Extensions of Mendelian Genetics

(CHAPTER 4- Brooker Text)

Dec 4 & 6, 2007
BIO 184
Dr. Tom Peavy

Lethal Alleles

• **Essential genes** are those that are absolutely required for survival
 – The absence of their protein product leads to a lethal phenotype

• **Nonessential genes** are those not absolutely required for survival

• A **lethal allele** is one that has the potential to cause the death of an organism
 – These alleles are typically the result of mutations in essential genes
 – They are usually inherited in a recessive manner
Some lethal alleles exert their effect later in life

= Late age of onset

e.g. Huntington disease (progressive degeneration of the nervous system, dementia and early death; onset between 30-50 yrs old)

• **Conditional lethal alleles** may kill an organism only when certain environmental conditions prevail
 – **Temperature-sensitive (ts) lethals**
 • A developing *Drosophila* larva may be killed at 30 C
 • But it will survive if grown at 22 C

• **Semilethal alleles**
 – Kill some individuals in a population, not all of them
 – Environmental factors and other genes may help prevent the detrimental effects of semilethal genes

• In a simple dominant/recessive relationship, the recessive allele does not affect the phenotype of the heterozygote
 – So how can the wild-type phenotype of the heterozygote be explained?

• There are two possible explanations
 – 1. 50% of the normal protein is enough to accomplish the protein’s cellular function
 – 2. The heterozygote may actually produce more than 50% of the functional protein
 • The normal gene is “up-regulated” to compensate for the lack of function of the defective allele
Incomplete Dominance

- In **incomplete dominance** the heterozygote exhibits a phenotype that is intermediate between the corresponding homozygotes

- Example:
 - Flower color in the four o’clock plant
 - Two alleles
 - $C^R = \text{wild-type allele for red flower color}$
 - $C^W = \text{allele for white flower color}$

<table>
<thead>
<tr>
<th>Genotype</th>
<th>PP</th>
<th>Pp</th>
<th>pp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of functional protein P</td>
<td>100%</td>
<td>50%</td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Purple</th>
<th>Purple</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple dominant/ recessive relationship</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In this case, 50% of the C^p protein is not sufficient to produce the red phenotype.

Example of Lethality and Incomplete Dominance

Creeper chicken = shortened legs and creep along
this is a incomplete dominant trait
heterozygotes are Creeper individuals
but homozygote condition is lethal

What are the phenotypic ratios of the following crosses?
Creeper x Normal
Creeper x Creeper
Multiple Alleles (3 or more alleles)

- An interesting example is coat color in rabbits
 - Four different alleles
 - C (full coat color)
 - c^{ch} (chinchilla pattern of coat color)
 - Partial defect in pigmentation
 - c^h (himalayan pattern of coat color)
 - Pigmentation in only certain parts of the body
 - c (albino)
 - Lack of pigmentation
 - The dominance hierarchy is as follows:
 - $C > c^{ch} > c^h > c$
• The himalayan pattern of coat color is an example of a temperature-sensitive conditional allele

 – The enzyme encoded by this gene is functional only at low temperatures
 • Therefore, dark fur will only occur in cooler areas of the body
 • This is also the case in the Siamese pattern of coat color in cats
 • Refer to Figures 4.4c and 4.5

• The ABO blood group provides another example of multiple alleles

 • It is determined by the type of antigen present on the surface of red blood cells
 – Antigens are substances that are recognized by antibodies produced by the immune system

 • There are three different types of antigens found on red blood (Table 4.3)
 – Antigen A, which is controlled by allele \(I^A \)
 – Antigen B, which is controlled by allele \(I^B \)
 – Antigen O, which is controlled by allele \(i \)
Allele i is recessive to both I^A and I^B

Alleles I^A and I^B are codominant

- They are both expressed in a heterozygous individual

For safe blood transfusions to occur, the donor’s blood must be an appropriate match with the recipient’s blood

For example, if a type O individual received blood from a type A, type B or type AB blood

- Antibodies in the recipient blood will react with antigens in the donated blood cells (= agglutination and clogging)
Overdominance

- **Overdominance** is the phenomenon in which a heterozygote is more vigorous than both of the corresponding homozygotes
 - It is also called **heterozygote advantage**

- **Example = Sickle-cell anemia**
 - Autosomal recessive disorder
 - Affected individuals produce abnormal form of hemoglobin
 - Two alleles
 - \(Hb^A \) → Encodes the normal hemoglobin, hemoglobin A
 - \(Hb^S \) → Encodes the abnormal hemoglobin, hemoglobin S

- \(Hb^S Hb^S \) individuals have red blood cells that deform into a sickle shape under conditions of low oxygen tension
 - This has two major ramifications
 - 1. Sickling phenomenon greatly shortens the life span of the red blood cells
 - Anemia results
 - 2. Odd-shaped cells clump
 - Partial or complete blocks in capillary circulation

 - Thus, affected individuals tend to have a shorter life span than unaffected ones
• The sickle cell allele has been found at a fairly high frequency in parts of Africa where malaria is found
 – How come?

• Malaria is caused by a protozoan, *Plasmodium*
 – This parasite undergoes its life cycle in two main parts
 • One inside the *Anopheles* mosquito
 • The other inside red blood cells
 – Red blood cells of heterozygotes, are likely to rupture when infected by *Plasmodium sp.*
 • This prevents the propagation of the parasite

• Therefore, *Hb\(^A\)Hb\(^S\)* individuals are “better” than
 – *Hb\(^S\)Hb\(^S\)*, because they do not suffer from sickle cell anemia
 – *Hb\(^A\)Hb\(^A\)*, because they are more resistant to malaria