Functional Groups

- Functional group collection of atoms at a site within a molecule with a common bonding pattern
- The group reacts in a typical way, generally independent of the rest of the molecule
- For example, the double bonds in simple and complex alkenes react with bromine in the same way (See Figure 3.1)

Types of Functional Groups: Multiple Carbon–Carbon Bonds

- Alkanes have only C-C and C-H single bonds
- Alkenes have a C-C double bond
- Alkynes have a C-C triple bond
- Arenes have special bonds that are represented as alternating single and double C-C bonds in a sixmembered ring

Functional Groups with Carbon Singly Bonded to an Electronegative Atom

- Alkyl halide: C bonded to halogen (C-X)
- Alcohol: C bonded O of a hydroxyl group (C—OH)
- Ether: Two C's bonded to the same O (C_O_C)
- Amine: C bonded to N (C–N)
- Thiol: C bonded to SH group (C—SH)
- Sulfide: Two C's bonded to same S (C_S_C)
- Bonds are polar, with partial positive charge on C (δ+) and partial negative charge (δ–) on electronegative atom

Groups with a Carbon–Oxygen Double Bond (Carbonyl Groups)

Bonds are polar, with partial positive charge on C (δ +) and partial negative charge on O (δ -)

	Table 3.1			
	Name	Structure*	Name ending	Example
**	Alkene (double bo	ond)	-ene	H ₂ C=CH ₂ Ethene
**	Alkyne (triple bon	-C≡C	-yne	HC≡CH Ethyne
**	Arene (aromatic r	ring)	None	Benzene
**	Halide	(X = F, Cl, Br, I)	None	CH ₃ Cl Chloromethane
**	Alcohol	C OH	- <i>o</i> l	CH ₃ OH Methanol
**	Ether	C C	ether	CH ₃ OCH ₃ Dimethyl ether
G	2007 Thomson Higher	Education		

Table 3.1 Structures of Some Common Functional Groups

Table 3.1 Structures of Some Common Functional Groups (continued)				
Name	Structure*	Name ending	Example	
Monopho	osphate	phosphate	CH ₃ OPO ₃ 2– Methyl phosphate	
Amine	C-N:	-amine	CH ₃ NH ₂ Methylamine	
Imine (Schiff bas	se)	None	NH II CH ₃ CCH ₃ Acetone imine	
Nitrile	-C≡N	-nitrile	CH ₃ C <mark>≡N</mark> Ethanenitrile	
Nitro		None	CH ₃ NO ₂ Nitromethane	
Thiol	C_SH	-thiol	CH ₃ SH Methanethiol	

....

. .

-

1.00

*The bonds whose connections aren't specified are assumed to be attached to carbon or hydrogen atoms in the rest of the molecule. © 2007 Thomson Higher Education

Nam	e	Structure*	Name ending	Example
** Sulf	ide	C S C	sulfide	CH ₃ SCH ₃ Dimethyl sulfide
Dist	ılfide	C-S S-C	disulfide	CH ₃ SSCH ₃ Dimethyl disulfide
	Carbonyl	O II C		
** Alde	ehyde	O U C H	-al	O CH ₃ CH Ethanal
** Keto	one	C C C	-0110	CH ₃ CCH ₃ Propanone
** Carl	ooxylic acid	ССОН	-oic acid	CH ₃ COH Ethanoic acid

*The bonds whose connections aren't specified are assumed to be attached to carbon or hydrogen atoms in the rest of the molecule.

© 2007 Thomson Higher Education

Organic Structure Determination

- Spectroscopy = interaction of compounds with light (a form of energy)
- E = h_v = hc/λ [v = frequency, λ = wavelength]
- IR Spectroscopy = used to identify functional groups within a compound

Absorption Spectroscopy

- Organic compound exposed to electromagnetic radiation, can absorb energy of only certain wavelengths (unit of energy)
 - Transmits energy of other wavelengths.
- Changing wavelengths to determine which are absorbed and which are transmitted produces an absorption spectrum
- Energy absorbed is distributed internally in a distinct and reproducible way

Infrared (IR) Absorption

- IR energy absorption corresponds to specific vibrational and rotational modes, such as bending and stretching of bonds
- Energy is characteristic of the atoms in the functional group and their bonding

Infrared (IR) Spectroscopy

IR energy in a spectrum is usually measured as wavenumber (cm⁻¹), the inverse of wavelength and is proportional to frequency and energy

Specific IR absorbed by organic molecule related to its bonding structure, principally its functional groups

• Wavenumber $\overline{v} = 1 / \lambda$ (cm)

Interpreting IR Spectra

- Most functional groups absorb at about the same energy and intensity independent of the molecule they are in
- Characteristic higher energy IR absorptions in Table 12.1 can be used to confirm the existence of the presence of a functional group in a molecule
- IR spectrum has lower energy region characteristic of molecule as a whole ("fingerprint" region below 1500 cm⁻¹)
- Look for "key" absorptions for functional groups, you cannot assign all of the peaks (especially fingerprint region that is unique to a compound)
 - Can only tell you what functional groups are in a compound (and what functional groups are not in compound). Cannot tell you how many or what exact structure is.

Regions of the IR Absorption Spectrum

- 4000-2500 cm⁻¹ N-H, C-H, O-H (stretching)
 - **3300-3600 N-H, O-H**
 - 3000 C-H

2500-2000 cm⁻¹ C=C and C= N (stretching)

- 2000-1500 cm⁻¹ double bonds (stretching)
 - C=O 1680-1750
 - C=C 1640-1680 cm⁻¹
- Below 1500 cm⁻¹ "fingerprint" region

Functional Group	Absorption (cm ⁻¹)	Intensity	Functional Group	Absorption (cm ⁻¹)	Intensity
runctional Group	Absorption (cm ·)	intensity	Functional Group	Absorption (cm ·)	Intensity
Alkane			Amine		
** С-Н	2850-2960	Medium	** N-H	3300-3500	Medium
Alkene			** C-N	1030-1230	Medium
** =C-H	3020-3100	Medium	Carbonyl compound		
** C=C	1640-1680	Medium	** C=0	1670-1780	Strong
Alkyne			Carboxylic acid		
** ≡C-H	3300	Strong	** O-H	2500-3100	Strong, broad
** C=C	2100-2260	Medium	Nitrile		
Alkyl halide			** C=N	2210-2260	Medium
C-CI	600-800	Strong	Nitro		
C-Br	500-600	Strong	NO ₂	1540	Strong
Alcohol			(two bands 1600 and 1500)		
** о-н	3400-3650	Strong, broad			
** C-0	1050-1150	Strong			
Arene			all values listed are for bond stretching		
** с–н	3030	Weak			
**Aromatic ring	1660-2000	Weak		e	
	1450-1600	Medium			

 Table 12.1
 Characteristic IR Absorptions of Some Functional Groups

© 2007 Thomson Higher Education

IR of Hydrocarbons

Alkanes, Alkenes, Alkynes

C-H, C-C, C=C, C=C have characteristic peaks based on bond strengths

absence helps rule out C=C or C=C

IR of Carbonyl Compounds: Aldehydes

- Strong, sharp C=O peak 1670 to 1780 cm⁻¹
- Exact absorption characteristic of type of carbonyl compound (ald, ket, ester, acid, amide, etc)
 - 1730 cm⁻¹ in saturated aldehydes
 - 1705 cm⁻¹ in aldehydes next to double bond or aromatic ring

note Aldehyde C-H stretches at 2800-2700 cm⁻¹

IR of Ketones and Esters

- 1715 cm–1 in six-membered ring and acyclic ketones
- 1750 cm–1 in 5-membered ring ketones
- 1690 cm-1 in ketones next to a double bond or an aromatic ring

- 1735 cm–1 in saturated esters
- 1715 cm–1 in esters next to aromatic ring or a double bond

IR of Acids, Amides, Anhydrides, and Acyl Halides

Carboxylic Acids:

O-H 2500-3300 cm-1 (very broad, strong)

• C=O 1710-1760 cm–1 (dimers lower, monomers higher \overline{v})

Amides:

N-H 3300-3500 cm-1 (sharp, medium, varies with # of H's)

- C=O 1690 cm-1 in saturated amides
- Anhydrides:
- C=O 1820 and 1760 cm-1 (two absorptions)
- Acyl Halides:
- C=O 1800cm-1

IR of Ketones and Acids

500

Match a structure from the list below to the IR spectrum

Match a structure from the list below to the IR spectrum

Match a structure from the list below to the IR spectrum

Propose a structure with formula C_4H_8O that fits data

Propose a structure with formula C_4H_8O that fits data

How would you differentiate each pair of molecules below using IR spectroscopy

¹³C NMR Spectroscopy Intro

Provides a method to count the number of different (non-equivalent) carbons in a molecule

Will also give information about the chemical environment around each carbon atom (ppm scale) sp^3 C signal is at δ 0 to 9 sp^2 C: δ 110 to 220 C(=O) at low field, δ 160 to 220

Identify Equivalent Carbons

The Simplest FG: Alkanes

- Alkanes: Compounds with C-C single bonds and C-H bonds only (no other functional groups)
- Connecting carbons can lead to large or small molecules
- The formula for an alkane with no rings in it must be C_nH_{2n+2} where n is the number of carbon atoms
- Alkanes are saturated with hydrogen (no more can be added
- They are also called **aliphatic compounds**
- All C sp³ hybridized with tetrahedral geometry (if no charge)

Alkanes & Isomers

compounds with same molecular formula but different arrangement of atoms

- CH_4 = methane, C_2H_6 = ethane, C_3H_8 = propane
- The molecular formula of an alkane with more than three carbons can give more than one structure
 - C_4 (butane) = butane and isobutane
 - C₅ (pentane) = pentane, 2-methylbutane, and 2,2dimethylpropane
- Alkanes with C's connected to no more than 2 other C's are straight-chain or normal alkanes
- Alkanes with one or more C's connected to 3 or 4 C's are branched-chain alkanes

butane

isobutane

Constitutional Isomers

isomers that differ by atomic connectivity

- Isomers that differ in how their atoms are arranged in chains are called constitutional isomers
- Compounds other than alkanes can be constitutional isomers of one another
- They must have the same molecular formula to be isomers

$CH_3 \\ \downarrow \\ CH_3CHCH_3$	and	CH ₃ CH ₂ CH ₂ CH ₃
2-Methylpropane (isobutane)		Butane
CH ₃ CH ₂ OH	and	СН ₃ ОСН ₃
Ethanol		Dimethyl ether
NH ₂		
CH ₃ CHCH ₃	and	CH ₃ CH ₂ CH ₂ NH ₂
Isopropylamine		Propylamine
	CH ₃ CHCH ₃ 2-Methylpropane (isobutane) CH ₃ CH ₂ OH Ethanol NH ₂ CH ₃ CHCH ₃	CH ₃ CHCH ₃ and 2-Methylpropane (isobutane) CH ₃ CH ₂ OH and Ethanol NH ₂ CH ₃ CHCH ₃ and

Names of Normal Alkanes

No. of Carbons	Formula Name	(C _n H _{2n+2})
1	Methane (Me)	CH ₄
2	Ethane (Et)	C ₂ H ₆
3	Propane (Pr)	C ₃ H ₈
4	Butane	C ₄ H ₁₀
5	Pentane	C ₅ H ₁₂
6	Hexane	C ₆ H ₁₄
7	Heptane	C ₇ H ₁₆
8	Octane	C ₈ H ₁₈
9	Nonane	C ₉ H ₂₀
10	Decane	C ₁₀ H ₂₂

Drawing Alkanes

 $CH_3CH_2CH_2CH_3$

CH₃(CH₂)₂CH₃

© 2007 Thomson Higher Education

condensed drawings

skeletal drawing

Alkyl Groups

- Alkyl group remove one H from an alkane (a part of a structure)
- General abbreviation "R" (for Radical, an incomplete species or the "rest" of the molecule)
- Name: replace -ane ending of alkane with -yl ending
 - $-CH_3$ is "methyl" (from methane)
 - —CH₂CH₃ is "ethyl" from ethane

BLE 3.4 Some Straight-Chain Alkyl Groups				
Name	Alkyl group	Name (abbreviation)		
Methane	$-CH_3$	Methyl (Me)		
Ethane	$-CH_2CH_3$	Ethyl (Et)		
Propane	$-CH_2CH_2CH_3$	Propyl (Pr)		
Butane	$-\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3}$	Butyl (Bu)		
Pentane	$-\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3}$	Pentyl, or amyl		
	Name Methane Ethane Propane Butane	NameAlkyl groupMethane-CH3Ethane-CH2CH3Propane-CH2CH2CH3Butane-CH2CH2CH2CH3		

©2004 Thomson - Brooks/Cole

Primary carbon (1°) is bonded to one other carbon.

© 2007 Thomson Higher Education

Secondary carbon (2°) is bonded to two other carbons. *Tertiary* carbon (3°) is bonded to three other carbons. Quaternary carbon (4°) is bonded to four other carbons.

Types of Alkyl groups

Some odd examples when non-carbon atoms are part of structure....

R-CH2-OH is primary C, primary H
 need to fix HW answer key for this!

RCOH aldehyde is a primary carbon

Naming Alkanes

Compounds are given systematic names by a process that uses

Prefix—Locant—Parent—Suffix

Where and what are Where is the primary How many What is the primary the substituents? functional group? carbons? functional group?

- Follows specific rules
 - Find parent hydrocarbon chain
 - Carbons in that main chain are numbered in sequence
 - Substituents are identified numbered
 - Write compound name is single word
 - Name a complex substituents as though it were a compound itself
- See specific examples in text

Naming Alkanes (IUPAC Rules)

- 1. Identify the parent (longest) chain if choice, find one with the most branch points
- 2. Number atoms in this chain number to give first branching group (substituent) lowest possible number
- Name and number the substituents

 if two groups on same C, give same number
 if same group appears more than once, use di, tri..
 replace -ane ending with -yl for substituents
- Write name as a single word use hyphens to separate numbers and letters use commas to separate numbers list subs alphabetically (don't consider di, tri.. sec-, tert-) end name according to priority FG (ane for alkane)

- Name (complex substituents) by same rules number substituent so that first atom connected to main chain is position 1 (put in parenthesis)
- Learn common names for branched substituents: (when naming, can use common or IUPAC name)

Examples

Examples

what if same numbers from both ends, go with alpha first lower number

given them some complex subs to name like #-(2,3-dimethylbutyl) etc

Physical Properties

- Boiling points and melting points increase as size of alkane increases
- Dispersion forces increase as molecule size increases, resulting in higher melting and boiling points

