CVP Analysis

Uses of the Contribution Format

The contribution income statement format is used as an internal planning and decision making tool. This approach is useful for:

- 1. Cost-volume-profit analysis
- 2. Budgeting
- 3. Segmented reporting of profit data
- 4. Special decisions such as pricing and make-orbuy analysis

The Contribution Format

Comparison of the Contribution Income Statement with the Traditional Income Statement

Traditional Approach (costs organized by function)

Less cost of goods sold **Gross margin**

Sales

Less operating expenses

Net operating income

\$100,000

70,000

\$ 30,000

20,000

10,000

Contribution Approach (costs organized by behavior)

Sales

\$100,000

Less variable expenses

60,000

Contribution margin

\$ 40,000

Less fixed expenses

30,000

Net operating income

10,000

Used primarily for external reporting.

Used primarily by management.

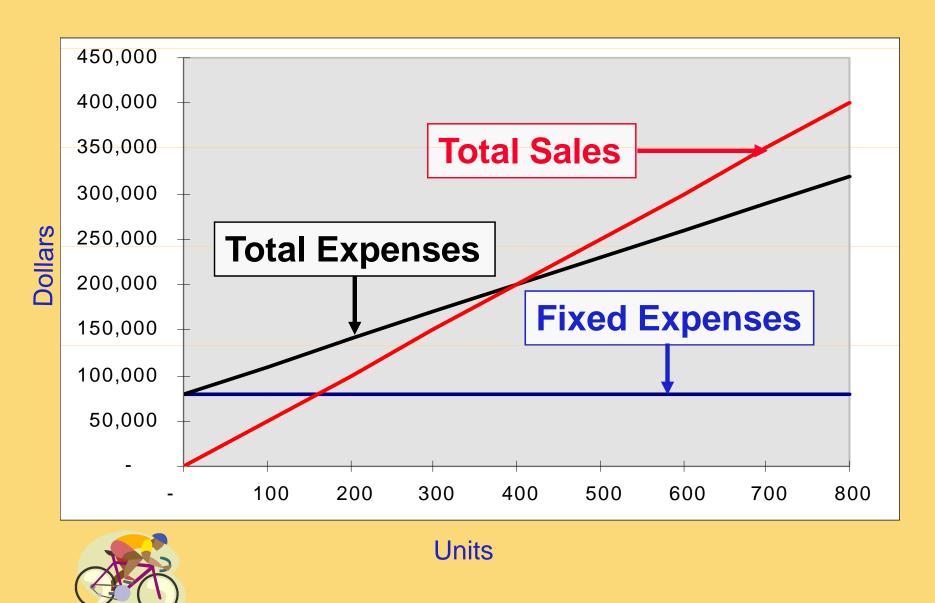
The Contribution Format

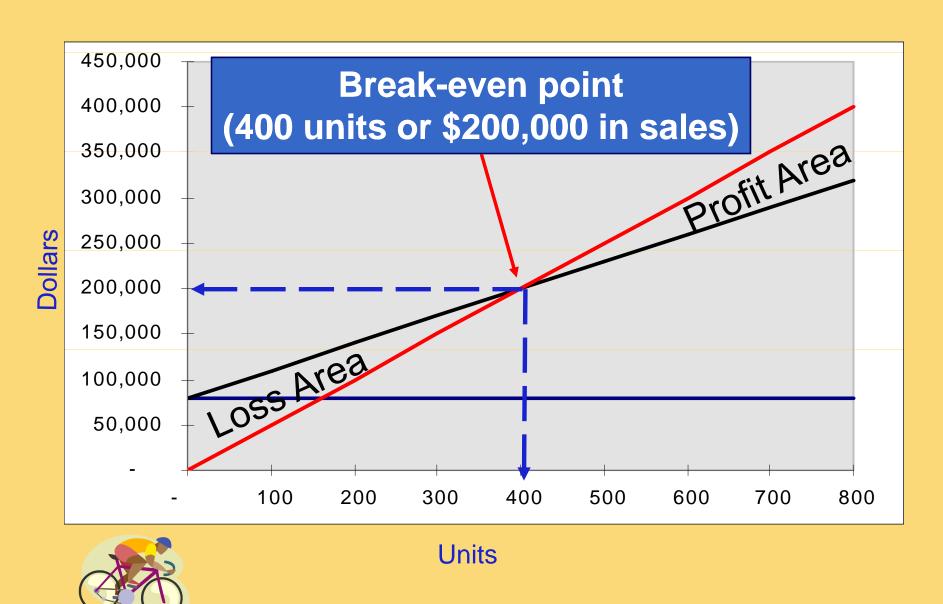
	Total	Unit
Sales Revenue	\$100,000	\$ 50
Less: Variable costs	60,000	30
Contribution margin	\$ 40,000	\$ 20
Less: Fixed costs	30,000	
Net operating income	\$ 10,000	

The contribution margin format emphasizes cost behavior. Contribution margin covers fixed costs and provides for income.

COST-VOLUME-PROFIT ANALYSIS

<u>%</u>	<u>I/S</u>	Bike	Bikes	Bikes
	Sales			
	Variable Costs			
	Contribution Margin			
	Fixed Costs			
	Net Income			
<u>%</u>	<u>I/S</u>	Bikes	Bikes	Bikes
	Sales			
	Variable Costs			
	Contribution Margin			
	Fixed Costs			
	Net Income			5


CVP Relationships in Graphic Form


The relationship among revenue, cost, profit and volume can be expressed graphically by preparing a CVP graph. Racing developed contribution margin income statements at 300, 400, and 500 units sold. We will use this information to prepare the CVP graph.

			Income 500 units
\$ 150,000	\$	200,000	\$250,000
90,000		120,000	150,000
\$ 60,000	\$	80,000	\$100,000
80,000		80,000	80,000
\$ (20,000)	\$	-	\$ 20,000
\$	90,000 \$ 60,000 80,000	300 units 4 \$ 150,000 \$ 90,000 \$ \$ 60,000 \$ 80,000	300 units 400 units \$ 150,000 \$ 200,000 90,000 120,000 \$ 60,000 \$ 80,000 80,000 80,000

CVP Graph

CVP Graph

Contribution Margin Ratio

The contribution margin ratio is:

$$CM Ratio = \frac{Total CM}{Total sales}$$

For Racing Bicycle Company the ratio is:

Each \$1.00 increase in sales results in a total contribution margin increase of 40¢.

Contribution Margin Ratio

Or, in terms of units, the contribution margin ratio is:

$$CM Ratio = \frac{Unit CM}{Unit selling price}$$

For Racing Bicycle Company the ratio is:

Contribution Margin Ratio

	400 Bikes	500 Bikes
Sales	\$200,000	\$250,000
Less: variable expenses	120,000	150,000
Contribution margin	80,000	100,000
Less: fixed expenses	80,000	80,000
Net operating income	\$ -	\$ 20,000

A \$50,000 increase in sales revenue results in a \$20,000 increase in CM. $($50,000 \times 40\% = $20,000)$

Break-Even Analysis

Here is the information from Racing Bicycle Company:

	Total	Pe	r Unit	Percent
Sales (500 bikes)	\$250,000	\$	500	100%
Less: variable expenses	150,000		300	60%
Contribution margin	\$100,000	\$	200	40%
Less: fixed expenses	80,000			
Net operating income	\$ 20,000			

Contribution Margin Method

The contribution margin method has two key equations.

Break-even point in units sold

Fixed expenses

CM per unit

Break-even point in total sales dollars

= Fixed expenses
CM ratio

Contribution Margin Method

Let's use the contribution margin method to calculate the break-even point in total sales dollars at Racing.

Break-even point in total sales dollars = Fixed expenses CM ratio

$$\frac{$80,000}{40\%}$$
 = \$200,000 break-even sales

Target Profit Analysis

Suppose Racing Bicycle Company wants to know how many bikes must be sold to earn a profit of \$100,000.

The Contribution Margin Approach

The contribution margin method can be used to determine that 900 bikes must be sold to earn the target profit of \$100,000.

Unit sales to attain the target profit =

Fixed expenses + Target profit

CM per unit

$$\frac{\$80,000 + \$100,000}{\$200/\text{bike}} = 900 \text{ bikes}$$

The margin of safety is the excess of budgeted (or actual) sales over the break-even volume of sales.

Margin of safety = Total sales - Break-even sales

Let's look at Racing Bicycle Company and determine the margin of safety.

If we assume that Racing Bicycle Company has actual sales of \$250,000, given that we have already determined the break-even sales to be \$200,000, the margin of safety is \$50,000 as shown.

	Break-even sales	Actual sales 500 units
Sales	\$ 200,000	\$ 250,000
Less: variable expenses	120,000	150,000
Contribution margin	80,000	100,000
Less: fixed expenses	80,000	80,000
Net operating income	\$ -	\$ 20,000

The margin of safety can be expressed as 20% of sales.

 $(\$50,000 \div \$250,000)$

	Break-even			
	sales	Actual sales		
	400 units	500 units		
Sales	\$ 200,000	\$ 250,000		
Less: variable expenses	120,000	150,000		
Contribution margin	80,000	100,000		
Less: fixed expenses	80,000	80,000		
Net operating income	\$ -	\$ 20,000		


The margin of safety can be expressed in terms of the number of units sold. The margin of safety at Racing is \$50,000, and each bike sells for \$500.

Margin of Safety in units = $\frac{$50,000}{$500} = 100$ bikes

A measure of how sensitive net operating income is to percentage changes in sales.

Degree of _ Contribution margin_ operating leverage = Net operating income

At Racing, the degree of operating leverage is 5.

	Actual sales
	500 Bikes
Sales	\$ 250,000
Less: variable expenses	150,000
Contribution margin	100,000
Less: fixed expenses	80,000
Net income	\$ 20,000

With an operating leverage of 5, if Racing increases its sales by 10%, net operating income would increase by 50%.

Percent increase in sales		10%
Degree of operating leverage	×	5
Percent increase in profits		50%

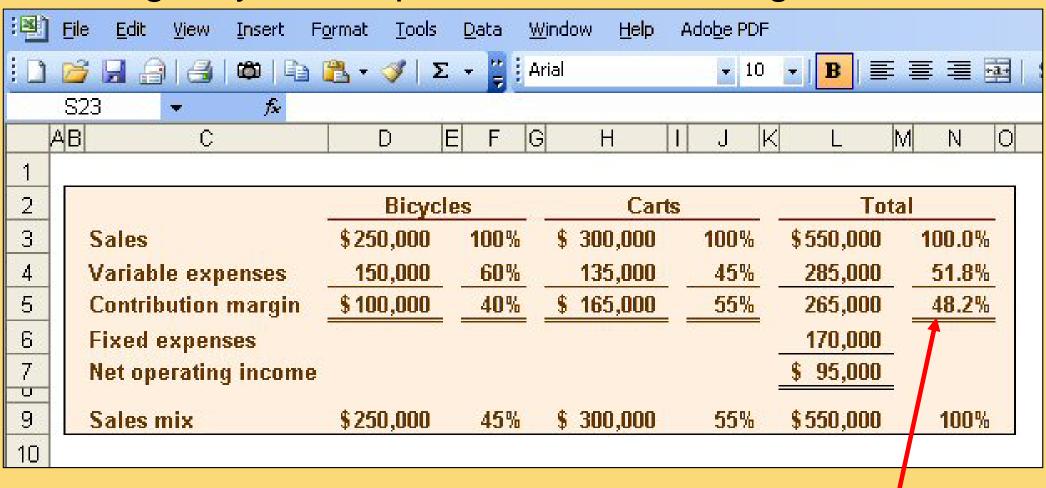
Here's the verification!

	Act	Actual sales		creased
	(500)		sa	les (550)
Sales	\$	250,000	\$	275,000
Less variable expenses		150,000		165,000
Contribution margin		100,000		110,000
Less fixed expenses		80,000		80,000
Net operating income	\$	20,000	\$	30,000

10% increase in sales from \$250,000 to \$275,000 . . .

... results in a 50% increase in income from \$20,000 to \$30,000.

The Concept of Sales Mix


- Sales mix is the relative proportion in which a company's products are sold.
- Different products have different selling prices, cost structures, and contribution margins.

Let's assume Racing Bicycle Company sells bikes and carts and that the sales mix between the two products remains the same.

Multi-product break-even analysis

Racing Bicycle Co. provides the following information:

\$265,000 = 48.2% (rounded)

Multi-product break-even analysis

Break-even sales = $\frac{\text{Fixed expenses}}{\text{CM Ratio}}$ $= \frac{\$170,000}{48.2\%}$ = \$352,697

(B)	rio raio non tocos r		SPACE TO	parales are se	ODDES ANA		
	<u>File Edit View Insert F</u>	ormat <u>T</u> ools	Street, Street, Street,		Ado <u>b</u> e PDF		
		🦺 - 🦪 Σ	+ 🚆 Aı	rial	- 10	- B	≡ ≡ ≖
	S25 ▼ f ⁄×	8 8		9 192			900 100000
	AB C	D E	FG	H 1	J K	L	M N O
1	2						
2		Bicycle	es	Carts		Tota	al
3	Sales	\$ 158,714	100%	\$ 193,983	100%	\$352,697	100.0%
4	Variable expenses	95,228	60%	87,292	45%	182,521	51.8%
5	Contribution margin	\$ 63,486	40%	\$ 106,691	55%	170,176	48.2%
6	Fixed expenses	2				170,000	
7	Net operating income			Rounding err	or 🗪	\$ 176	
9	Sales mix	\$ 158,714	45%	\$ 193,983	55%	\$352,697	₂₇ 100%

Key Assumptions of CVP Analysis

- Selling price is constant.
- Costs are linear.
- 3 In multiproduct companies, the sales mix is constant.
- In manufacturing companies, inventories do not change (units produced = units sold).

