Cost Behavior and Cost Estimation

Types of Cost Behavior Patterns

Summary of VC and FC Behavior					
Cost	In Total	Per Unit			
VC	Total VC is proportional to the activity level within the RR.	VC per unit remains the same over wide ranges of activity.			
FC	Total FC remains the same even when the activity level changes within the RR.	FC per unit goes down as activity level goes up.			

1

True Variable Costs

Direct materials is a true or proportionately VC because the total cost of direct material used during a period will vary in direct proportion to the level of production activity.

VC Per Unit Example

A VC remains constant if expressed on a per unit basis. The cost per minute talked is constant. For example, 10 cents per minute.

5

Extent of Variable Costs

The proportion of VCs differs across organizations. For example ...

A public utility with large investments in equipment will tend to have *fewer* VCs.

A manufacturing company will often have *many* VCs.

A service company will normally have a *high proportion* of VCs. A merchandising company usually will have a high proportion of VCs, like cost of sales.

Examples of Variable Costs

- 1. Merchandising companies cost of goods sold.
- 2. Manufacturing companies direct materials, direct labor, and variable overhead.
- 3. Merchandising and manufacturing companies commissions, shipping costs, and clerical costs, such as invoicing.

4. Service companies – supplies, travel, and clerical.

7

Uses of the Contribution (CM) Format

The CM income statement format is used as an internal planning and decision making tool. Uses of this approach include:

- 1. CVP analysis
- 2. Budgeting
- 3. Segmented reporting of profit data
- 4. Special decisions such as pricing and make-orbuy analysis

15

Contribution (CM) Format

Comparison of the Contribution Income Statement with the Traditional Income Statement							
Traditional Approach (costs organized by function)	Contribution Approach (costs organized by behavior)						
Sales \$ 100,000 Less CGS (product) 70,000 Gross margin \$ 30,000 Less S&A (period) 20,000 Net operating income \$ 10,000	Sales \$ 100,000 Less VC 60,000 Contribution margin \$ 40,000 Less FC 30,000 Net operating income \$ 10,000						
Used primarily for external reporting.	Used primarily by management.						

Mixed Costs Example

If your fixed monthly utility charge is \$40, your VC is \$0.03 per kwh, and your monthly activity level is 2,000 kwh, what is the amount of your utility bill?

$$Y = a + bX$$

 $Y = $40 + ($0.03 \times 2,000)$
 $Y = 100

Scattergraph Method

High-Low Method

	A	В	С	D	E	F	G
2		Month	ľv	Hours of Aaintenance		Total Maintenanc Cost	e
3		January		625		\$ 7,95	0
4		February		500		7,40	0
5		March		700		8,27	5
6		April		550		7,62	5
7		Мау		775		9,10	0
8		June		800		9,80	0
9		High Leve	1	800		\$ 9,80	0
10		Low Leve	I	500		7,40	0
11		Change		300		\$ 2,40	0
12	8		-58				

The VC per hour of maintenance is equal to the change in cost divided by the change in hours.

21

High-Low Method

Total FC = Total Cost – Total VC

Total FC = $9,800 - (8/hour \times 800 hours)$

Total FC = \$9,800 - \$6,400

Total FC = \$3,400

High-Low Method

:0			'n	🎽 🛍 •	3	/ Σ + 🚆 4	Arial
	N2	1 🚽		fx			
	А	В	С	D	E	F	G
2		Month		Hours of Maintenance		Total Maintenance Cost	
9		High Leve	I	800		\$ 9,800	
10		Low Leve	L.	500	1993	7,400	
11		Change		300		\$ 2,400	
12					28		-5.5

The Cost Equation for Maintenance Y = \$3,400 + \$8.00X

23

Regression Method

A method used to analyze mixed costs if a scattergraph plot reveals an approximately linear relationship between the X and Y variables.

This method uses *all* of the data points to estimate the fixed and variable cost components of a mixed cost.

The goal of this method is to fit a straight line to the data that *minimizes the sum of the squared errors*.

Regression Method

 Software can be used to fit a regression line through the data points.

 The cost analysis objective is the same: Y = a + bX

Regression also provides a statistic, called the R², which is a measure of the goodness of fit of the regression line to the data points.

25

Regression Method

