The answer will have one digit after the decimal place. The {imiting
number is 1.9, which has one decimal place, so the answer has two
significant figures.

b. The answer will have no digits after the decimal point. The number
1081 has no digits to the right of the decimal point and limits the
result, so the answer has four significant figures,
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When we multiply and divide in a
problem, perform all calculations
before rounding the answer o
the correct nurnber of significant
 figures.

| MATH SKILL BUILDER

When we multiply {or divide) and
then add (or subtract) in a prob-
lem, round the first answer from
the first operation {in this case,
multiplication} before performing
the next operation (in this case,

| addition}. We need to know the

| carrect number of decimal places.

EXERCISE 2.3
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¢. The answer will have two significant figures because the number 2.3

has only two significant figures (3.14 has three).

d. The answer will have three significant figures. The limiting factor is
2.50 because 3 (boxes of candy) is an exact number.

| Calculations Using Significant Figures

(3.60 x 107%)(8.123)

Carry out the following mathematical operations and give each resulf to
the correct number of significant figures.

a. 5.18 x 0.0208 d. 116.8 — 0.33
b. (3.60 X 107%) X (8.123) = 4.3  e. (1.33 X 2.8) + 8.41
c. 21 + 13.8 + 130.36

SOLUTION

Limiting terms Round to this digit.

l

. 518 X 0.0208 = 0.107744 0.108

The answex should contain three significant figures because each
numbesr being multiplied has three significant figures (Rule 1). The
7 i3 rounded to 8 because the following digit is greater than 5.

Round to this digit.

= 6.8006 x ‘3|:> 8 x 1073
43 6.8006 X 10 6.8
1

Limiting term

Because 4.3 has the least number of significant figures (two), the
result should have two significant figures (Rule 1).

21 In this case 21 is limiting (there are no digits
13.8 after the decimal point). Thus the answer must

+130.36 have no digits after the decimal peint, in ac-

165.16 E> 165  cordance with the rule for addition (Rule 2).

116.8 Because 116.8 has only one decimal place, the
0.33 answer must have only cne decimal place
116.47 E#> 116.5 (Rule 2). The 4 is rounded up tc 5§ because the
digit to the right (7} is greater than 5.

. 1.33 X 28 =3.724 ‘::> 3.7 3.7 — Limiting term

Note that in this case we multiplied and then rounded the result to the cor-
rect number of significant figures before we performed the addition so that
we would know the correct number of decimal places.

Give the answer for each calculation tc the correct number of significant
figures.

a. 12.6 x Q.53
b. (12.6 X 0.53) — 4.59
c. (25.36 ~ 4.15) + 2.317 See Problems 2.47 through 2.52. &
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OBIECTIVE:

MATH SKILL BUILDER
Since 1 dozen = 12, when

. 12
we multiply by 1 dozen’

are multiplying by 1. The unit
"dozen” cancels.

! | English—Metric and
English—English Equivalents

Length 1m=1.094yd
2,54 cm = 1 in.
1 mi = 5280. ft
1 mi = 1760. yd

Mass 1kg=22051
4536g=11b

Volume 1L =1.06qt
1ft=2832L

Problem Solving and
Dimensional Analysis

To fearn how dimensional analysis can be used to solve various types of
problems,

Suppose that the boss at the store where you work on weekends asks you
to pick up 2 dozen doughnuts on the way to work. However, you find that
the doughnut shop sells by the doughnut. How many doughnuts do you
need?

This “problem” is an example of something you encounter all the time:
converting from cne unit of measurement to ancther. Examples of this oc-
cur in cocking (The recipe calls for 3 cups of cream, which is sold in pints.
How many pints do I buy?); traveling (The purse costs 250 pesos. How much
is that in dollars?); sports (A recent Tour de France bicycle race was 3215 kilo-
meters long. How many miies is that?); and many other areas.

How do we convert from one unit of measurement to another? Let’s
explore this process by using the doughnut problem.

2 dozen doughnuts = ? individual doughnuts

where ? represents a number you don’t know yet. The essential informa-
tion you must have is the definition of a dozen:

1 dozen = 12

You can use this information to make the needed conversion as follows:

Z dozen doughnuts X = 24 donghnuis

1 dozen
You need to buy 24 doughnuts.
Note two important things about this process.

12
1. The factor ——— is a conversion factor based on the definition of
1 dozen

the term dozen. This conversion factor is a ratio of the two parts of
the definition of a dozen given above.

2. The unit “dozen” itself cancels.

Now let’s generalize a bit. Te change from one unit to another we will
use a conversion factor.

Unit; X conversion factor = Unit,

The conversion factor is a ratio of the two parts of the statement that
relates the two units. We will see this in more detail on the following pages.

Earlier in this chapter we considered a pin that measured 2.85 cm in
length. What is the length of the pin in inches? We can represent this prob-
lem as

2.85 cm — 7 in.

The question matk stands for the number we want to find. To solve this
problem, we must know the relationship between inches and centimeters.
In Table 2.7, which gives several equivalents between the English and met-
ric systems, we find the relationship

2.54 cm = 1 in.
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Units cancel just as numbers do.

MATH SKILL BUILDER
When you finish a calculation,
always check to make sure that
the answer makes sense.

| MATH SKILL BUILDER
When exact numbers are used in
a calculation, they never limit the
number of significant digits.
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This is called an equivalence statement. In other words, 2.54 ¢cm and
1 in. stand for exactly the same distance. (See Figure 2.1.) The respective num-
bers are different because they refer to different scales (units} of distance.

The equivalence statement 2.54 cm = 1 in. can lead to either of two
conversion factors:

2.54 cm or 1in.
| 155 2.54 cm

Note that these conversion factors are ratios of the two parts of the equivalence
statement that rejates the two units. Which of the two possible conversion
factors do we need? Recall our problem:

285 an = ?in.
That is, we want to convert from units of centimeters to inches:
2.85 cm X conversion factor = 7 in.
We choose a conversion factor that cancels the units we want fo discard and leaves
the units we wast in the result. Thus we do the conversion as follows:
lin. _ 2.85in.
2.54 cm 2.54

285¢cm X = 1.12 in.

Note two important facts about this conversion:

1. The centimeter units cancel] to give inches for the result. This is
exactly what we had wanted to accomplish. Using the other

2.54 cm
conversion factor (2.85 cm X W) would not work because

the units would not cancel to give inches in the result.

2. As the units changed from centimeters to inches, the number
changed from 2.85 to 1.12. Thus 2.85 cm has exactly the same value
(is the same length) as 1.12 in. Notice that in this conversion, the
number decreased from 2.85 to 1.12. This makes sense because the
inch is a larger unit of length than the centimeter is. That is, it takes
fewer inches to make the sarne length in centimeters.

The result in the foregoing conversicn has three significant figures as
required. Caution: Noting that the term 1 appears in the conversion, you
might think that because this number appears to have only one significant
figure, the result should have only one significant figure. That is, the an-
swer should be given as 1 in. rather than 1.12 in. However, in the equiva-
lence statement 1 in. = 2.54 cm, the 1 is an exact number (by definition).
In other words, exactly 1 in. equals 2.54 cm. Therefore, the 1 does not limit
the number of significant digits in the result.

We have seen how to convert from centimeters to inches. What about
the reverse conversion? For example, if a pencil is 7.00 in. long, what is its
length in centimeters? In this case, the conversion we want to make is

700 in. — 7?7 cm

What conversion factor do we need to make this conversion?

Remember that two conversion factors can be derived from each equiv-
alence statement. In this case, the equivalence statement 2.54 cm =1 in.
gives

2.54 cm 1 in.
) = or o
1in. 2.54 em
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Consider the direction of the
required change in order to
select the correct conversion
factor.

Again, we choose which factor to use by locoking at the direction of the re-
quired change. For us to change from inches to centimeters, the inches must
cancel. Thus the factor

2.54 cm
1:in.

is used, and the conversion is done as follows;

5] : o
7.00 in. X :'—'13—4 jm = (7.00)(2.54) com = 17.8 cm

Here the inch units cancel, leaving centimeters as required.

Note that in this conversion, the number increased (from 7.00 to 17.8).
This makes sense because the centimeter is a smaller unit of length than
the inch. That is, it takes more centimeters to make the same length in
inches. Always take a moment to think about whether your answer makes sense.
This will help you aveid errors.

Changing from one unit to another via conversion factors (based on
the equivalence statements between the units) is often called dimensional
analysis. We will use this method throughout our study of chemistry.

We can now state some general steps for doing conversions by di-
mensional analysis.

Step 1 To convert from one unit to another, use the equivalence statement
that relates the two units. The conversion factor needed is a ratio of
the two parts of the equivalence statement.

Step 2 Choose the appropriate conversion factor by looking at the direction
of the required change (make sure the unwanted units cancel).

Step 3 Multiply the quantity to be converted by the conversion factor to give
the quantity with the desired units.

Step 4 Check that you have the correct number of significant figures.

Step 5 Ask whether your answer makes sense.

We will now illustrate this procedure in Example 2.6.

| Conversion Factors: One-Step Problems I

An Italian bicycle has its frame size given as 62 cm. What is the frame size
in inches?
SOLUTION
We can represent the problem as
62 cm = 7 in.
In this problem we want to convert from centimeters to inches.
62 cm X conversion factor = ? in.
Step 1 To convert from centimeters to inches, we need the equivalence
statement 1 in. = 2.54 cm. This leads to two conversion factors:
1in. 2.54 ¢cm
— — d = :
2.54 ¢m I in.
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Step 2 In this case, the direction we want is

Centimeters — inches

. 1in. ..
so we need the conversion factor > 54cm’ We know this is the one we want

because using it will make the units of centimeters cancel, leaving units of
inches.

Stép 3 The conversion is carried out as follows:

I in.
Zem X ———— =24 in.
6 2.54 cm !
Step 4 The result is limited to two significant figures by the number 62.
The centimeters cancel, leaving inches as required.

Step 5 Note that the number decreased in this conversion. This makes
sense; the inch is a larger unit of length than the centimeter.

EXERCISE 2.4 Wine is often bottled in 0.750-L containers. Using the appropriate equiva-
lence statement from Table 2.7, calculate the volume of such a wine bottle
in quarts.

See Problems 2.59 and 2.60. &

Next we will consider a conversion that requires several steps.

7D | Conversion Factors: Multiple-Step Problems

The length of the marathon race is approximately 26.2 mi. What is this dis-
tance in kilometess?

SOLUTION
The problem before us can be represented as follows:
26.2 mi =7 km

We could accomplish this conversion in several different ways, but because
Table 2.7 gives the equivalence statements 1 mi= 1760 yd and 1 m =
1.094 yd, we will proceed as follows:

Miles — yards — meters — kilometers

This process will be carried out one conversion at a time to make sure every-
thing is clear.

MILES — YARDS: We convert from miles to yards using the conversion
1760 yd

factor
1 mi

1760 vd
26.2 yff > 180

L~ 46,112 vd
1 pi Y

Result shown
on calculator

46,112 yd |Round off > 46,100 yd = 4.61 X 10* yd
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MATH SKILL BUILDER
Remember that we are rounding
off at the end of each step to show
the correct number of significant
figures. However, in doing a multi-
step calculation, you should retain
the extra numbers that show on
your caleuiator and round off only
at the end of the calculation.

Units provide a very valuable
check on the validity of your
solution. Always use them,

OBJECTIVES:

EXERCISE 2.5

Chapter 2 Measurements and Calculations

YARDS — METERS:
is ——1 m
1.094yvad’

The conversicn factor used to convert vards to meters

1m

— =421 x 10t
1.094y€f 4.213894 m

4.61 X 10* yd x

Result shown
on calculator

4213894 x 10* m |Roundoff > 4.21 X 10* m

METERS — KILOMETERS: Because 1000 m = 1 km, or 10° m = 1 km, we
convert from meters to kilometers as follows:

1 km
=421 x 10 km
10% mi

= 42.1 km

Thus the marathon {26.2 mi) is 42.1 km.
Once you feel comfortable with the conversion process, you can com-
bine the steps. For the above conversion, the combined expression is

421 X 10* m x

miles — yards — meters — kilometers

176Oyr51>< 1, ><11<m
1 pi 1.094yd ~ 10° m

Note that the units cancel to give the required kilometers and that the
result has three significant figures.

= 42,1 km

26.2 il X

Racing cars at the Indianapolis Motor Speedway now routinely travel around

the track at an average speed of 225 mi/h. What is this speed in Kilometers
per hour?

See Problems 2.65 and 2.66. B

Recap: Whenever you work problems, remember the following points:

1. Always include the units (a measurement always has two parts: a
number and a unit).

2. Cancel units as you carry out the calculations.

3. Check that your final answer has the correct units. If it doesn’t, you
have done something wrong.

4. Check that your final answer has the correct number of significant
figures.

5. Think about whether your answer makes sense.

Temperature Conversions: An Approach
to Problem Solving

To learn the three temperature scales. ® To learn to convert from one
scale to another. ® To continue to develop problem-solving skills.



Although 373 K is often stated
as 373 degrees Kelvin, it is more
correct to say 373 kelvins.

Thermometers based on the
three temperature scales in
£ ice water and [ boiling water.
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When the doctor tells you your temperature is 102 degrees and the weath-
erperson on TV says it will be 75 degrees tomorrow, they are using the
Fahrenheit scale. Water boils at 212 °F and freezes at 32 °F, and normal
body temperature is 98.6 °F (where °F signifies “Fahrenheit degrees”). This
temperature scale is widely used in the United States and Great Britain, and
it is the scale employed in most of the engineering sciences. Another tem-
perature scale, used in Canada and Europe and in the physical and life sci-
ences in most countries, is the Celsius scale. In keeping with the metric
system, which is based on powers of 10, the freezing and boiling points of
water on the Celsius scale are assigned as O °C and 100 °C, respectively. On
both the Fahrenheit and the Celsius scales, the unit of temperature is called
a degree, and the symbol for it is followed by the capital letter represent-
ing the scale on which the units are measured: °C or °E

Still another temperature scale used in the sciences is the absolute
or Kelvin scale. On this scale water freezes at 273 K and boils at 373 K.
On the Kelvin scale, the unit of temperature is called a kelvin and is sym-
bolized by K. Thus, on the three scales, the boiling point of water is stated
as 212 Fahrenheit degrees (212 °F), 100 Celsius degrees (100 °C), and
373 kelvins (373 X).

The three temperature scales are compared in Figures 2.6 and 2.7. There
are several important facts you should note.

1. The size of each temperature unit (each degree} is the same for
the Celsius and Kelvin scales. This follows from the fact that the
differenice between the boiling and freezing points of water is
100 units on both of these scales.

2. The Fahrenheit degree is smaller than the Celsius and Kelvin units.
Note that on the Fahrenheit scale there are 180 Fahrenheit degrees
between the boiling and freezing points of water, as compared with
100 units on the other two scales.

3. The zero points are different on all three scales.

Ice Water Boiling Water

°F °C K °F °C K
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The threa major temperature
scales.

Boiling points will be discussed
further in Chapter 14.

In solving problems, it is often
helpful to draw a diagram that
depicts what the words are
telling you.

Fahrenheit Celsius Kelvin
) o (@]
@ ‘ 2
ey ? ] i
Boiling point | E 912 OF e — 100 °C —— et 373 K
_ of water [ 180 il '
Fahrenheit | | 190 ge““és | 100 kelvins ‘
Freezing pOil‘lt I& dEg[eesn §____ 32 °F ,,i. ' E "-‘ 273K
of water f g oF ;“: ~18°C '»“ 255 K
| : '.
i1l I
|l ﬂ
L ~460 °F 273 oc LoK
j \u[
I U

In your study of chemistry, you will sometimes need to convert from
one temperature scale to another. We will consider in some detail how this
is done. In addition to learning how to change temperature scales, you
should also use this section as an opportunity to further develop your skKills
in problem selving.

Converting Between the Kelvin and Celsius Scales

it is relatively simple to convert between the Celsius and Kelvin scales be-
cause the temperature unit is the same size; only the zero points are dif-
ferent. Because 0 °C corresponds to 273 K, converting from Celsius to Kelvin
requires that we add 273 to the Celsius temperature. We will illustrate this
procedure in Example 2.8,

' Temperature Conversion: Celsius to Kelvin ,

The boiling point of water at the top of Mt. Everest is 70. °C. Convert this
temperature to the Kelvin scale. (The decimal point after the temperature
reading indicates that the trailing zero is significant.)

SOLUTION

This problem asks us to find 70. °C in units of kelvins. We can represent
this preblem simply as

70.°C=7K

In doing problems, it is often helpful to draw a diagram in which we try
to represent the words in the problem with a picture. This problem can be
diagramed as shown in Figure 2.8a.

In this picture we have shown what we want to find: “What temper-
ature (in kelvins) is the same as 70. °C?” We also know from Figure 2.7 that
0 °C represents the same temperature as 273 K. How many degrees above
0 °C is 70. °C? The answer, of course, is 70. Thus we must add 70. to 0 °C
to reach 70. °C. Because degrees are the same size on both the Celsius scale



measured on the Kelvin scale.
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i A A A
',- | |
——! 70 °C——-—- —— 7K 70 C——— 7K
: [
| ii 70 Celsius degrees 70 kelvins
1 0.C —-——m 273 K H 0 °C——————- 1273k
l i
; a
i i
;' il
i bk
475 YAt b Y W
? I
| W '“ IH
We know 0 °C =273 K. There are 70 degrees on the Celsius scale between
We want to know 0 °C and 70. °C. Because units on these scafes are
70.°C=2K. the same size, there are also 70 kelvins in this same

distance on the Kelvin scale.

and the Kelvin scale (see Figure 2.8b), we must also add 70. to 273 K (same
temperature as 0 °C) to reach ? K. That is,

?K=273+70.=343 K

Thus 70. °C corresponds to 343 K.
Note that to convert from the Celsius to the Kelvin scale, we simply
add the temperature in °C to 273. That is,

TUC + 273 = TK
Temperature Temperature
in Celsius in kelvins

degrees

Using this formula to solve the present problem gives
70. + 273 =343

{with units of kelvins, K), which is the correct answer. B

We can summarize what we learned in Example 2.8 as follows: to convert
from the Celsius to the Kelvin scale, we can use the formula

TOC + 273 = TK
Temperature Temperature
in Celsius in kelvins

degrees

Temperature Conversion: Kelvin to Celsius

Liquid nitrogen boils at 77 K. What is the boiling point of nitrogen on the
Celsius scale?

SOLUTION

The problem to be solved here is 77 K =7 °C. Let's explore this question
by examining the picture on the following page representing the two
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Tiny Thermometers

Can you imagine a thermometer that has a di-
ameter equal to one one-hundredth of a human
hair? Such a device has actually been produced
by scientists Yihica Gao and Yoshio Bando of
the National Institute for Materials Science in
Tsukuba, Japan. The thermometer they con-
structed is so tiny that it must be read using a
powerful electron microscope.

It turns cut that the tiny thermometers were
produced by accident. The Japanese scientists
were actually trying to make tiny (nanoscale)
gallium nitride wires. However, when they ex-

amined the results of their experiment, they dis- 400~ ® Increase Temperature
covered tiny tubes of carbon atoms that were v
f : . . e Decrease Temperature .
filled with elemental gallium. Because galliumis g
i 300 - Average . .

a liquid over an unusually large temperature £ | »
range, it makes a perfect working liquid for a £ 200- - 2
thermometer. Just as in mercury thermometers, | ,_,--" s
which have mostly been phased out because of 2 1g¢ - =T :
the toxicity of mercury, the gallium expands as - o""" =
the temperature increases. Therefore, gallium 0 =
moves up the tube as the temperature increases. - E

These minuscuie thermometers are not use- L. ARG A T g
ful in the normal macroscopic world—they can’t 100 200 300 4;,00 500 -
even be seen with the naked eye. However, they Temperature { C) 3

should be valuable fa:c)r monit_orir_\g temperatures  quid gaflium expands within a carbon nanotube as the
from 50 °C to 500 °C in materials in the nanoscale temperature increases (left to right).

world.

w

L
o

temperature scales. One key point is to recognize that 0 °C =273 K. Also
note that the difference between 273 K and 77 XK is 196 kelvins
(273 — 77 = 196). That is, 77 K is 196 kelvins below 273 K. The degree size
i is the same on these two temperature scales, so 77 K must correspond to
196 Celsius degrees below zero or —196 °C. Thus 77 K=7 *C = —196 °C.
T 0 °Cmmmm — 273 K We can also solve this problem by using the formula

Toc + 273 = T‘K

However, in this case we want to solve for the Celsius temperature,
77K T.c. That is, we want to isolateT:c on one side of the equals sign. To do this
we use an important general principle: doing the same thing on both sides of
the equals sign preserves the equality. In other words, it's always okay to per-
form the same operation on both sides of the equals sign.

38
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Remember, it's okay to do the

| same thing to both sides of the

| equation.
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To isolate T.- we need to subtract 273 from both sides:

Toc + 273 - 273 = TK - 273
t i

Sum is zero
to give
Te = Ty — 273
Using this equation to solve the problem, we have
Too =Ty — 273 =77 — 273 = -196
So, as before, we have shown that
77K = —196 °C

Which temperature is colder, 172 K or =75 °C?
See Problems 2.73 and 2.74. &

In summasy, because the Kelvin and Celsius scales have the same size
unit, to switch from one scale to the other we must simply account for the
different zero points. We must add 273 to the Celsius temperature 1o ob-
tain the temperature on the Kelvin scale:

TI( = Toc + 273

To convert from the Kelvin scale to the Celsius scale, we must subtract 273
from the Kelvin temperature:

Toc = Ty —273
Converting Between the Fahrenheit and Celsius Scales

The conversion between the Fahrenheit and Celsius temperature scales re-
quires two adjustments:

1. For the different size units

2. For the different zero points

To see how to adjust for the different unit sizes, consider the diagram in
Figure 2.9. Note that because 212 °F = 100 °C and 32 °F = 0 °C,

212 — 32 = 180 Fahrenheit degrees = 100 — 0 = 100 Celsius degrees
Thus
180. Fahrenheit degrees = 100. Celsius degrees
Dividing both sides of this equation by 100. gives

130. 180.
— it =—= ius degr
100, Fahrenheit degrees 160, Celsius degrees

or
1.80 Fahrenheit degrees = 1.00 Celsius degree

The factor 1.80 is used to convert from one degree size to the other.
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Note that 28 °C is approxi-
mately equal to 82 °F. Because
the numbers are just reversed,
this is an easy reference point
to remember for the two scales.

e o
@) e

A}

212 °F ll_ 1100 °C —— Boiling point
[ 1 il
L1180 L1100
|  Fahrenheit [| Celsius
| || degrees | | | degrees
J32°F ;' } OeC Freezing point

Comparisan of the Celsius and Fahrenheit scales.

Next we have to account for the fact that 0 °C is not the same as 0 °F.
In fact, 32 °F = 0 °C. Although we will not show how to derive it, the equa-
tion to convert a temperatitie in Celsius degrees to the Fahrenheit scale is

Tp = 180(T:0) + 32
Va
Temperature Temperature
in °F in °C

In this equation the term 1.80(T::) adjusts for the difference in degree size
between the two scales. The 32 in the equation accounts for the different
zero points. We will now show how to use this equation.

| Temperature Conversion: Celsius to Fahrenheit

On a summer day the temperature in the laboratory, as measured on a lab
thermometer, is 28 °C. Express this temperature on the Fahrenheit scale.

SCGLUTION

This problem can be represented as 28 °C = 7 °F. We will solve it using the
formula

Ty = 1.80 (To¢) + 32

In this case,

Te
i)
Tp=7°F = 1.80(28) + 32 = 504 + 32
Rounds
off to 50
=50.+32=82

Thus 28 °C=82°F &
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| Temperature Conversion: Celsius to Fahrenheit

Express the temperature ~40. °C on the Fahrenheit scale.

SOLUTION
We can express this problem as —40. °C = ? °E To solve it we will use the
formula
" T = 1.80 (Toe) + 32
In this case,

Te
}
Tor = 2 °F = 1.80(—40.) + 32
= —72 +32=—40

So —40 °C = —40 °F. This is a very interesting result and is another useful
reference point.

EXERCISE 2.7 Hot ﬁJbs are often maintained at 41 °C. What is this temperature in Fahren-

heit degrees?

See Problems 2.75 through 2.78. B

To convert from Celsius to Fahrenheit, we have used the equation
Top = 180 (o) + 32
To convert a Fahrenheit temperature to Celsius, we need to rearrange this
equation to isolate Celsius degrees (T:-}). Remember, we can always do the
same operation to both sides of the equation. First subtract 32 from each
side:
Top — 32 = 1.80 (Toe) + 32 — 32
¥ T
Sum is zero
to give
Tep — 32 = 1.80{T+c)
Next divide both sides by 1.80
Top — 32 N JASﬁ(TC'C)

1.80 180
to give
Tep — 32
=t T
1.80 “
or
Temperature
(\ in °F
T =32
T 180
~ Temperature
in *C
e — 32
o Te-32

1.80
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EXERCISE 2.8

OBJECTIVE:

Lead has a greater density than
feathers.

"EXAMPLE 2.12 ]

\ Temperature Conversion: Fahrenheit to Celsius

One of the body’s responses to an infection or injury is to elevate its tem-
perature. A certain flu victim has a body temperature of 101 °F. What is this
temperature on the Celsius scale?

SOLUTION
The problem is 101 °F = ? °C. Using the formula
Top — 32
Te =180

yields

T

101 — 32 69

Tor = 7°C = - -
¢z ¢ 1.80 180 >0

That is, 101 °F = 38 °C.

An antifreeze solution in a car’s radiator boils at 239 °F What is this tem-
perature on the Celsius scale?

See Problems 2.75 through 2.73. &

In doing temperature conversicns, yvou will need the following formulas,

Celsius to Kelvin Te = Toe + 273

e Kelvin to Celsius Tor = Ty — 273

» Celsius to Fahrenheit Toe = 1.80{7:¢) + 32
. ) Top — 32

« Fahrenheit to Celsius e = —
T SR

Density

To define density and its units.

When you were in elementary school, you may have been embarrassed by
your answer to the question “Which is heavier, a pound of lead or a pound
of feathers?” If you said lead, you were undoubtedly thinking about den-
sity, not mass. Density can be defined as the amount of matter present in
a given volume of substance. That is, density is mass per unit volume, the
ratio of the mass of an object to its volume:

mass
volume

Density =

It takes a much bigger volume to make a pound of feathers than to
make a pound of lead. This is because lead has a much greater mass per
unit volume—a greater density.



The most common units for
density are g/mL = g/icm’.

"EXAMPLE 2.13

"EXAMPLE 2.14 ]

2.8 Density 43

The density of a liquid can be determined easily by weighing a known
volume of the substance as illustrated in Example 2.13.

i

Calculating Density

l

FDetermining Density

Suppose a student finds that 23.50 mL of a certain liquid weighs 35.062 g.
What is the density of this liguid?

SOLUTION
We can calculate the density of this liquid simply by applying the definition

mass _ 35.062 g
volume  23.50 mL

Density = = 1.492 g/mL

This result could also be expressed as 1.492 g/cm® because 1 mL =1 cm®. m

The volume of a solid object is often determined indirectly by sub-
merging it in water and measuring the volume of water displaced. In fact,
this is the most accurate methoed for measuring a person’s percent boedy fat.
The person is submerged momentarily in a tank of water, and the increase
in volume is measured (see Figure 2.10). It is possible to calculate the body
density by using the person’s weight (mass) and the volume of the person’s
body determined by submersion. Fat, muscle, and bone have different den-
sities (fat is less dense than muscle tissue, for example), so the fraction of
the person’s body that is fat can be calculated. The more muscle and the
less fat a person has, the higher his or her body density. For example, a
muscular person weighing 150 1b has a smaller body volume (and thus a
higher density) than a fat person weighing 150 Ib.

1
|

1

At a local pawn shop a student finds a medallion that the shop owner insisis
is pure platinum. However, the student suspects that the medallion may ac-
tually be silver and thus much less valuable. The student buys the medallion
only after the shop owner agrees to refund the price if the medallion is

lIIIllIJJIlJ

0 Y

-

|

|
=

|

i

Tank of water Person submerged in the tank,
raising the level of the water
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returned within twe days. The student, a chemistry major, then takes the
medallion to her lab and measures its density as follows. She first weighs the
medallion and finds its mass to be 55.64 g. She then places some water in a
graduated cylinder and reads the volume as 75.2 mL. Next she drops the medal-
lion into the cvlinder and reads the new volume as 77.8 mL. Is the medallion
platinum (density = 21.4 g/am’®) or silver (density = 10.5 g/cm?)?

SCLUTION

The densities of platinum and silver differ so much that the measured den-
sity of the medallion will show which metal is present. Because by definition

mass
volume

Density =

to calculate the density of the medallion, we need its mass and its volume.
The mass of the medallion is 55.64 g. The volume of the medallion can be
obtained by taking the difference between the volume readings of the wa-
ter in the graduated cylinder before and after the medallion was added.

Volume of medallion = 77.8 mL — 75.2 mL = 2.6 mL

The volume appeared to increase by 2.6 mL when the medallion was added,
50 2.6 mL represents the volume of the medallion. Now we can use the
measured mass and volume of the medallion to determine its density:
mass _ 55.64 g
volume 2.6 mL

Density of medallion = =21 g/mL

or
= 21 g/cm?

The medallion is really platinum.

A student wants to identify the main component in a commercial liquid
cleaner. He finds that 35.8 mL of the cleaner weighs 28.1 g. Cf the follow-
ing possibilities, which is the main component of the cleaner?

EXERCISE 2.9

Substance Density, g/cm?
chloroform 1.483
diethyl ether 0.714
isopropyl alcchol 0.785
toluene 0.807

See Problems 2.89 and 2.90. &

| Using Density in Calculations I

GCOIFED

Mercury has a density of 13.6 g/mL. What volume of mercury must be taken
to obtain 225 g of the metal?

SOLUTION
To solve this problem, start with the definition of density,

mass
volume

Density =

and then rearrange this equation to isclate the required quantity. In this
case we want to find the volume. Remember that we maintain an equality



Spherical droplets of mercury, a
very dense liquid.

A hydrometer being used to
determine the density of the
antifreeze solution in a car's
radiator.
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when we do the same thing to both sides. For example, if we multiply both
sides of the density definifion by volume,

mass

Volume X density = volutrie X yoluriie

volume cancels on the right, leaving
Volume X density = mass

Werwant the volume, so we now divide both sides by density,

Volume X densify  mass

density " density
fo give
Volume = &S_S
density
Now we can solve the problem by substituting the given numbers:
225 g
Vol =———=16. L
olume 13.6 g/mL 6.5 m

We must take 16.5 mL of mercury to obtain an amount that has a mass of
225g.m

The densities of various common substances are given in Table 2.8.

Besides being a toof for the identification of substances, density has many
other uses. For example, the liquid in your car’s lead storage battery (a solu-
tion of sulfuric acid) changes density because the sulfuric acid is consumed as
the battery discharges. In a fully charged battery, the density of the selution
is about 1.30 g/cm?®. When the density falls below 1.20 g/cm?, the battery has
to be recharged. Density measurement is also used to determine the amount
of antifreeze, and thus the level of protection against freezing, in the cooling
system of a car. Water and antifreeze have different densities, so the measured
density of the mixture tells us how much of each is present. The device used
to test the density of the solution—a hydrometer—is shown in Figure 2.11.

DG Densities of Various Common Substances at 20 °C
Substance Physical State Density (gfem?)
oxygen gas 0.00133*
hydrogen gas 0.000084*
ethanol liquid 0.785
benzene liguid 0.880
water liquid 1.000
magnesium solid 1.74
salt (sodium chloride) solid 2.16
aluminum solid 2.70
iron solid 7.87
copper solid 8.96
silver solid 10.5
lead solid 11.34
mercury liquid 13.6
gold solid 19.32

*At 1 atmosphere pressure



