1. Classify the reaction type for each of the following organic reactions: 2. Break the indicated bonds in both a homolytic and heterolytic fashion. Use curved arrows to illustrate electron movement and draw the expected products. For heterolytic bond breaking, there are two directions the bond can break. Draw both options and circle which is more likely. Circle all Electrophilic sites in the following compounds. 3. Circle all Nucleophilic sites in the following compounds. 4. 5. Rank each series from most reactive (1) to least reactive Electrophiles: **6.** Rank each series from most reactive (1) to least reactive Nucleophiles: 7. Identify all electrophilic sites in compound A and all nucleophilic sites in compound B. Predict a product if A and B react with each other! incomplete octet 8. For each of the following reactions there are three/four possible pathways for a reaction between a Nucleophile and an Electrophile. Draw all three pathways including curved arrows and structures of products. Then, rank the liklihood of each of the three pathways. structures of products. Then, rank the likthhood of each of the three pathways. (a) $$\stackrel{\oplus}{N}$$ + $\stackrel{\oplus}{H0}$ $\stackrel{\oplus}{N}$ 4 pathways (b) $\stackrel{\oplus}{N}$ + $\stackrel{\oplus}{H0}$ $\stackrel{\oplus}{N}$ 3 pathways (c) $\stackrel{\oplus}{N}$ + $\stackrel{\oplus}{OH}$ $\stackrel{\oplus}{CH_3}$ $\stackrel{\oplus}{N}$ 3 pathways (d) $\stackrel{\oplus}{N}$ + $\stackrel{\oplus}{OH}$ $\stackrel{\oplus}{CH_3}$ $\stackrel{\oplus}{N}$ $\stackrel{\oplus$ 9. For the following reaction between a Lewis acid and base, you can draw the curved arrows in one of two ways, starting from a lone pair or the pi bond. Draw both methods, why does it not matter how you draw it (why are they both correct)? full octet, regardance steplized church 10. For the following reaction between a Lewis acid and base, two products can be formed. Draw the two products and illustrate with curved arrows how each is formed. Which product do you think is favored? Explain. 11. Predict the products from the following curved arrows: 12. Estimate ΔG for the following reactions. What type of reaction is occurring in each step? Draw a free energy diagram for converting cyclohexene into cyclohexanol as illustrated by the two reactions in question 12 (you know how the first reaction occurs! assume the second reaction is a one step process). Assume that the second reaction is much faster than the first reaction. Label all transition states and draw all the intermediates. Also illustrate the activation energy for each step and the overall energy change. **14.** Label the following reactions as addition, elimination, substitution, or rearrangement. a. $$CH_3Br + CH_3SNa \longrightarrow H_3C'^{S}CH_3 + NaBr$$ substitution 15. For the following transformations, fill in mechanistic arrows to show the mechanism. **16.** Based on the mechanistic arrows and the starting materials shown, show the expected products for the following transformations.