c	HAPTER	
	6	Telecommunications and Networks

Telecommunications

- The <u>electronic</u> transmission of signals for communications, including such means as:
 - ♦ Telephone
 - ♦ Radio
 - \bullet Television
 - Computer Network

Benefits of Telecommunications

- Better Communication
 - E-mail, voice mail, faxes, teleconferencing
- Greater Efficiency
 - Workflow, concurrent access
- Better Access to Data
 - File transfer, distributed databases

Modes of Data Transfer

- Parallel
 - More than one bit at the same time
 - Printers, Processors, Motherboards
- Serial
 - One bit at a time
 - Slower, but longer distances

Modes of Data Transfer

- Simplex
 - One-way transmission
- Half-Duplex
 - One-way at a time
- Full-Duplex
 - Two-way transmission

The Concept of Networking

- Computers connected to each other so they can share data
- Before Networking: SneakerNet
 - Copy information to a floppy disk and pass it to anyone who needs it
 - Risks?

Why Network

- File Management
 Sharing, transferring
- Application Sharing
- Device Sharing
 - Printers, Storage Devices, Modems
- · Workgroup Activities
 - Scheduling, e-mail, conferencing

A Computer Network

- Hardware
 - Modems, servers, routers, NICs
- Software
 - Network operating systems
 - Communications software
- Communication Channels
 - Cabling, microwave, etc.

Networking

- Local Area Network (LAN)
 - A group of computers (physically) connected together within a certain area
- Wide Area Network (WAN)
 - A network that extends over a larger area, such as a city block or a country

Categories of Networks

- Peer-to-Peer (workgroups)
 - Typically <10 people
 - No central communication control device
 - Each computer acts as client and server
 - Inexpensive
 - Limited security
 - Uses each PC's resources
 - Windows, Windows NT/2000

Categories of Networks

- Server-based
 - Dedicated servers
 File, application, mail, fax, communication
 - Centralized, shared resources
 - Security
 - Backup
 - Thousands of users

- The server (back-end) processes the request
- Only the requested information is returned to the client
- The data is presented to the user
- Improved Performance
 - Minimizes network traffic only the information needed is transmitted

Network Terminology

- Workstation
 - · Each computer attached to the network
- Node
 - Each device attached to the network (each has a unique hexadecimal MAC - Media Access Control – address e.g. <u>08:00:69:02:01:FC</u>)
- Server
 - A central repository for information
- Topology
 - The overall configuration of the network

Network Topology

- Connecting every node to every other node would require N x (N-1)/2 cables
- Network Topology
 - A logical model that describes how networks are structured or configured.

24

- ♦ Bus
- Star ... or combinations
- Ring

The Role of Network Communications Software

- Sending data from one node to another
 - Recognize the data
 - Divide the data into manageable chunks
 - Add information to each chunk of data to identify the receiver
 - Add timing and error checking information
 - Put the data on the network and send it on its way

The OSI Model (Open Systems Interconnection)

- Describes how network hardware and software work together in a layered fashion
 - Each layer provides some service or action that prepares the data for delivery over the network
 - Requests are passed from one layer to the next
 - Each layer adds information to the data packet

The OSI Layers

- 7) Application Provides application with access to the network
- 6) Presentation Determines format used to exchange data among networked computers
- 5) Session Allows two applications to establish a connection (name recognition, security)
- Transport Ensures data is error free. Repackages long messages.
- 3) Network Addresses messages to proper location. Translates logical addresses into physical addresses and determines path.
- 2) Data Link Packages and un-packages data packets
- 1) Physical Transmits bits over physical devices

Protocols

- From the Greek *protocollon*, which was a leaf of paper glued to a manuscript volume, describing its contents
- The special set of rules that nodes in a telecommunication connection use when they communicate.
- Protocols exist at several OSI levels in a telecommunication connection.
- Both nodes must recognize and observe a protocol.

Protocols

- Rules & procedures for communicating
 - Sending Computer
 - Breaks the data into packets
 - Adds addressing information
 - Prepares the data for transmission
 - Receiving Computer
 - Takes packets off the cable
 - Strips the packets of addressing information
 - Reassembles the data form the packets

Protocols

- For two computers to communicate, they must be using the same set of protocols (rules)
- · Examples of protocols
 - SMTP Mail transfer protocol
 - FTP File transfer protocol
 - TCP/IP Internet protocol
 - IPX/SPX Novell protocol
 - Ethernet Physical layer protocol

Traffic Control

- If two computers put data onto the cable at the same time, the packets will collide and be destroyed
- There must be a way to...
 - Access the cable without running into other data
 - Be accessed by the receiving computer with assurance that it is intact

Access Methods

- Carrier-Sense Multiple Access
 - Each node checks the cable for traffic before sending
 - No node can transmit data until the cable is free (no contention)
 - If two computers transmit at the same time, they detect the collision and wait a random time to re-transmit
- Token Passing

Communication Media/Channels

- Cabling
- Microwave/Satellite
- Cellular
- Infrared
- Telephone Lines

Cabling Considerations

- Cost
- Ease of Installation & Maintenance
- Reliability
- Speed
- Distance

Distance Considerations

- Attenuation
 - Loss of signal quality & strength
 - Repeaters can extend the distance
- Packet Collisions
- Susceptibility to RF Noise

Types of Cabling Twisted Pair Wire Cable Insulated pairs of wires historically used in telephone service Category 1 – Telephones Category 3 – Up to 10Mbps Category 5 – Up to 100Mbps

Twisted Pair Details

- RF Noise
 - Twisting cancels out electrical noise
 - Shielded is less susceptible
- Crosstalk
- 10Base-T
- Maximum segment ~100 meters
- RJ-45 connectors

Types of Cabling

• Coaxial Cable (BNC)

 Consists of an inner conductor wire surrounded by insulation, called the dielectric. The dielectric is surrounded by a conductive shield, which is surrounded by a nonconductive jacket. Coaxial cable has better data transmission rate than twisted pair

Coax Details

- More resistant to interference and attenuation than TP
- Supports longer distance and faster rates
- BNC or RG6 connectors

Types of Cabling

- · Fiber-optic Cable
 - Many extremely thin fibers of glass or plastic coated with a cladding and bound together in a sheathing which transmits signals with light beams.
 - Fast transfer rates
 - Immune to electrical interference (long distances)
 - Hard to tap into
 - Takes less space

Wireless Networks

- Microwave
 - Terrestrial
 - Satellite
- Cellular
- Infrared
 - Line-of-sight

Channels and Media							
Малам	CAPACITY	VULNERABLITY TO ELECTROMAGNETIC	Cost	GUIDED/ UNGUIDED	AVABABLE		
Twisted Pair	Lower	ANTERFERENCE High	Long	Guided	Everywhen		
Coaxial Cable		Low	4	Guidel	Low		
Microwave	+	Low		Unguided	High		
Optical Fiber	Higher	Noncaistent	Higher	Guided	Most of US and parts of		

Data Communications Over Telephone Lines

- Computers generate a digital signal
- Phone circuits were designed to accommodate an analog signal

Analog Signals

- Signals of varying frequency (pitch) and amplitude (loudness)
 - Continuous (infinite number of values)
 - "Analogous" to the original data
 e.g. phone lines carry electronic signals analogous to the original voices
 - Must be amplified (repeated)
 - Signal picks up (and amplifies) noise
 Cannot differentiate between signal and noise

Digital Signals

- Signals with only two possible values
 - Discrete (fixed number of values)
 - Repeaters can clean up noise
 - Expects only "0" or "1"
- Telephones
 - Use analog over "local loop" to local phone office
 - Converted to digital for longer distances
 - + Analog wave is converted to discrete digital signals

Modulation

- Converts digital signals into analog signals
 - Frequency Modulation Vary the frequency (pitch) to express a "1" or "0"
 - Amplitude Modulation Vary the amplitude (volume) to express a "1" or "0"
- Demodulation converts them back

Synchronization

- How do analog noises get divided up into bits?
 - Asynchronous Communications
 - Sends stop bit (1) after 7-8 bits per character
 - Sends start bit (0) to indicate next character
 - Synchronous Communications
 - Splits the channel into two channels
 - Uses the second channel to send a clock

Error Detection

- Redundancy
 - Send everything twice
- Parity
 - 8th bit makes parity even or odd
- Longitudinal Redundancy Check (LRC)
 - Checks parity vertically & horizontally per block
- Checksum
 - Checks the last 7 digits of the sum of a block

Error Correction

- Automatic Repeat Request (ARQ)
 - Sender sends a block
 - Receiver ACKnowledges or...
 - Receiver sends a Negative Acknowledgement (NAK)
- Full Duplex
 - Sender keeps sending numbered blocks while awaiting acknowledgements

Finding a Path

- Circuit Switching
 - A dedicated channel (circuit) is established for the duration of the transmission (e.g. a phone call)
- Packet Switching
 - A message is divided into packets and each may take a different path (e.g. TCP/IP)
- · Dedicated Lines

Multiplexing

- Sharing Channels
 - Phone conversation has 4Khz bandwidth
 - Copper wire pair has 3Mhz bandwidth
- Allows multiple TV signals on coax
- Frequency Division Multiplexing
- Time Division Multiplexing

Carriers and Services

- Plain Old Telephone Service (POTS)
 56Kbps
- Integrated Services Digital Network (ISDN)
 128Kbps
- Digital Subscriber Line (DSL)
 - 1,544Kbps
- Cable Modem
 - Receive 256K-36Mbps; send at 64K-2Mbps
- T-1
 - 1,544Kbps (or multiples/fractions thereof)

Network Management

- Network Monitors
 - Keep track of network traffic, number of packets, packet size, collisions, retransmissions, etc.
 - Enables planning
- · Network Analyzers
 - Randomly dissects packets, analyzes problems, and determines the source

Networks and Distributed Processing

- · Centralized Processing
 - Data processing that occurs in a single location or facility.
- Decentralized Processing
 - Data processing that occurs when devices are placed at various remote locations.
- · Distributed Processing
 - Data processing that occurs when computers are placed at remote locations but are connected to each other via telecommunications devices.

