DNA Replication

(CHAPTER 11- Brooker Text)

Sept 16 & 18, 2008
BIO 184
Dr. Tom Peavy

Sequence Complexity in the Genome

60-70% of human DNA fragments are unique DNA sequences
What are the structural features of DNA that enable its function?

- complementarity of DNA strands (AT/GC)
- The two DNA strands can come apart
- Each serves as a template strand for the synthesis of new strands
- Template strand also encodes for RNA

Figure 11.1

(a) The mechanism of DNA replication
(b) The products of replication
Which Model of DNA Replication is Correct?

- In the late 1950s, three different mechanisms were proposed for the replication of DNA
 - Conservative model
 - Both parental strands stay together after DNA replication
 - Semiconservative model
 - The double-stranded DNA contains one parental and one daughter strand following replication
 - Dispersive model
 - Parental and daughter DNA are interspersed in both strands following replication

Figure 11.2
Dispersive hypothesis

Meselson and Stahl Experiment (1958)

- Differentiated between the 3 different replication mechanisms by experimentally distinguishing daughter from parental strands

- Method
 - Grow *E. coli* in the presence of 15N (a heavy isotope of Nitrogen) for many generations
 - The population of cells had heavy-labeled DNA
 - Switch *E. coli* to medium containing only 14N (a light isotope of Nitrogen)
 - Collect sample of cells after various times
 - Analyze the density of the DNA by centrifugation using a CsCl gradient
Figure 11.3
Interpreting the Data

After ~ two generations, DNA is of two types: “light” and “half-heavy”
This is consistent with only the semi-conservative model

After one generation, DNA is “half-heavy”
This is consistent with both semi-conservative and dispersive models
• Overview
 – DNA synthesis begins at a site termed the **origin of replication**
 • Each bacterial chromosome has only one
 – Synthesis of DNA proceeds **bidirectionally** around the bacterial chromosome
 – The replication forks eventually meet at the opposite side of the bacterial chromosome
 • This ends replication
Figure 11.6

- DNA helicase separates the two DNA strands by breaking the hydrogen bonds between them.
- This generates positive supercoiling ahead of each replication fork.
 - DNA gyrase travels ahead of the helicase and alleviates these supercoils.
- Single-strand binding proteins bind to the separated DNA strands to keep them apart.
- Then short (10 to 12 nucleotides) RNA primers are synthesized by DNA primase.
 - These short RNA strands start, or prime, DNA synthesis.
 - They are later removed and replaced with DNA.
DNA Polymerases

- DNA polymerases are the enzymes that catalyze the attachment of nucleotides to make new DNA

- DNA pol I
 - Composed of a single polypeptide
 - Removes the RNA primers and replaces them with DNA

- DNA pol III
 - Composed of 10 different subunits
 - The complex of all 10 is referred to as the DNA pol III holoenzyme
 - It is the workhorse of replication
The Reaction of DNA Polymerase

- DNA polymerases catalyzes a phosphodiester bond between the
 - Innermost phosphate group of the incoming deoxynucleoside triphosphate
 - AND
 - 3'-OH of the sugar of the previous deoxynucleotide
- In the process, the last two phosphates of the incoming nucleotide are released
 - In the form of pyrophosphate (PPi)
The two new daughter strands are synthesized in different ways

- **Leading strand**
 - One RNA primer is made at the origin
 - DNA pol III attaches nucleotides in a 5' to 3' direction as it slides toward the opening of the replication fork

- **Lagging strand**
 - Synthesis is also in the 5' to 3' direction
 - However it occurs away from the replication fork
 - Many RNA primers are required
 - DNA pol III uses the RNA primers to synthesize small DNA fragments (1000 to 2000 nucleotides each)
 - These are termed Okazaki fragments after their discoverers
• **DNA pol I** removes the RNA primers and fills the resulting gap with DNA
 – It uses its 5’ to 3’ exonuclease activity to digest the RNA and its 5’ to 3’ polymerase activity to replace it with DNA

• After the gap is filled a covalent bond is still missing

• **DNA ligase** catalyzes a phosphodiester bond
 – Thereby connecting the DNA fragments

Figure 11.7

- Breaks the hydrogen bonds between the two strands
- Alleviates supercoiling
- Synthesizes an RNA primer
- Covalently links DNA fragments together
- Keeps the parental strands apart
- Synthesizes daughter DNA strands
- Replication fork
-Leading strand
(Logging strand)
- DNA ligase
- Direction of fork movement
Termination of Replication

- Opposite to oriC is a pair of termination sequences called ter sequences.
- A termination protein binds to these sequences.
 - It can then stop the movement of the replication forks.
- DNA replication ends when oppositely advancing forks meet (usually at T1 or T2).
- DNA replication often results in two intertwined molecules.
 - Intertwined circular molecules are termed catenanes.
 - These are separated by the action of topoisomerases.
Figure 11.12

Proofreading Mechanisms

• DNA replication exhibits a high degree of **fidelity**
 – Mistakes during the process are extremely rare
 • DNA pol III makes only one mistake per 10^8 bases made

• There are several reasons why fidelity is high
 – 1. Instability of mismatched pairs
 – 2. Configuration of the DNA polymerase active site
 – 3. Proofreading function of DNA polymerase
Proofreading Mechanisms

1. Instability of mismatched pairs
 – Complementary base pairs have much higher stability than mismatched pairs
 – This feature only accounts for part of the fidelity
 • It has an error rate of 1 per 1,000 nucleotides

2. Configuration of the DNA polymerase active site
 – DNA polymerase is unlikely to catalyze bond formation between mismatched pairs
 – This induced-fit phenomenon decreases the error rate to a range of 1 in 100,000 to 1 million

Proofreading Mechanisms

3. Proofreading function of DNA polymerase
 – DNA polymerases can identify a mismatched nucleotide and remove it from the daughter strand
 – The enzyme uses its 3’ to 5’ exonuclease activity to remove the incorrect nucleotide
 – It then changes direction and resumes DNA synthesis in the 5’ to 3’ direction
Bacterial DNA Replication is Coordinated with Cell Division

• Bacterial cells can divide into two daughter cells at an amazing rate
 – *E. coli* → 20 to 30 minutes
 – Therefore it is critical that DNA replication take place only when a cell is about to divide

• Bacterial cells regulate the DNA replication process by controlling the initiation of replication at *oriC*

Eukaryotic DNA Replication

(CHAPTER 11- Brooker Text)
EUKARYOTIC DNA REPLICATION

• Eukaryotic DNA replication is not as well understood as bacterial replication
 – The two processes do have extensive similarities,
 • The bacterial enzymes discussed have also been found in eukaryotes
 – Nevertheless, DNA replication in eukaryotes is more complex
 • Large linear chromosomes
 • Tight packaging within nucleosomes
 • More complicated cell cycle regulation

Multiple Origins of Replication

• Eukaryotes have long linear chromosomes
 – They therefore require multiple origins of replication
 • To ensure that the DNA can be replicated in a reasonable time

• DNA replication proceeds bidirectionally from many origins of replication
Telomeres and DNA Replication

- Linear eukaryotic chromosomes have telomeres at both ends
- The term telomere refers to the complex of telomeric DNA sequences and bound proteins
- Telomeric sequences consist of
 - Moderately repetitive tandem arrays
 - 3’ overhang that is 12-16 nucleotides long
Figure 11.23

- Telomeric sequences typically consist of
 - Several guanine nucleotides
 - Often many thymine nucleotides
 - Differ between species

Figure 11.24

- DNA polymerases possess two unusual features
 - 1. They synthesize DNA only in the 5’ to 3’ direction
 - 2. They cannot initiate DNA synthesis
- These two features pose a problem at the 3’ end of linear chromosomes
• The linear chromosome becomes progressively shorter with each round of DNA replication if not solved

• Solution= adding DNA sequences to the ends of telomeres

• Requires a specialized mechanism catalyzed by the enzyme telomerase (e.g. stem cells, cancer)

• Telomerase contains protein and RNA
 – The RNA is complementary to the DNA sequence found in the telomeric repeat (binds to the 3’ overhang)