jump to page contentcalifornia state university, sacramento c a l i f o r n i a ' s   c a p i t a l  u n i v e r s i t yspacer

spacerTom Savage

shaded background
chemistry department | college of natural sciences and mathematics | CSUS Homespacer




Courses::Research Projects::Papers and Publications::Professional Associations


Contact Information


Assistant Professor


Sequoia 510


MWF 12:00-1:00pm or by appointment




(916) 278-3918


CSU, Sacramento
6000 J Street
Sacramento, CA 95819-6057

Fall 2008 Courses ::

  • CHEM 161 (General Biochemistry)

    Required Text:  Biochemistry: The Molecular Basis of Life, Fourth Edition, Trudy McKee and James R. McKee ISBN13: 9780195305753


  • CHEM 160A (Structure and Function of Biological Molecules)

    Required Text:  Fundamentals of Biochemistry: Life at the Molecular Level, 3rd Edition Donald J. Voet, Judith G. Voet, Charlotte W. Pratt  ISBN: 978-0-470-12930-2

Research Projects/Interests ::

Genetic engineering provides an opportunity to improve the quality of plant foods by enhancing metabolic flux towards nutritionally-important compounds such as protein, oil, carotenoids, sterols and tocopherols. While efforts to increase levels of these compounds have been moderately successful, the ability to make nutritionally-significant changes often is limited by the availability of central metabolic precursors feeding into nutrient biosynthetic pathways.  Enhancing precursor availability requires an understanding of the regulatory mechanisms controlling flux through central metabolic pathways.  One of these central pathways, glycolysis, is a series of ten reactions that serves to catabolize hexose sugars to pyruvate.  This pathway has a well-defined role to produce pyruvate for mitochondrial respiration and ATP generation, and in tissues with high biosynthetic activity (such as developing seeds), glycolysis generates 3-carbon precursors for amino acid, fatty acid, carotenoid and tocopherol biosynthesis.  Regulation of plant glycolysis is complex, both because the pathway must generate different 3-carbon precursors for mitochondrial ATP synthesis and different anabolic pathways, and because interconnected glycolytic pathways exist in two subcellular compartments, the cytosol and the plastid.  Our research focuses on the role of pyruvate kinase, the final reaction of glycolysis, in regulating glycolytic flux in the cytosol and the plastid in tissues with different biosynthetic demands.  Ultimately, we anticipate applying our understanding of pyruvate kinase regulation of glycolytic flux towards the engineering of central metabolism for enhanced nutritional quality of plant foods.

top of page

Papers and Publications ::

Recent Meeting Abstracts

Savage, T.J. (2004) Mining of plant databases: identification and transcriptional analysis of the pyruvate kinase gene family in Arabidopsis.  Poster presented to the Western Sectional Meeting of the American Society of Plant Biologists, October 22-23, 2004


Refereed Journal Articles

Phillips, M.A., Savage, T.J. and R. Croteau.  1999.  Monoterpene synthases of loblolly pine (Pinus taeda) produce pinene isomers and enantiomers. Arch Biochem Biophys 372:197-204

Wise, M.L., Savage, T.J., Katahira, E., and R. Croteau.  1998.  Monoterpene synthases from commom sage (Salvia officinalis).  cDNA isolation, characterization, and functional expression of (+)-sabinene synthase, 1,8-cineole synthase and (+)-bornyl diphosphate synthase.  J Biol Chem 273:14891-14899

Savage, T.J., Hamilton, B.S. and R. Croteau.  1996.  Biochemistry of short-chain alkanes: tissue-specific biosynthesis of n-heptane in Pinus jeffreyiPlant Physiol 110:179-186 

Savage, T.J., Ichii, H., Hume, S.D., Little, D.B. and R. Croteau.  1995.  Monoterpene synthases from gymnosperms and angiosperms: stereospecificity and inactivation by cysteinyl- and arginyl-directed modifying reagents.  Arch Biochem Biophys 320:257-265

Savage, T.J., Hatch, M.W. and R. Croteau.  1994.  Monoterpene synthases of Pinus contorta: a new class of monoterpene synthases in plants.  J Biol Chem 269:4012-4020

Lewinsohn, E., Savage, T.J. and R. Croteau.  1993.  Simultaneous monoterpene and diterpene analysis and assessment of monoterpene stereochemistry in conifer oleoresin.  Phytochemical Anal 4:220-225

Savage, T.J. and R. Croteau.  1993.  Regio- and stereochemistry of cyclopropyl ring formation in the biosynthesis of (+)-3-carene.  Arch Biochem Biophys 305:581-587

Gijzen, M., Lewinsohn, E., Savage, T.J. and R. Croteau.  1993.  Conifer monterpenes: biochemistry and bark beetle chemical ecology.  In “Bioactive Volatile Compounds from Plants” (Teranishi, R., Buttery, R.G., and H. Sugisawa, eds.), ACS Symposium Series 525, American Chemical Society, Washington DC, p. 8-22

Waring, R.H., Savage, T., Cromack, K. Jr. and C. Rose.  1992.  Thinning and nitrogen fertilization in a grand fir stand infested with western spruce budworm: part IV, an ecosystem perspective. Forest Sci 38:275-286

Savage, T.J. and R. Croteau.  1992.  Oleoresin biosynthesis in conifers: implications for biotechnology.  Naval Stores Rev 101(5):6-11

Wagschal, K., Savage, T.J. and R. Croteau.  1991.  Isotopically-sensitive branching as a tool for evaluating multiple product formation by monoterpene cyclases.  Tetrahedron 47:5933-5944

Cromack, K. Jr., Entry, J.A. and T. Savage.  1991.  The effect of disturbance by Phellinus weirii  on decomposition and nutrient mineralization in a Tsuga mertensiana forest.  Biol and Fertility of Soils  11:245-249

Lewinsohn, E., Gijzen, M., Savage, T.J. and R. Croteau.  1991.  Defense mechanisms in conifers: relationship of monoterpene cyclase activity to anatomical specialization and oleoresin monoterpene content.  Plant Physiol 96:38-43

Bormann, B.T., Tarrant, R.F., McClellan, M.H. and T. Savage.  1989.  Chemistry of rainwater and cloudwater at remote sites in Alaska and Oregon.  J Environ Qual 18:149-152


Published Patents and Patent Applications

Voelker T, Val D, Savage T (2004) Elevation of oil levels in brassica plants.  US Patent Application 20040172681

Voelker T, Val D, Savage T (2004) Elevation of fatty acid synthase levels in plants.  US Patent Application 20040121467

Laurie CC, Ravanello M, Savage  T, LeDeaux JR, Rogers JA (2004) Nucleic acid molecules associated with oil in plants.  US Patent Application 20040025202

Valentin HE, Voelker T, Zheng W, Savage TJ (2003) Metabolite transporters.  US Patent Application 20030148300

Savage TJ, Croteau RB,  Katahira EJ, Wise ML (1999)  Monoterpene synthases from common sage (Salvia officinalis)  US Patent 5891697

top of page

Professional Associations ::

American Society of Plant Biologists



last updated: 12/03/2004
spacer spacer top of page