CHAPTER 6 Telecommunications and Networks		

Communications

- The transmission of a signal by way of a medium from a sender to a receiver.

Telecommunications

- The electronic transmission of signals for communications, including such means as:
- Telephone \qquad
- Radio
- Television
- Computer Network

Benefits of
 Telecommunications

- Better Communication

- E-mail, voice mail, faxes, teleconferencing
- Greater Efficiency
- Workflow, concurrent access
- Better Access to Data
- File transfer, distributed databases

Modes of Data Transfer

- Parallel
- More than one bit at the same time
- Printers, Processors, Motherboards
- Serial
- One bit at a time
- Slower, but longer distances

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- Simplex
- One- way transmission
- Half-Duplex
- One-way at a time
- Full-Duplex
- Two-way transmission

Why Network

- File Management
- Sharing, transferring
- Application Sharing
- Device Sharing
- Printers, Storage Devices, Modems
\qquad

Workgroup Activities

- Scheduling, e-mail, conferencing

A Computer Network

- Hardware
- Modems, servers, routers, NICs
- Software
- Network operating systems
- Communications software
- Communication Channels
- Cabling, microwave, etc.

Networking

- Local Area Network (LAN)
- A group of computers (physically) connected together within a certain area
- Wide Area Network (WAN)
- A network that extends over a larger area, such as a city block or a country

Categories of Networks

- Peer-to-Peer (workgroups)
- Typically <10 people
- No central communication control device
- Each computer acts as client and server
- Inexpensive
- Limited security
- Uses each PC's resources
- Windows, Windows NT/2000

Categories of Networks

- Server-based
- Dedicated servers
- File, application, mail, fax, communication
- Centralized, shared resources
- Security
- Backup
- Thousands of users

File/Application Server

- Databases (and applications) reside on the host computer (server).
- File server transfers data (and programs) to PCs on the network, where these "fat" PCs perform most of the processing.

Client/Server

Client/Server

- The client makes a request and the server fulfills it...
- The client application (front-end) requests data
- The request is sent over the network
- The server (back-end) processes the request
- Only the requested information is returned to the client
- The data is presented to the user
- Improved Performance
- Minimizes network traffic - only the information needed is transmitted

Network Terminology

- Workstation
- Each computer attached to the network
- Node
- Each device attached to the network (each has a unique hexadecimal MAC - Media Access Control - address e.g. 08:00:69:02:01:FC)
- Server
- A central repository for information
- Topology
- The overall configuration of the network

Network Topology

- Connecting every node to every other node would require $\mathrm{N} \times(\mathrm{N}-1) / 2$ cables
- Network Topology
- A logical model that describes how networks are structured or configured.
- Bus
- Star ...or combinations
- Ring

The Role of Network Communications Software

- Sending data from one node to another
- Recognize the data
- Divide the data into manageable chunks
- Add information to each chunk of data to identify the receiver
- Add timing and error checking information
- Put the data on the network and send it on its way

The OSI Model (Open Systems Interconnection)

- Describes how network hardware and software work together in a layered fashion
- Each layer provides some service or action that prepares the data for delivery over the network
- Requests are passed from one layer to the next
- Each layer adds information to the data packet

The OSI Layers

7) Application - Provides application with access to the network
8) Presentation - Determines format used to exchange data among networked computers
9) Session - Allows two applications to establish a connection (name recognition, security)
10) Transport - Ensures data is error free. Repackages long messages.
11) Network - Addresses messages to proper location. Translates logical addresses into physical addresses and determines path.
12) Data Link - Packages and un-packages data packets
13) Physical - Transmits bits over physical devices

Mail Delivery Analogy

\qquad

Data Packets

- Packets are the basic units of network communications
- Each packet has three sections:
- Header:
× An alert signal
\times Source \& destination addresses
\times Clock information
- Data
- Trailer - Error checking information

Protocols

- From the Greek protocollon, which was a leaf of paper glued to a manuscript volume, describing its contents
- The special set of rules that nodes in a telecommunication connection use when they communicate.
- Protocols exist at several OSI levels in a telecommunication connection.
- Both nodes must recognize and observe a protocol.

Protocols

- Rules \& procedures for communicating
- Sending Computer
- Breaks the data into packets
- Adds addressing information
- Prepares the data for transmission
- Receiving Computer
- Takes packets off the cable
- Strips the packets of addressing information
- Reassembles the data form the packets

Protocols

- For two computers to communicate, they must be using the same set of protocols (rules)
- Examples of protocols
- SMTP - Mail transfer protocol
- FTP - File transfer protocol
- TCP/IP - Internet protocol
- IPX/SPX - Novell protocol
- Ethernet - Physical layer protocol

Traffic Control

- If two computers put data onto the cable at the same time, the packets will collide and be destroyed
- There must be a way to...
- Access the cable without running into other data
- Be accessed by the receiving computer with assurance that it is intact

Access Methods

- Carrier-Sense Multiple Access

- Each node checks the cable for traffic before sending
- No node can transmit data until the cable is free (no contention)
- If two computers transmit at the same time, they detect the collision and wait a random time to re-transmit
- Token Passing

Communication Media/Channels

- Cabling
- Microwave/Satellite
- Cellular
- Infrared
- Telephone Lines

Cabling Considerations
• Cost
• Ease of Installation \& Maintenance
- Speed
• Distance

Distance Considerations

\qquad
\qquad

- Attenuation
- Loss of signal quality \& strength
- Repeaters can extend the distance
- Packet Collisions
- Susceptibility to RF Noise
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Cabling

- Twisted Pair Wire Cable
- Insulated pairs of wires historically used in telephone service
- Category 1 - Telephones
- Category 3 - Up to 10 Mbps
- Category 5 - Up to 100 Mbps
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Twisted Pair Details

\qquad
\qquad
\qquad
\qquad
\qquad

- 10Base-T
- Maximum segment ~ 100 meters
- RJ-45 connectors
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Coax Details

- More resistant to interference and attenuation than TP
- Supports longer distance and faster rates
- BNC or RG6 connectors

Types of Cabling

\qquad
\qquad
\qquad

- Many extremely thin fibers of glass or plastic coated with a cladding and bound together in a sheathing which transmits signals with light
\qquad beams.
- Fast transfer rates
- Immune to electrical interference (long distances)
- Hard to tap into
- Takes less space

Wireless Networks

- Microwave
- Terrestrial
- Satellite
- Cellular
- Infrared
- Line-of-sight

Channels and Media

Mrown	Cunsity	Vunvenaitr to Gek Trowncer wisherenct	Cosr	Cubed' Uncinete	Avikasut
Thissed Fair	Stiver	Ithr	Limen	Guabl	Everrwher
Coxsut Catle	1	Ion	1	Guidelt	Low
Mkxmant	7	tan	7	Unguidod	Heht
Opread hiet	Highor	Nsokihtest	tigfor	Cuikt	Nom of US and ruats of

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Data Communications Over Telephone Lines

\qquad
\qquad

- Computers generate a digital signal
- Phone circuits were designed to \qquad accommodate an analog signal

Analog Signals

- Signals of varying frequency (pitch) and amplitude (loudness)
- Continuous (infinite number of values)
- "Analogous" to the original data
- e.g. phone lines carry electronic signals analogous to the original voices
- Must be amplified (repeated)
- Signal picks up (and amplifies) noise
- Cannot differentiate between signal and noise

Digital Signals

- Signals with only two possible values
- Discrete (fixed number of values)
- Repeaters can clean up noise
- Expects only " 0 " or " 1 "
- Telephones
- Use analog over "local loop" to local phone office
- Converted to digital for longer distances
- Analog wave is converted to discrete digital signals

Modulation

- Converts digital signals into analog signals
- Frequency Modulation - Vary the frequency (pitch) to express a " 1 " or " 0 "
- Amplitude Modulation - Vary the amplitude (volume) to express a " 1 " or " 0 "
- Demodulation converts them back

Synchronization

- How do analog noises get divided up into bits?
- Asynchronous Communications
- Sends stop bit (1) after 7-8 bits per character
- Sends start bit (0) to indicate next character
- Synchronous Communications
- Splits the channel into two channels
- Uses the second channel to send a clock

Error Detection

- Redundancy
- Send everything twice
- Parity
- $8^{\text {th }}$ bit makes parity even or odd
- Longitudinal Redundancy Check (LRC)
- Checks parity vertically \& horizontally per block
- Checksum
- Checks the last 7 digits of the sum of a block

Error Correction

- Automatic Repeat Request (ARQ)

- Sender sends a block
- Receiver ACKnowledges or...
- Receiver sends a Negative Acknowledgement (NAK)
- Full Duplex
- Sender keeps sending numbered blocks while awaiting acknowledgements

Finding a Path

- Circuit Switching

- A dedicated channel (circuit) is established for the duration of the transmission (e.g. a phone call)
- Packet Switching
- A message is divided into packets and each may take a different path (e.g. TCP/IP)
- Dedicated Lines

Multiplexing

- Sharing Channels
- Phone conversation has 4 Khz bandwidth
- Copper wire pair has 3 Mhz bandwidth
- Allows multiple TV signals on coax
- Frequency Division Multiplexing
- Time-Division Multiplexing

Carriers and Services

- Plain Old Telephone Service (POTS)
- 56 Kbps
- Integrated Services Digital Network (ISDN)
- 128Kbps
- Digital Subscriber Line (DSL)
- 1,544Kbps
- Cable Modem
- Receive $256 \mathrm{~K}-36 \mathrm{Mbps}$; send at $64 \mathrm{~K}-2 \mathrm{Mbps}$
- T-1
- $1,544 \mathrm{Kbps}$ (or multiples/fractions thereof)

Network Management

- Network Monitors
- Keep track of network traffic, number of packets, packet size, collisions, retransmissions, etc.
- Enables planning
- Network Analyzers
- Randomly dissects packets, analyzes problems, and determines the source
\qquad Processing \qquad
- Centralized Processing
- Data processing that occurs in a single location or facility.
- Decentralized Processing
- Data processing that occurs when devices are placed at various remote locations.
- Distributed Processing
- Data processing that occurs when computers are placed at remote locations but are connected to each other via telecommunications devices.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

