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Abstract

In order to reduce human exposure to the hazardous work environments involved with power distribution
line inspection, the developers present a thrust-vectored flying robot to perform inspections remotely. The
particular features of the Mechanical Build System, the User Interface System, the Control System, the
Camera System, and the Stabilization System are analyzed for expected and actual resources and subtasks.
Funding is briefly discussed, the expected tasks required to construct the prototype are outlined, and the
actual time worked is summarized. An operational manual is provided, as well as hardware, software, and
mechanical design documentation. Finally, hardware and software testing are described.
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I. INTRODUCTION

IN ORDER to ensure reliable power distribution
systems, inspection personnel must work in the

hazardous environment of energized high-voltage
transmission lines. In order to alleviate this occupa-
tional hazard, the SphereBot developers have pro-
duced a proof-of-concept prototype for an airborne
industrial inspection robot that can, among other
possible uses, perform these inspections without
exposing personnel to risk. Using a thrust-vectoring
model to achieve superior stability, the robot will
visually inspect the condition of transmission lines
and provide telemetry that can be used to identify
problematic areas which require further attention.

The SphereBot has achieved a high degree of
development, including a third-generation Mechan-
ical Build, second-generation Stabilization Sys-
tem, complete User Interface System, and third-
generation Control System. Difficulties encountered
thus far include the unfortunate nonfunctionality
of an advertised feature of the chosen microcon-
troller platform, inherent instability in the Inertial
Measurement Unit, and the need for late-in-project
overhauls of the physical frame and the control
software. The outboard Deployable Observational
Crawler completes the features of the prototype with
a Vision System that gathers optical telemetry.

II. SOCIETAL PROBLEM

People the world over are becoming increas-
ingly dependent on electrical energy in their daily
lives. This dependence demands a robust, well
maintained electrical energy distribution system, the
backbone of which consists of high voltage electri-
cal power lines. Despite the increasing prevalence
of advanced automation technologies inspection and
maintenance of these power lines are still largely
done by personnel in direct contact with the high
voltage lines. The direct contact with the high volt-
age lines, as well as the relatively extreme heights
involved, present many dangers to the personnel
who inspect these lines. The inherent dangers of
line inspection also present power line workers
with other challenges in their lives outside of the
ones that they face while actually on the lines.
There are several characteristics of power lines that
are taken into consideration when inspecting power
lines that could easily be accomplished using sensor
technology which has been recently made available.

It is suggested that by combining these sensor tech-
nologies with a suitable semi-autonomous delivery
platform the dangers of having personnel manually
inspect power lines could be successfully mitigated.

A. Current state
One of the uses for the industrial inspection plat-

form is to inspect high-voltage transmission lines. In
California and across the United States a veritable
army of people are employed to inspect these lines.
This is a very hazardous job category with many
deaths per year.

Currently these lines are inspected by this army
of inspectors using physical inspection techniques.
Automation has been difficult due to the complex-
ities involved. One of the complexities is the line
voltage. The voltage in the lines, ranges from 250
kV up to 1000 kV, with the most common being
250kV to 500kV range.

The inspectors have a title. They are
called Line Installers. They inspect and
repair high-voltage electrical power lines.
These inspectors often work high off
the ground. These wires carry dangerous
amounts of electricity. These people re-
quire intensive training to perform their
job. This training is continuous throughout
their careers. Due to the dangers asso-
ciated with high-voltage electricity, elec-
trical power-line installers tend to make
more money than others in this industry
[1].

The techniques of inspection vary depending
upon the kind, layout, and voltage of the line being
inspected. These techniques include using an insu-
lated boom, “bare-hand,” and helicopter crew [2]
inspection. It must be noted that all of these repair
techniques are accomplished without de-energizing
the line, even for replacement of any cable and/or
insulator. In the eyes of the national energy trans-
mission, it is cheaper to lose a person than it is to
de-energize the line.

In an insulated boom the inspector is given a
lift up to the high-voltage line to effect repairs and
inspect the particular line.

Utilities have practiced these so-
called bare-hand techniques for maintain-
ing high-voltage transmission lines in the
United States and Canada for almost 30
years; more recently, other countries have
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also adopted the practice. The term bare-
hand is actually misleading. When work-
ing above 150 kV, the lineman’s entire
body, including the hands, is covered with
a conductive stainless steel suit, hood,
and gloves to equalize voltage across the
surface of the body. Only the worker’s
face is uncovered.

Bare-hand methods may be on the
rise, according to some industry officials,
as utilities build lines at higher voltages
and sell more power to other utilities,
making it highly inconvenient to take the
lines out of service. New technology is
also helping; for example, helicopters and
crews, again energized at hundreds of
thousands of volts, can complete large
jobs quickly and service isolated power
lines [1].

Besides using a helicopter to inspect the line,
some people inspect the line using a trolley that is
dropped upon the line. The inspector gets into the
trolley and slowly moves down the line inspecting
the line as the trolley moves forward under the
power of the inspector. This method requires that
the inspector get on and off the trolley at each tower.
This may be accomplished using either a helicopter
or an insulated boom.

Currently, in the State of California there are em-
ployed, approximately, 7,260 [3] people inspecting
the high-voltage lines. These people make an aver-
age hourly wage of $42.25. Of the people employed
26 [4] have been killed so far this year. The number
of people working in this field is expected to grow
as much as 13% [5] over the next 7 years.

B. Hazards

Manual power line inspection is unquestionably
a dangerous occupation. Danger is found in sev-
eral forms during the course of line inspection by
personnel in direct contact with the power lines.
The dangers faced by power line workers involved
in “bare handed” line inspection take three basic
forms, injuries from the unintended flow of electri-
cal current, injuries resulting from a fall and mis-
cellaneous injuries. These three basic categories can
be further broken down demonstrating the gamut
of occupational pitfalls that the average power line
worker must navigate during the execution of their
duties.

Given the very high voltages and currents present
while working on live electrical lines the possibility
of injury due to unintended electrical current flow is
very high. Injuries from electrocution can be divided
into two categories, burns and injuries due to the
physiological effects of electrocution. Burns can
occur either due to electrical current flowing through
the body or from exposure to the intensely bright
light generated when electrical current is allowed to
arc. This phenomenon is known as “arc flash” [6].

The physiological effects of unintended electrical
current flow are varied and the severity of injury
depends on the bodily system effected as well as
the characteristics of the current flow [7].

Power lines are most often located high up on
electrical poles or towers. Inspection workers must
either climb these poles or be transported to them by
boom attached bucket or helicopter. The heights at
which these workers conduct their business creates
an inherent danger of injury from falling. There
were 437 fatal falls in 2012 in which the height
was reported and of these falls one-fourth of them
were from a height of less than 10 feet [4]. With
electrical tower heights up to 150 feet the potential
for fatal injury from an electrical tower is evident
[8].

The miscellaneous category of injuries are harder
to quantify. This category includes injuries incurred
during the course of work such as in the transporta-
tion to the lines. Examples are helicopter crashes,
workers being crushed by the bucket boom or
pushed into wires. Included are also injuries caused
by working in extreme weather.

C. Impact

In addition to the constant threat of injury, power
line workers face other challenges attributable to
their chosen profession. In some localities, where
public policy has not been enacted to combat the
problem, many line workers find that purchasing life
and health insurance is either extremely arduous or
in some cases not possible. The negative impacts
of this dangerous occupation are not isolated to the
power line worker themselves but extend as well to
their families. According to the National Institute of
Health the death of a parent as significant impacts
for children extending into adulthood. In the NIH
study “Death of Parents and Adult Psychological
and Physical Well-Being: A Prospective U.S. Na-
tional Study” the following was noted:
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Overall, we found considerable evidence
supporting the idea that because of long-
term linked lives across time and because
of the typically strong affectional bonds
and attachment experienced with mothers
and fathers, the death of a mother or father
or both in adulthood is associated with a
number of negative effects on mental and
physical well-being. [9]

D. Measurands

During the inspection, power lines are checked
for defects, signs of impending failures, and the en-
vironmental hazards that compromise their security
and normal operation.

Defects of power lines include physical damages
and corrosion of wires, damages in insulators and
in structural elements of power line towers. In order
to detect them, a range of types of cameras can
be used: ones that work either in visible light,
infrared (IR), or ultraviolet (UV) range. Damaged
wires are usually detected by visual inspection, but
UV cameras help more - they make corona effects
around broken aluminum strands possible to be seen
[10]. Corrosion of wires manifests itself by build-up
of heat, which can be detected by IR camera. The
defects in insulators usually are detected by visual
inspection, but sometimes IR and UV are used [10].

Environmental dangers to power lines include
bird-related and vegetation hazards. Bird-related
hazards that need to be detected by power line in-
spection include biological waste build-up on wires
and other energized equipment, nests and large
flocks of birds [11]. Nesting material and animal
waste contribute to corrosion of ceramic insulation
and wires. Also, nests attract other animals, which
can increase risk of power line failure. Visual in-
spection is the primary tool for detecting the nests
and places of rest for large flocks of birds, although
infrared could also be used.

Vegetation, such as trees, also endangers the
security of power lines. They can damage the wires
or cause the shorts to ground and line-to line shorts.
For example,

The 2006 blackout in the Western U.S.
and Canada was initiated by a combina-
tion of inadequate tree trimming and high
conductor sag, caused by a high conductor
temperature, caused by high load current
and low wind conditions. [12]

Since trees grow about half a meter per year (or
even faster in some cases), the regular inspection
of the distance between vegetation and power lines
is needed [10]. This task requires only the ordinary
visual inspection performed by a simple camera.

E. Our Solution

There are several available approaches to distri-
bution line inspection. Historically, inspection was
performed by personnel using binoculars while on
foot patrol, though this method has several draw-
backs. It is slow at best, and impossible in some
terrain. It also lacks for accuracy, as personnel must
maintain a safe distance from the wires. Helicopter-
assisted remote inspection is faster and not limited
by terrain, but it is less accurate due to the improved
speed and due to vibration from the platform.
Helicopter-assisted, bare-handed inspection does not
lack for accuracy, but exposes inspectors to the
hazards discussed above. For this reason, a need
exists for autonomous systems that can work in
close proximity to power lines without exposing
human operators to hazardous conditions [10].

Some work has already been performed to de-
velop such a system. There are two major cat-
egories of power line inspection robots: climbers
and fliers. Climbers are constructed to crawl along
the power line, traversing obstacles and record-
ing data. While locomotion along the line itself
is reasonably straightforward, such a system faces
a daunting variety of obstacles, including turns,
junctions, tower components, insulators, and aircraft
avoidance markers. Simple approaches may be used
to surmount particular obstacles [13], [14] but only
very complicated mechanisms can operate reliably
under field conditions. Crawlers also operate much
more closely to the power conductors, and therefore
face dangerously high electromagnetic fields. Fliers,
on the other hand, need only follow the line from
a reasonable distance, respond to wind conditions,
and occasionally avoid nearby vegetation.

Common approaches to the design of flying plat-
forms suffer from a similar problem to that of
helicopter-assisted remote inspection: the vibration
and speed of the platform blurs the image of the
distribution line and degrades the quality of the
telemetry. Furthermore, as most such platforms use
computer vision to perform navigation and line-
following, this image degradation also impairs the
robot’s ability find and follow the conductor while
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minimizing proximity [10]. The vectored-thrust de-
sign of the SphereBot has been shown to provide a
stable platform that responds well to environmental
influences. This will improve the ability of the
system both provide telemetry for inspection and
obtain for itself environmental feedback.

The spherical chassis of the design mitigates the
potential for damage in the event of error. In the
event that the robot contacts the distribution line, the
enclosed exoskeleton prevents the propellers from
gouging the power line or insulators, which would
necessitate costly repairs. As nearby vegetation is
also a recognized hazard, the contours of the chassis
will also help to avoid fouling which would inter-
rupt the inspection and may require a costly and
potentially dangerous recovery operation.

F. Proposal

By utilizing an automated, mobile platform for
accurate inspection of power distribution lines, we
hope to eliminate much of the occupational danger
associated with power grid preventative mainte-
nance. And, by minimizing the risk to workers,
we hope to help eliminate the harm, not only to
inspection workers, but to their families, as well.
The rapid growth and advance of automation tech-
nologies will soon remove the need for humans
to expose themselves to the dangers posed by the
high voltages and working altitudes required for this
task. These relatively cheap automated systems can
ensure a healthy, reliable power grid, and can reduce
the final cost of the electrical energy on which we
depend.

III. DESIGN IDEA

This section reviews the Design Idea at the outset
of the Laboratory Prototype stage, then addresses
specific redirection along the way to the Deployable
Prototype.

A. Feature: Mechanical Build

The mechanical build of the robot is comprised
of the airframe of the robot, the control surfaces,
the control surfaces actuators, main motors and pro-
pellers. The mechanical build of the robot provides
the robot with the physical resources needed to stay
airborne.

1) Hardware: The airframe of the robot will
be spherical in shape. The shape of the airframe
prevents the propellers from being damaged or
damaging power lines. It also prevents the robot
from becoming entangled in power lines or insulator
strings. The control and motor drive hardware will
be located in the center of the robot in a convenient
housing. The propellers will be housed within the
spherical airframe thereby being protected by the
airframe skeleton. There will be at least four con-
trol surfaces that allow for translation and rotation
control. They will be built in to the airframe body.
The control surface actuators will most likely be fast
micro servos that are both light and quick to respond
to control signals. The drive motor system will
consist of a dual motor system that allows for two
counter rotating propellers to eliminate undesired
rotation. Each motor will be controlled by a separate
motor controller allowing for more fine grained
motion control. Energy should be provide by either
a power tether or an on board battery.

2) Software: The computer aided design program
SolidWorks may be used to create design models for
fabrication by the CSUS mechanical shop.

3) Personnel: The mock-up build will be largely
assembled by Aaron Diab with help and input from
the other team members. Jim Ster and undetermined
ME students will be consulted for expertise during
the final build.

4) Outcome: The mechanical build feature shall
be deemed fully implemented when the robot is able
to hover, rotate and move horizontally and vertically
in low wind conditions. The robot should be capable
of remaining airborne for at least five minutes at a
time.

B. Feature: User Interface

The user interface will be comprised of a mobile
device application that allows for control of the
robot. The mobile device application front end will
connect via a to-be-determined wireless technology
to a control application back end that runs as a
server on the robot control hardware. At a minimum
the user interface will provide flight controls and
sensor controls.

1) Hardware: The user interface mobile appli-
cation will be implemented on Apple’s iOS mobile
platform and the control device used will be an
Apple iPad. The wireless technology used will be
determined at build time but may include an 802.11
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Wi-Fi adapter or other appropriate wireless device.
Besides the iPad, a computer running Apple’s Mac
OS X will be needed to code the UI application.

2) Software: The software needed to create the
UI application includes Apple’s iOS integrated de-
velopment environment Xcode. Furthermore a com-
puter running a compatible operating system (Ap-
ple’s Mac OS X) must be used to write the applica-
tion. The programming language used will primarily
be the iOS native programming language, Objective
C. The control backend may be written either in C
or in Python or other languages as appropriate.

3) Personnel: The UI application front end will
coded by Aaron Diab. The control backend will be
coded by Rob Wortman and Aaron Diab.

4) Outcome: The user interface feature will be
deemed fully implemented when there exists a mo-
bile application and control backend that jointly
provide the user a means of controlling the flight
of the robot and actuating its sensors.

C. Feature: Control System

The control system will comprise a multithreaded
control routine running in a POSIX environment on
an ARM-based microcontroller board. Either Unix-
domain sockets will be used for communication
with a back-end for the user interface module, or
network-domain sockets will be used to communi-
cate directly with the front-end. The control system
will communicate with the avionics stabilization
module by the latter’s Future Technology Devices
International (FTDI) connection, and with the flight
control modules by an Enhanced High-Resolution
Pulse-Width Modulator (eHRPWM).

1) Hardware: The control system will run on a
BeagleBone Black development board. This board
is built around a Texas Instruments AM3359 micro-
controller, which is a implementation of the ARM
Cortex-A8 architecture specification. This board in-
cludes the aforementioned FTDI and eHRPWM
interfaces. A USB/Wi-Fi adapter will provide a
connection with the user interface front-end, and
a USB hub will interconnect between the develop-
ment board and multiple USB devices. A 5 VDC
power supply will provide a source for the micro-
controller, the USB hub, and possibly the Wi-Fi
adapter.

2) Software: The POSIX environment will be
provided by Ubuntu Linux; any version 13.04 or
above with the appropriate ARM and BeagleBone

patches will be acceptable. The C development
tools and libraries are included with the operating
system distribution. The Device Tree Compiler, also
included with the distribution, will be needed to
configure the ARM processor’s interfacing pins.

3) Personnel: The control system will be imple-
mented primarily by Robert Wortman, coordinating
with Aaron Diab, and Darrell Cahail for interfacing
with their respective systems. It will take approxi-
mately 100 personnel-hours to complete this system.

4) Outcome: The control system will be consid-
ered complete when the following requirements are
met:

• The platform maintains stable flight when af-
fected by wind or physical impact.

• The flight control subsystem responds to com-
mands relayed from user interface.

D. Feature: Cameras

A camera will be used to observe power lines,
allowing the operator to find defects, failures, and
environmental hazards. It will also be used to help
the operator navigate, since the robot is not fully
autonomous. The camera system will perform either
transmission of data over wireless connection to the
base station, or storing the data from camera on a
data carrier on board, or combination of both.

1) Hardware: Hardware will include visual spec-
trum camera primarily. However, if it is necessary,
and financially and technically possible, thermal-
imaging (long-wavelength infrared, 8–15 µm) and
ultraviolet cameras could also be introduced. In
addition, a system, which will record the data from
camera on the inboard carrier, would be useful.
If camera has a need to rotate independently of
the rotation of body of the robot, then a pan-tilt
system can be introduced into design. Also, separate
power supply for camera system will be used if
the voltage from control electronics power supply
is incompatible with cameras and their supporting
circuit.

2) Software: Software for the camera system
could include configuration software if the camera
needs it.

3) Personnel: The camera system will be imple-
mented in a coordinated effort by team members,
including interfacing with control system, supplying
the necessary power to camera, and mounting the
camera to the frame.

5



4) Outcome: The camera system is considered
complete when following requirements are met:

• Camera observes the power lines and their en-
vironments and transmit data to control system;

• Data from camera is successfully sent via trans-
mitter and/or stored on a carrier inboard;

• Camera and supporting circuit do not interfere
with other electronic systems of the robot;

• Camera and supporting hardware fit well me-
chanically into design and do not compromise
the stability of the robot and its ability to fly
and steer.

E. Feature: Attitude Sensing and Stabilization Sys-
tem

The purpose of this part of the project is the de-
sign of a stabilization system that is capable of being
programmed and preforming navigation. This means
that the design of this section of the flight control
focuses mainly on the control feedback systems that
allow the BeagleBone Black to control both the
directional servos and the motors controlling lift
through software executed on the sensor board and
on the BeagleBone Black.

1) Hardware: A simplified diagram showing
how the stabilization of the sphere bot is obtained
is shown in Figure 1. Essentially we are proposing
controlling the speed of the various motors and
servos to achieve stabilization. This is achieved by
taking sensor data from the Inertial Measurement
Unit (IMU) and an altimeter, then having the Micro-
Controller Unit (MCU - BeagleBone Black) output
processed data to via a FTDI serial interface to the
BeagleBone Black. The BeagleBone Black will in-
tegrate this data according to the movement detected
by the accelerometer and gyroscope coupled with
the movement desired.

The movement detected by the individual sensors
is shown in Figure 2. Using this mechanism, it is
possible to create a feedback loop to stabilize the
sphere bot.

More specifically, there are three major aspects of
the craft that need to be controlled using a feedback
system. These aspects are altitude, rotation, and
orientation.

1) The rotation of the craft shall be implemented
via a control feedback system that uses a
gyroscope to determine rotation and adjusts
the motors and servos accordingly to keep the
sphere bot from spinning out of control.

Figure 1: Block Schematic of Stabilization System

Figure 2: Dimensions of Moment Detected by IMU

2) Orientation will be controlled using a basic
algorithm to determine the appropriate PWM
needed on the servos and the motors to hover
or achieve a specific degree of direction and
rate of movement.

3) To control altitude via the z-axis acceleration.
Figure 3 briefly outlines the design of the above

systems.
a) Inertial Measurement Unit: The plan is to

use an off the shelf IMU with its integrated sensor
and processor package to offload the main MCU
from the calculation intensive part of the sensor
handling. This unit will be interfaced with the MCU
via a serial interface. The IMU needs to contain
one triple-axis gyro, one triple-axis accelerometer,
and one triple-axis magnetometer. These will feed a
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Figure 3: Feedback Path for Stabilization System

dedicated, on-board microprocessor with the output
over a serial interface.

The currently identified 9 Degrees of Freedom -
Razor IMU fits these specifications. Those being:

• ATmega328 microprocessor - Programmed
with the MPIDE package used for the Digilent
Chipkit.

• ITG-3200 MEMS triple-axis gyro.
• ADXL345 triple-axis accelerometer.
• HMC5883L triple-axis magnetometer.

b) Altimeter: The Altimeter module is
BOSCH BMP085. It is high-precision, low-power
barometric pressure sensor, with a measuring
range from 300 to 1100 hPa with a resolution
of down to 0.03 hPa (0.25 meter in height). It’s
based on piezo-resistive technology for EMC
robustness, high accuracy and linearity as well
as long term stability. This will connect and be
directly monitored by the MCU. This unit has the
following features and specifications.

• Wide barometric pressure range: 300–1100 hPa
(9000 meters above sea level to -500 m)

• Temperature measurement included
• Ultra-low power consumption (5 µA in stan-

dard mode, and 3 µA in ultra-low power mode)
• Low noise measurement
• Fully calibrated
• Digital two wire (I2C) interface
• Flexible supply voltage range: 3.3–5 VDC
• PCB Dimensions: 19×19 mm
• 7 pin connection head is not soldered
• Gross Weight: 10 g

2) Software: The software will be developed in
two main sections. The BeagleBone interface and
the on-board IMU processor. Using the processor
on the IMU, the raw sensor data will be processed
into usable data that will be sent to the BeagleBone
Black via a FTDI serial interface. It will then be
used in conjunction with the data from the control
interface to stabilize the Sphere Bot and/or control
its movements.

The software IDE for programming the IMU can
be downloaded from http://chipkit.s3.amazonaws.
com/builds/mpide-0023-windows-20130715.zip.

Programming on the BeagleBone Black can be
done on the device itself or through a cross compiler
using the Eclipse IDE under Windows, Mac OS X,
or Linux.

3) Personnel: The stabilization system will be
implemented by Darrell Cahail.

4) Outcome: The IMU will be considered imple-
mented in a three stage design. Each stage of the
design will be considered fully implemented when
its goal is achieved.

1) Design is capable of stable flight at a stationary
altitude.

2) Design is capable of stable flight at variable
altitude.

3) Design is capable of stable flight at variable
altitude and is capable of non-vertical move-
ment.

F. Additional resources
1) Mechanical Build Feature: Assembly of the

robot will take place at team members homes, on
campus in the senior design room and in the CSUS
mechanical shop. Jim Ster has offered to assist with
creating parts on the mechanical shop router or 3D
printer devices. For the initial mock up phase of
prototype design ABS plastic will be used to create
the airframe and control surfaces. In the final build
phase lighter materials such as fiber glass or carbon
fiber will be used. A list of materials with budgeted
prices for the mechanical build is included in Table
I.

2) User Interface System: Coding of the user
interface mobile application will be implemented by
Aaron Diab on his personal Macbook Pro laptop
computer. The mobile application will be installed
to his personal Apple iPad mobile device for test-
ing. The control back end will be implemented on
a BeagleBone Black single board computer with
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Table I: Material costs for mechanical build

Item Cost
ABS plastic sheet $50
ABS glue $20
Contra rotating motor/prop assembly $70
2 brushless motor speed controllers $40
solderable connectors $15
4 light weight fast servos $70
R/C receiver and radio (for testing) $250
hardware $50
LiPo battery and charger $100
Goodwill water bottle (housing) $1
Tools (drill bits/razor blades) $30

communication conducted over a USB 802.11 Wi-
Fi dongle. The BeagleBone Black and Wi/̄Fi will
be accounted for under the parts sections for the
control system feature.

3) Stabilization System:

a) Hardware: This section of the project will
initially require a place to program the boards. A
bench power supply and an oscilloscope will be
required to insure that the hardware is functioning
correctly. Developers have purchased another Bea-
gleBone Black and an IMU along with the FTDI
serial interface so that developers can use a laptop
to generate the software required.

b) Software: All required development li-
braries and IDEs are freely available for download
on the Web.

4) Control System: Development of the control
system will be performed by Robert Wortman us-
ing any handy workstation that has a SSH client,
but primarily either of two Linux workstations.
Material and software costs for the development
of this system are included in Tables II and III.
Information resources will be obtained from Texas
Instruments regarding the ARM processor, from
the BeagleBoard.org Foundation regarding the de-
velopment board, from the Linux Kernel Archives
regarding Device Tree manipulation, and from other
developers as available and necessary.

Table II: Material costs for control system

Item Cost
BeagleBone Black $45
USB Wi-Fi adapter $30
USB hub $20
power supply $10
power wiring $5

Table III: Software costs for control system

Item Cost
Ubuntu Linux $0

G. Spring Revision: Camera System

A camera will be used to observe power lines,
allowing the operator to find defects, failures, and
environmental hazards. It will also be used to help
the operator navigate, since the robot is not fully
autonomous. The camera system will perform either
transmission of data over wireless connection to the
base station, or storing the data from camera on a
data carrier onboard, or combination of both.

Due to the weight limitations in the maneu-
verability of the sphere-bot and the complexity
of mounting a camera to the sphere-bot that can
capture images of the line to positively identify
faults, a line crawler will be implemented which
can be dropped onto the line from an airborne
system. A line crawling robot will be designed to
provide additional information about the line. The
combination of the frame design of the robot and the
electronic clamping system allows the line crawler
to be deployed onto the line from the sphere-bot.
The additional camera systems on the line crawler
will take images of the line that would be equivalent
in resolution and clarity to what a man hanging onto
the line could see from a standard visual inspection
and store the images onto an SD card. In order to
relate the images of the line to the physical location
in the case of a fault, the line crawler will also store
the location of the image being taken. Additional
sensors can be mounted to the platform at the base
of the robot or on the frame as needed.

1) Hardware: Hardware will include visual spec-
trum camera primarily. However, if it is necessary,
and financially and technically possible, thermal-
imaging (long-wavelength infrared, 8-15 m) and
ultraviolet cameras could also be introduced. In
addition, a system, which will record the data from
camera on the onboard carrier, would be useful. If
camera has a need to rotate independently of the
rotation of body of the robot, then a pan-tilt system
can be introduced into design. Also, a separate
power supply for camera system will be used if
the voltage from control electronics power supply
is incompatible with cameras and their supporting
circuit.

The hardware on the line crawler consists of
the frame of the robot, the wheels and motors,
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the cameras with resolution equivalent or greater
than the sight of the line inspecting personnel, and
the microcontrollers required to interface with the
software and store data. Sensors will be imple-
mented provide feedback to determine the location
of the robot on the line. Additional hardware will be
implemented as necessary to keep the line crawler
stabilized on the line and enable it to be deployed
onto the line.

2) Software: Software for the camera system on
the sphere-bot could include configuration software
if the camera needs it.

Software for the line crawler includes the pro-
gramming required to control the robots movements
on the line to keep it stable and prevent it from
driving off the line, as well as the software to
interface with the camera, or cameras, and save the
camera images to an SD card.

3) Personnel: The camera system on the sphere-
bot will be implemented primarily by Aaron Diab in
coordination with other team members as necessary
to integrate the system with the rest of the control
systems on the sphere-bot.

The line crawler will be implemented by Rebecca
Wingo and Emanuel Dupart in coordination with
other team members to implement a system quickly
that will be capable of integrating as well as time
allows with the sphere-bot.

4) Outcome: The camera system is considered
complete when following requirements are met by
either the camera system onboard the sphere-bot or
the system onboard the deployable line crawler:

1) Data from camera is successfully sent via trans-
mitter and/or stored on a carrier onboard for
later analysis;

2) Camera and supporting circuit do not interfere
with other electronic systems of the robot;

3) Camera and supporting hardware fit well me-
chanically into design and do not compromise
the stability of the robot and its ability to fly
and steer;

4) Camera observes the power lines with high
enough resolution to match standard human
vision within one foot of the line;

5) Line crawler is capable of latching onto the
line;

6) Images of the line correspond to a known
distance down the line

IV. LABORATORY PROTOTYPE FUNDING

The majority of the development expenses will
be defrayed by the developers’ own personal funds.
Funding may be available from various grants if
ambitious rework is required for project success.

V. LABORATORY PROTOTYPE SCHEDULE

September 7, 2013 Preliminary frame design cre-
ated and frame materials acquisition begun.

September 14, 2013 Main cross circles and center
bottle holder cut and assembled together.

September 21, 2013 Preliminary frame largely
complete. Control surfaces, servos and lift
motors currently being added.

September 28, 2013 Large sections of frame cut
away to lighten frame.

September 29, 2013 Frame complete. Electronics
installation proceeding.

October 10, 2013 IMU ready for testing. Data ex-
tremely unstable.

October 26, 2013 Most electronics installed in
center bottle housing. BBB PWMs still not
working.

November 9, 2013 Electronics fully installed.
Servo control moved to Pololu servo controller.

November 15, 2013 Rudimentary control system
created to test servo and lift motors.

November 23, 2013 Mechanical build ready for
testing phase. UI development begun in
earnest.

November 30, 2013 IMU instability satisfactorily
resolved.

December 7, 2013 Substantially functional control
system created. SphereBot too heavy. Start of
Winter break.

VI. LABORATORY PROTOTYPE WORK
BREAKDOWN STRUCTURE

This section describes a hierarchical system of
tasks which will allow the successful construction,
testing, and demonstration of the robot laboratory
prototype.

A. Task — Mechanical Build

The developer will construct and assemble the
mechanical portions of the robot: the air- frame of
the robot, the control surfaces, the control surface
actuators, main motors and propellers.
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1) Subtask — Build Airframe: The developer will
create a spherical frame for the robot capable of
housing the motor and electronic housing bottle
and the control surfaces. The frame will consist of
four ring shaped shaped pieces and interconnecting
supports.

a) Activity — Design and cut main frame
pieces: The members of the group will draw up
plans for the rings which will comprise the airframe
and then cut them using available tools. Other pieces
necessary for construction of the airframe will be
cut as needed.

b) Activity — Assemble main frame: Team
members will fasten the pieces of the airframe
together using glues and hardware to assemble the
main body of the airframe.

2) Subtask — Create Control Surfaces: The de-
veloper will create movable flaps that will attach via
hinges to the airframe capable of adjusting airflow
in a manner that will allow control of the robot’s
flight.

a) Activity — Cut and shape control surfaces:
Team members will cut control surfaces of a pre-
determined shape from a suitable material and
process them to attain the final desired shape. A
minimum of four control surfaces will be needed.

b) Activity — Install hinges and attach con-
trol surfaces: Team members will acquire suitable
hinges and install them into the control surfaces and
robot airframe to create movable control surfaces.

c) Activity — Install control arms: Control
arms will be attached to the control surfaces to pro-
vide leverage when actuating the control surfaces.

3) Subtask — Install Control Actuators: The
developer will acquire and install fast, light micro
servos that will provide a means of adjusting the
control surfaces position via electronic signals.

a) Activity — Acquire high speed micro ser-
vos: Team members will acquire micro servers that
are light and capable of quick response to electrical
signals.

b) Activity — Cut mounting holes and mount
servos: Mounting holes will be cut into suitable
locations in the airframe to allowing mounting of
the servos.

c) Activity — Attach control arm rods: Rods
consisting of ball rod ends and threaded rod will
be attached to the control surface arms and servos
arms to mechanically link the control surface to the
servos.

4) Subtask — Install Main Motors and Propellers
:

a) Activity — Acquire motor and propeller as-
sembly: Team members will acquire an appropriate
motor propeller and speed controller assembly that
will provide adequate lift and run time.

b) Activity — Acquire bottle housing: Team
members will acquire an appropriate housing for
the motor assembly, control electronics and power
supplies.

c) Activity — Modify bottle and mount motors
and propellers: The previously acquired housing
will be modified in such a manner as to allow
convenient mounting of the motor and propeller
assembly as well as control electronics.

B. Task — User Interface

1) Subtask — Create Front End:
a) Activity — Design UI graphical view: The

developer will create the graphical component of the
user interface that displays the necessary controls.

b) Activity — Code UI Model: The developer
will create a conceptual model of the UI applica-
tion that contains the data structures necessary for
control of the robot.

c) Activity — Code UI view controller: The
developer will program the component of the user
interface that accesses the model and controls the
view’s interface elements.

2) Subtask — Define Back End:
a) Activity — Define command protocol: Team

members involved in coding the UI and Control sub-
elements of the robot software will draft a command
control protocol that defines the methods sent by the
UI and accepted by the control back-end.

b) Activity — Implement command protocol in
UI Model: The UI developer will implement the
command control protocol in the model sub-element
of the UI. The developer will also implement the
communication methods needed for conveying the
commands to the robot’s control backend.

C. Task — Create Control System

The developer will create a control system which
comprises a multithreaded control routine running
in a POSIX environment on an ARM-based micro-
controller board. Either Unix-domain sockets will
be used for communication with a back-end for the
user interface module, or network-domain sockets
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will be used to communicate directly with the front-
end. The control system will communicate with the
avionics stabilization module by the latter’s Future
Technology Devices International (FTDI) connec-
tion, and with the flight control modules by an
Enhanced High-Resolution Pulse-Width Modulator.

1) Subtask — Write Command Input Module:
The Command Input Module of the Control System
will receive commands from the back-end of the
User Interface System.

a) Activity — Develop a language of com-
mands: The members of the group, especially those
working on the User Interface System and Control
System, will jointly develop a set of allowable
navigation and operational instructions, and to agree
on a standard syntax for communicating those de-
mands.

b) Activity — Write Command Parser: The
developer will write a routine to tokenize the con-
tents of the stream of commands in the agreed-upon
language. This may accomplished with commodity
libraries or it may require a bespoke parser, depend-
ing on the the specific decisions. The commands
will then be relayed to the Core Control Algorithm.

2) Subtask — Write IMU Data Tracking Module:
The developer will write a routine to accept input
from the IMU, in whatever format is offered by the
IMU.

a) Activity — Identify IMU Interface: The de-
velopers of the Control System and the Stabilization
System will coordinate to select an IMU with an
interface that has sufficient bandwidth and detail for
the purposes of balancing an airborne system.

b) Activity — Write IMU Polling Routine: The
developer will write a routine to sample the IMU
data as it is available and relay that data to the Core
Control Algorithm.

3) Subtask — Write Actuator Signaling Module:
The developer will produce a module to provide
the necessary servo signals for the control sur-
face actuators and the lift motor controllers. This
will require interfacing with the microcontroller’s
integrated Enhanced High-Resolution Pulse Width
Modulator (eHRPWM) units.

a) Activity — Configure Device Tree: The
developer will produce runtime configuration files
and scripts that will expose the eHRPWM units to
a kernel pin and export the kernel pin to a hardware
pin.

b) Activity — Write Per-Servo Signal Supervi-
sors: The developer will create an output supervi-

sor thread for each PWM signal that will receive
servo parameter directives from the Core Control
Algorithm and will adjust the eHRPWM unit’s duty
cycle accordingly, accounting for servo calibration
and for desired ramping characteristics.

4) Subtask — Write Core Control Algorithm:
The developer will create a module that will in-
terface between the other control modules. This
module will receive and store the desired position,
motion, and attitude of the craft, as determined by
the User Interface Module. The module will receive
and store the actual position, motion, and attitude
of the craft, as determined by the IMU Tracking
Module. The module will provide input to the Actu-
ator Signaling Module, that will minimize the error
between desired and actual robotic configuration.

D. Task — Construct Camera System

The developer will construct a camera system that
can observe power lines, allowing the operator to
find defects, failures, and environmental hazards.
The system will also be used to help the operator
to navigate.

1) Subtask — Observe Power Lines:
a) Activity — Obtain camera:
b) Activity — Find power source for camera:

c) Activity — Test the signal transmission to
BeagleBone unit:

2) Subtask — Transmit or Store Data:
a) Activity — Write Data Relay Module: Write

code for control unit to transmit video data over the
same wireless channel that is used for controlling
the robot from ground station.

b) Activity — Establish Data Transmitter: If
separate wireless channel is used for task, acquire
and setup the transmitter.

c) Activity — Establish Data Recorder: If data
is to be stored on board, acquire necessary storage
device and supporting electronics.

3) Subtask — Ensure Electronic Noninterference:

a) Activity — Test Data Subsystem: Test the
transmission and storage subsystem.

b) Activity — Verify Power Source: Ensure
that the power source is providing enough power.

c) Activity — Verify Bandwidth: If control unit
wireless channel cannot provide enough bandwidth
for video, use separate wireless transmitter.

4) Subtask — Ensure Mechanical Fit:
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a) Activity — Determine Dimensions: Mea-
sure the camera, supporting hardware, and the
robot’s frame.

b) Activity — Obtain Materials: Acquire
mounting hardware and fasteners.

c) Activity — Mount Camera: Mount the cam-
era.

E. Task — Design Stabilization System
The developer will design and construct a stabi-

lization system that will provide inertial, magnetic,
and barometric telemetry so that the overall system
can maintain its position and orientation.

1) Subtask — Roll, Pitch, and Yaw Control:
In the flying sphere yaw control is going to be
an extremely important aspect of the stabilization
system. It is going to compensate for any unwanted
rotation about the yaw axis. This is the axis that
passes vertically up and down through the center
of the sphere. There is a large tendency for the
sphere to want to rotate about this axis because of
the rotation of the lift motors that make the flight
possible.

Roll and Pitch control for stabilization come next.
The Roll control is the rolling of the sphere toward
the left or the right about its horizontal plane.
Unwanted roll causes the sphere to drift left or right,
making hovering impossible. Pitch is the tipping
of the sphere forward (down) or backward (up).
Unwanted pitch causes the sphere to drift to the
front or back.

Combinations of these three modalities can make
for some complex movements of the craft. They also
make it difficult to stabilize when hovering or in
flight.

2) Subtask — Altitude Control (Lift): Altitude
control is exactly what it says. This is what control
the power to the lift motors for rising, falling, or
maintaining a hovering stance.

3) Subtask — Compass Heading Control: A
compass is the sensor that allows the craft to de-
tect and maintain a heading using the earth’s own
magnetic field. This same sensor can be exploited to
detect the distance from a wire carrying an electric
current. This can help in the guidance of the sphere
when inspecting live power lines.

4) Subtask — Intersystem Communications (Mo-
tors and Servos): Lastly, these systems are not
useful independently. A communication system that
combines the data from these systems and feeds it
to the motor and servo control system is required.

F. Task — Final Prototype Assembly

The developers will assemble and test the com-
ponents completed components.

1) Subtask — Coordinate integration: The de-
velopers will coordinate to efforts to integrate the
completed subsystems. This will be performed con-
currently with the development of the subsystems,
as most of them are tightly integrated with one or
more other subsystems.

2) Subtask – Test and evaluate: The developers
will test the completed system and ensure that the
system behaves as described in the Design Contract.

G. Task — Administration

In addition to the directly productive work re-
quired, the developers will perform various admin-
istrative tasks and follow industry-standard project
management procedures, as required to complete the
project.

1) Subtask — Project Management: Under the
direction of the project manager (i.e. the instructor),
the developers will produce reports and give presen-
tations describing completed tasks, current status,
and projected work. This section describes actions
to be taken during the first half of the project, with
actions reserved for the second half to be added
later.

a) Activity — Problem Statement and Elevator
Pitch: The developers will identify an existing
societal problem, analyze the potential for an engi-
neering solution to that problem, and present their
findings to their peers for critique. [15]

The developers will review available peer-
reviewed journals and similarly-qualified literature
in order to explore the subject. No fewer than four
such sources will be used in this research.

The developers will create a report of no less
than four pages describing the identified societal
problem and the potential engineering solution to
that problem.

Before an assembly of peers, the developers will
present a succinct Elevator Pitch describing the
project. This presentation will then segue into an
appropriately detailed description of the societal
problem to be solved, and the state of existing
engineering solutions that attempt to address that
problem.

b) Activity — Design Idea Contract - Project
Proposal: The developers will draft a proposal
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for an engineering solution to the societal problem
identified in the earlier Problem Statement. [16]

The developers will devise and describe a solution
to the identified societal problem. The solution must
be an engineering solution, as opposed to a social
or political solution.

The developers will identify the primary features
of the proposed solution. For each feature, the
developers will describe the hardware and software
required to implement that feature, identify the
person responsible for implementing that feature,
and describe the feature as a deliverable.

The developers will describe the members of the
development team, with a focus on existing skills
which are vital to the project. For each member of
the team, a resumé will be included.

The resulting proposal will be presented to the
project manager, and will be reworked until ap-
proved by said project manager.

c) Activity — Work Breakdown Structure: The
developers will create a report detailing the com-
ponent activities required to complete the project.
This hierarchical arrangement of activities will be
inspired by the Work Breakdown Structure [17] and
the Program Evaluation and Review Technique [18],
[19].

The developers will identify the tasks, subtasks,
and activities required to complete the project. Each
lower division will describe the required actions
in increasing detail and specificity. These compo-
nents will be compiled into a hierarchical report
describing the project as an arrangement of related
activities.

Before an assembly of peers, the developers will
present the Structure report. Based on feedback
from this peer review, the developers will rework
the Structure report. Based on feedback from the
project manager, the developers will continuously
rework the Structure report throughout the duration
of the project.

d) Activity — Project Timeline: From the tasks
described in the Structure report, the developers will
create a project timeline that illustrates the expected
progression of the project. Using this timeline and
other bric-á-brac, the developers will decorate the
bulletin board at their workcenter in the shared
workspace. [20]

Using Microsoft Project, the developers will cre-
ate a Gantt chart that includes all activities required
for development through the end of the project. For
each shown task, a responsible developer will be

identified. This chart will be updated continuously
as the project progresses.

On the bulletin board at the team’s workcenter,
the team will post the Gantt chart, and replace the
chart as it is updated. The team will also post the
names and pictures of the individual developers, a
description of the project, and sufficient material to
“tell a story” regarding the project. Team members
will update and modify this display continuously as
the project progresses.

e) Activity — Bread Board Proof: The devel-
opers will assemble and demonstrate a proof-of-
concept to illustrate the intended design. [21]

The team will assemble a rapid prototype con-
structed of available materials in order to demon-
strate the viability of the design concept. This
prototype will illustrate the expected development
of all major subsystems.

Before an assembly of peers, the developers will
present the Bread Board Proof for consideration.
Based on feedback from peers and from the project
manager, the developers will modify their design to
ensure successful completion of the project.

f) Activity — Laboratory Prototype: The team
will assemble a laboratory prototype constructed
of materials and components appropriate to the
features included in the Design Contract. This pro-
totype will incorporate all major subsystems. The
team will conduct a progress presentation during
week 11 [22] and a final presentation during week
15 [23][24].

Before an assembly of peers, the developers will
demonstrate progress on the laboratory prototype.
Based on feedback from peers and from the project
manager, the developers will identify strategies for
completing this prototype.

Before an assembly of peers, the developers
will demonstrate a completed laboratory prototype
which implements all features described in the
Design Contract. The presentation will show how
the complete prototype addresses the stated societal
problem, and will be accompanied by a programme
and a slideshow.

2) Personnel Management: The development
team will also take actions as necessary to coor-
dinate their efforts and maximize their return on
invested labor.

a) Activity — Leadership: The team will des-
ignate a leader, who shall rule with an iron fist. At
the beginning of week 9 of each half and at the
beginning of the second half, the team will conduct
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a change-of-command such that each team member
serves as leader for an eight-week period.

b) Activity — Progress Reports: At the end of
each week, each team member will prepare an indi-
vidual weekly progress report describing the tasks
performed, the status of completion for those tasks,
and the number of hours worked per task. These
reports will be shared on the Hive collaboration
platform and collated by the team leader into a
group weekly progress report.

c) Activity — Recordkeeping: Each team
member will maintain a log documenting actions
taken, the reasons for those actions, references used,
and ideas considered. Photographic documentation
and design sketches will be generated as appropri-
ate, in anticipation of use in reports and presen-
tations. Datasheets will be kept for reference and
citation.

d) Activity — Evaluations: In concurrence
with the change-of-command events, the retiring
team lead will produce an Outgoing Team Leader
Report. At twelve-week intervals, each team mem-
ber will perform peer evaluations for each other
team member.

e) Activity — Professional Development:
Team members will attend professional develop-
ment sessions, as scheduled by the project manager.

H. Summary of Work
A total of 803 hours of work has already been

applied during the fall semester to the progress
of this project to date. Approximately the same
amount of work is anticipated during the spring
semester before the project reaches its final stage
of completion.

Table IV: Work performed and anticipated, by task, Fall 2013

Hours
Task Performed Anticipated

Mechanical Build System 60.5 90
Control System 159 180
Stabilization System 154 50
User Interface System 17.5 30
Camera System 13.5 200
Administration 398.5 400

Total 803 950

I. Risk Assessment
1) Risk Identification

a) Inability to complete major subtask.
i) Inability to complete Airframe.

ii) Inability to complete the control system.
iii) Inability to complete stabilization sys-

tem.
iv) Inability to complete UI.
v) Inability to complete camera subsystem.

b) Damage to hardware.
i) Damage to Airframe.

ii) Damage to propellers/motors.
iii) Damage to BBB.
iv) Damage to IMU.
v) Damage to camera.

c) Loss of software.
d) Loss of software for control system.
e) Loss of software for IMU.

2) Possible Causes of Failures
a) Potential causes of inability to complete sub-

tasks
i) Human failure

A) Loss of Team member due to sick-
ness or death.

B) Inability of team member to com-
plete assigned task.

ii) Damage to hardware.
A) see above

iii) Loss of software.
A) see above

b) Potential causes of hardware damage
i) Damage to Airframe.

A) Crashing the robot.
B) Electrical shorts/fire.
C) Children.
D) Dropping/kicking/mangling bot.

ii) Damage to propellers/motors.
A) Crashing the robot.
B) Electrical shorts/fire.
C) Children.
D) Dropping/kicking/mangling bot.

iii) Damage to BBB.
A) Electrical shorts/fire.
B) Dropping/kicking/mangling BBB.

iv) Damage to IMU.
A) Electrical shorts/fire.
B) Dropping/kicking/mangling IMU.

v) Damage to camera.
A) Electrical shorts/fire.
B) Dropping/kicking/mangling camera.

c) Potential causes of software loss
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i) Loss of software for control system.
A) Loss due to deletion.
B) Loss due to incorrect changes made.

ii) Loss of software for IMU.
A) Loss due to deletion.
B) Loss due to incorrect changes made.

3) Mitigation plans
a) Mitigation strategy for inability to complete

subtasks
i) Cross train team members on tasks.

ii) Seek outside assistance if task problems
can not be surmounted.

b) Mitigation strategy for damage to hardware
i) Keep replacement parts on hand for

breakable items.
ii) Check all connections before powering

up circuits.
iii) Keep fragile parts/assemblies out

of the way so they are not
dropped/kicked/mangled.

iv) Keep hardware out of reach of children.
c) Mitigation strategy for software loss

i) Make backups of software to sites acces-
sible by all team members.

ii) Implement a version control system ac-
cessible by all team members.

VII. LABORATORY PROTOTYPE TASK
ASSIGNMENTS

Aaron Diab was primarily responsible for tasks
relating to the SphereBot Mechanical Build and
SphereBot User Interface Systems. Robert Wortman
was responsible for the SphereBot Control System.
Darrell Cahail was primarily responsible for the
SphereBot Stabilization System. Another developer
was responsible for the SphereBot Camera System,
but little work was put into that aspect before
the Design Idea change. Naturally, there was a
considerable amount of cross-task work, especially
where the systems interfaced. Additionally, all de-
velopers were responsible for reports, presentations,
and assorted administrative tasks. The time worked
on each of these tasks is broken down by team
member in Table V.

VIII. DEPLOYABLE PROTOTYPE FUNDING

The majority of the development expenses con-
tinue to be defrayed by the developers’ own personal

funds. A grant from Intel Corporation made possible
the water jet cutting required for successful comple-
tion of the third-generation, carbon fiber frame.

IX. DEPLOYABLE PROTOTYPE SCHEDULE

February 1, 2014 SphereBot Laboratory Proto-
type complete. Prototype too heavy to fly.

February 8, 2014 Mechanical Engineering student
found to help with SphereBot frame redesign.

February 14, 2014 The final decision to create a
line crawler to observe the line was made and
development planning began.

February 15, 2014 New SphereBot frame initial
design CAD drawings done. Lab prototype will
be presented at AIAA.

February 26, 2014 Rob began SphereBot control
system redesign. Messaging queue created.

February 21, 2014 The prototype frame of the line
crawler was completed.

February 22, 2014 The project was presented at
the AIAA conference, hosted at California
State University, Sacramento.

February 24, 2014 The line crawler programming
was completed and the electronics were
mounted to the frame so that the line crawler
could travel down the simulated transmission
line.

March 1, 2014 UI on iPad connects to SphereBot
over Wi-Fi. Control system UI module devel-
opment started.

March 3, 2014 A camera was added to the line
crawler and images could be acquired through
a computer interface.

March 15, 2014 New frame parts have been cut
and are ready for assembly. New IMU installed
into SphereBot.

March 17, 2014 The line crawler met each basic
feature, including deployment, traversing the
line, and image acquisition.

March 29, 2014 New SphereBot frame largely
complete. Electronics installation begun.

April 5, 2014 New SphereBot frame complete.
Electronics sled still not done.

April 19, 2014 SphereBot electronics sled com-
plete. Next generation control system ready for
testing. IMU data unstable.

April 26, 2014 SphereBot UI refined. Mechanical
vibration found to be at fault for unstable IMU
data.

May 1, 2014 Filter enabled in SphereBot IMU.
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Table V: Hours worked during Fall 2013, by team member

Hours
Task Robert

Wortman
Aaron
Diab

Darrell
Cahail

SphereBot Mechanical Build 12 118
SphereBot Control System 134.5 24 67
SphereBot Stabilization System 8 164.5
SphereBot User Interface System 11.5
SphereBot Camera System 5
Reports and presentations 114.5 56
Assorted administration 76.75 90

Total 337.75 312.5 231.5

Stability improved for at rest state. IMU still
unstable when motors ran.

X. DEPLOYABLE PROTOTYPE WORK
BREAKDOWN STRUCTURE

This section describes a hierarchical system of
tasks which will allow the successful construction,
testing, and demonstration of the robot deployable
prototype.

A. Task — SphereBot Mechanical Build
1) Subtask — Design Carbon Fiber frame:

a) Activity — Find assistance for carbon fiber
build: The developer will seek the assistance of the
tech shop in identifying a mechanical engineering
student that will be able to assist the team in creating
a lighter carbon fiber frame with the laboratory
prototype frame as a model.

b) Activity — Take Measurements of prelimi-
nary frame: The developer will measure the labora-
tory prototype frame and record the measurements
for use in designing the new frame.

c) Activity — Design new frame: The devel-
oper will work with the previously identified me-
chanical engineering student to draft CAD drawings
to be used in the new frame design.

2) Subtask — Build Frame:
a) Activity — Manufacture carbon fiber sheets:

The developer will work with mechanical engineer-
ing students to manufacture the carbon fiber sheets
that will compose the new frame.

b) Activity — Have parts cut : The developer
will send the previously manufactured carbon fiber
sheets and the CAD drawings of the frame parts to
a qualified facility to have the parts precision cut.

c) Activity — Assemble frame from parts: The
developer will work with the assisting mechanical
engineering student to assemble the main body of
the new frame from the precision cut parts.

d) Activity — Attach servos: The developer
will work with the assisting mechanical engineering
student to attach the servos to the main body of the
new frame.

e) Activity — Attach lift motors: The de-
veloper will work with the assisting mechanical
engineering student to attach the lift motors and
propellers to the center tube of the frame.

f) Activity — Attach control surfaces: The
developer will work with the assisting mechanical
engineering student to assemble and attach the con-
trol surface to the new frame.

3) Subtask — Build Electronics Sled:
a) Activity — Attach electronics to sled: The

developer will attach all internal electronics, includ-
ing the battery, to the electronics sled.

b) Activity — Attach bottom disk: The devel-
oper will attach the bottom carbon fiber sandwich
disk to the electronics sled.

c) Activity — Attach IMU to sled: The devel-
oper will attach the inertial measurement unit to a
holder at the top of the sled and attach the associated
wiring.

d) Activity — Ensure fit: The developer will
ensure that the sled and electronics fit well into the
new frame’s center tube.

B. Task — SphereBot User Interface
1) Subtask — Create network connection to

SphereBot:
a) Activity — Write code to create network

socket: The developer will write a function to
establish a TCP connection to the SphereBot control
system given an IP address and port number. The
developer will also write a function to disconnect
from the SphereBot control system.

b) Activity — Add connection text input boxes
and buttons: The developer will add the user in-
terface elements to allow inputting the SphereBot
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IP and port number and to initiate connection and
disconnection.

2) Subtask — Create data display: The devel-
oper will add user interface elements to display
pertinent data to the user such as current throttle
setting and connection status.

3) Subtask — Create thumb joystick: The devel-
oper will write code to create a custom user interface
element that works as a thumb joystick that controls
the pitch and roll attitudes of the SphereBot.

4) Subtask — Create Yaw and Throttle sliders:
The developer will add throttle and yaw sliders to
the user interface and write the code for the sliders
to allow them to set the throttle and yaw of the
SphereBot.

5) Subtask — Create Kill Switch: The developer
will add a user interface element and write the code
to implement a kill switch that causes the SphereBot
control system to exit and powers off all servos and
lift motors.

C. Task — SphereBot Control System
The responsible developer will complete the con-

trol system. The architecture of the control system
will be refactored with a message queue architecture
in order to allow single points of communication
between modules, allow a single point of waiting
within a module, and to avoid the need for busy-
waiting or unnecessary polling. The unfinished por-
tions of the system will be completed, and the
whole system will undergo integrated testing and
refinement.

1) Subtask — Create Message Queue: The de-
veloper will create a message queue that will pro-
vide a clean, robust interface between modules. This
message queue will be internally protected by a
mutex and signaled by a condition variable, and will
be provided with an abstract programming interface
to eliminate code clutter and redundancy.

2) Subtask — Write User Module: The developer
will write the code to implement a user interface
module for the SphereBot’s onboard control system
that receives control data from the user interface
running on the iPad and sends that data to the core
control module.

3) Subtask — Write Stabilization Module: Like-
wise, the stabilization module is complete and ad-
equately relays information from the Stabilization
System. The developer will integrate it into the
refactored architecture of the control system, test
its operation, and refine as necessary.

4) Subtask — Write Core Control Module: The
developer will transition the core module to the
message queue architecture in order to allow both
input modules to communicate concurrently. The
developer will add the required PID controllers
necessary to direct the electromechancial portions
of the robot.

a) Activity — Refactor Module Architecture:
The developer will use the message queue to coor-
dinate reading from the input modules, processing
the input data, and providing the resulting control
signals to the appropriate actuators.

b) Activity — Write PID Controllers: The de-
veloper will write a set of PID controllers that will
maintain the stability of the robot while in flight, as
well as respond to control inputs from the user.

D. Task — SphereBot Stabilization System
1) Subtask — Establish Yaw Indication: In the

flying sphere yaw control is going to be an ex-
tremely important aspect of the stabilization system.
It is going to compensate for any unwanted rotation
about the yaw axis. This is the axis that passes
vertically up and down through the center of the
sphere. There is a large tendency for the sphere to
want to rotate about this axis because of the rotation
of the lift motors that make the flight possible.

2) Subtask — Establish Pitch and Roll Indica-
tion: Roll and Pitch control for stabilization come
next. The Roll control is the rolling of the sphere
toward the left or the right about its horizontal plane.
Unwanted roll causes the sphere to drift left or right,
making hovering impossible. Pitch is the tipping
of the sphere forward (down) or backward (up).
Unwanted pitch causes the sphere to drift to the
front or back.

3) Subtask — Establish Altitude Indication:
Altitude control is exactly what it says. This is
what control the power to the lift motors for rising,
falling, or maintaining a hovering stance. When this
value is combined with yaw it is possible to control
vertical velocity.

4) Subtask — Establish Magnetic Compass In-
dication: A compass is the sensor that allows the
craft to detect and maintain a heading using the
earth’s own magnetic field. This same sensor can be
exploited to detect the distance we are from a wire
carrying an electric current. This can help in the
guidance of the sphere when inspecting live power
lines. This sensor is also used in the yaw sensor
fusion.
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5) Subtask — Establish Serial Communications:
These systems are not useful independently. A
communication system that combines the data from
these systems and feeds it to the motor and servo
control system is required.

E. Task — DOC Frame Design

The developer will design and build a frame
capable of being deployed onto a transmission line
from an aerial device.

1) Subtask — Build Frame: The developer will
create a platform capable of traveling down a trans-
mission line after wheels are attached.

a) Activity — Design frame: The developer
will draw out the frame of the line crawler in such a
way that the drawings can be taken to the ECS Tech
shop to be manufactured. Designs may be tested on
foam board before being implemented. Assistance
from the ECS Tech shop is recommended.

b) Activity — Build Frame: The developer will
work with the ECS Tech shop in cutting out the
initial frame and forming it into a warm spot.

2) Subtask — Install Propulsion Electronics:
The developer will install the electronics that allow
the line crawler to traverse the transmission cable.

a) Activity — Install wheels: Continuous rota-
tion servos will be mounted into the pre-cut holes
in the frame and wheels will be attached.

b) Activity — Install electronics on platform:
Batteries, a chipKIT uC32, and a motor shield will
be mounted into the frame at the base of the line
crawler.

3) Subtask — Install Deployment System: A sys-
tem will be installed which will provide feedback
for the state of the line crawler in relation to its
deployment status.

a) Activity — Design Deployment system: The
developer will choose sensors which will allow the
microcontroller to correctly interpret it’s deploy-
ment status

b) Activity — Implement Deployment system:
In which, the developer will build and implement
the deployment design previously decided on.

4) Subtask — Test Frame: The developer will
test the frame’s ability to be deployed onto the
transmission line and traverse it while getting clear
images.

a) Activity — Test Individual Components:
Test each new part as it arrives for functionality
with the new servo.

b) Activity — Test Frame: Combine the
propulsion system and the electronics before run-
ning the frame down the cable is to verify it is to
verify the ability of the robot to smoothly travel
down the transmission line.

F. Task — DOC Control System

The developer will implement a control system
to propel DOC down the transmission line without
user input.

1) Subtask — Propulsion System: The developer
will implement a system to propel the line crawler
smoothly down the transmission line.

a) Activity — Wheel Calibration: The devel-
oper will program previously-installed tires to run
a set distance down the simulated line and return
without user input.

b) Activity — Ramp Stabilization: The devel-
oper will modify the previously written code to
ramp the speed up and down to prevent the line
crawler from rocking.

c) Activity — Deployment Integration: The
developer will integrate the ability to sense when
the line crawler has been deployed onto the line to
activate the propulsion system without user input.

2) Subtask — Pole Sensing: After the propulsion
system is stable, a sensor will be implemented by
the developer which will provide the line crawler
with the ability to stop once it gets within a set
distance of the power pole.

a) Activity — Sensor Mount: The developer
will mount a sensor to the robot in such a way that
is capable of sensing an oncoming pole.

b) Activity — Sensor Integration: The devel-
oper will modify the propulsion system code to
allow the system to stop when DOC is a set distance
away from the pole.

G. Task — Latch System

The developer will attach a high-torque servo
with a latch arm to provide additional security for
the line crawler on the line.

1) Subtask — Latch Mechanical Build: The de-
veloper will design, build, and attach a latch system
to the previously built line crawler frame strong
enough to hold the robot onto the cable.
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a) Activity — Prototype Latch: The developer
will build a prototype latch out of a cheap, easy to
manipulate material to find a design that will pro-
vide a feasible connection between the transmission
cable and the main frame of the line crawler and find
a way to mount the latch servo.

b) Activity — Final Latch: The developer will
implement the design of the prototype build using
a stronger, more durable material.

2) Subtask — Latch Programming: The devel-
oper will program the latch to open as DOC is being
lifted off the line, closed while the line crawler is
on the line, and open as it is being deployed onto
the line.

a) Activity — Latch program: The developer
will write a code to control the state of the high-
torque latch servo based on the state of a switch.

b) Activity — Integration: The developer will
implement the latch code in the previously written
code.

c) Activity — Testing: The team will test the
code to insure the integration did not cause other
errors and to test the ability of the line crawler to
stay on the transmission cable with the latch system.

H. Task — System Testing
DOC’s developers will test the system to insure

it functions as required by the specifications.
1) Subtask — PVC Test: The developers will test

the ability of the line crawler to go up and down 3"
PVC pipe, which acts as a simulated transmission
cable.

a) Activity — Straight Cable: For this test, the
basic functions of the control system and the frame
are tested as DOC is run back and forth on the pipe.

b) Activity — Angles: This test is conducted
to see if DOC can handle going up or down angles.
The developers will vary the incline and not the
changes in the ability of the line crawler to go up
the incline.

c) Activity — Bumps: The developers will test
the ability of the line crawler to go over lumps on
the simulated line.

2) Subtask — Textured Simulated Cable: The
developers will test DOC’s ability to travel down
different types of simulated cable.

a) Activity — Develop Cable: The developer
will construct a simulated cable from a different
material

b) Activity — Retest Line Crawler: The devel-
oper will note DOC’s performance on the line.

I. Task — Administration
The team will continue to perform various ad-

ministrative tasks and follow project management
procedures, as required to complete the project.

J. Summary of Work
A total of 881.75 hours of work were applied

during the Fall semester to the progress of this
project. During the Spring semester, an additional
1662.25 hours were applied, for a total of 2544
hours.

Table VI: Work performed, by task, whole project

Hours
Task Fall 2013 Spring 2014

SphereBot Mechanical Build 130 77
SphereBot Control System 225.5 234.5
SphereBot Stabilization System 172.5 155
SphereBot User Interface System 11.5 22
SphereBot Camera System 5
DOC Frame 37
DOC Attachment System 35
DOC Vision System 192.25
DOC Control System 108
Reports and presentations 170.5 569.75
Assorted administration 166.75 231.75

Total 881.75 1662.25

K. Risk Assessment
The identified risks, likely causes, and appropriate

mitigation plans remain largely the same as they
were during the Laboratory Prototype phase, as
outlined in Section VI-I.

XI. DEPLOYABLE PROTOTYPE TASK
ASSIGNMENTS

Aaron Diab remained primarily responsible for
tasks relating to the SphereBot Mechanical Build
and SphereBot User Interface Systems. Robert
Wortman remained responsible for the SphereBot
Control System. Darrell Cahail remained primarily
responsible for the SphereBot Stabilization System.
For the Deployable Observational Crawler, Rebecca
Wingo was responsible for the DOC Frame and for
the DOC Attachment System, Emmanuel Dupart
was responsible for the DOC Vision System, and
responsibility for the DOC Control System was
shared between Rebecca Wingo and Emmanuel Du-
part. There continued to be a considerable amount
of cross-task work, and all developers remained
responsible for reports, presentations, and assorted
administrative tasks. The time worked on each of
these tasks is broken down by team member in Table
VII.
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Table VII: Hours worked during Spring 2014, by team member

Hours
Task Robert

Wortman
Aaron
Diab

Darrell
Cahail

Rebecca
Wingo

Emmanuel
Dupart

SphereBot Mechanical Build 6.5 70.5
SphereBot Control System 91.5 30 113
SphereBot Stabilization System 0.5 10.5 144
SphereBot User Interface System 22
DOC Frame 32 5
DOC Attachment System 35
DOC Vision System 10 41 141.25
DOC Control System 49 59
Reports and presentations 179 83 175 132.75
Assorted administration 54.5 77.5 25 74.75

Total 332 303.5 257 357 412.75

XII. MARKET REVIEW

The developers attended the 2014 American In-
stitute of Aeronautics and Astronautics Region IV
conference, hosted at California State University,
Sacramento. At the conference, the developers pre-
sented their work before a panel of judges and an
assembly of peers, and solicited feedback from the
same.

A. Networking Feedback
The feedback we received during the informal

networking sessions provided for during the AIAA
conference was generally positive with a couple
of constructive suggestions provided. Of the other
comments that we received that most constructive
was from one attendee that suggested we might
consider using a material called G10 for the new
frame due to the fact that carbon fiber is conductive.
It was suggested that the conductivity of carbon
fiber might however serve to shield our electron-
ics to some degree. Many of conference attendees
showed interested in the design and one went so
far as to request that we present the SphereBot
to an UAV club that he currently is a member
of. Another commenter suggested that we without
fail approach utility companies with the SphereBot
because the commenter believed that the utility
companies would be keenly interested in employing
it. The intense interest expressed by the conference
attendees that we spoke to demonstrates to some
extent that there will be demand in the market for
a fully functional SphereBot capable of performing
inspections with the addition of the line crawler.

B. Judges Feedback
The most prominent question asked by a judge

was what would happen if a component on the

SphereBot failed to which the answer was the
SphereBot would likely be crash and be damaged.
The judge expressed the opinion that redundancy
should be built into the SphereBot so that a failure
of any one component would not be catastrophic.
We responded that the cost of losing a SphereBot
was greatly overshadowed by the cost incurred when
a line worker is either injured or killed. The judge
remained unswayed in his opinion. It was also asked
how much the SphereBot cost to which the answer
was between 200 and 300 dollars. According to one
team member a judge questioned the accuracy of
that sum.

The formal feedback from the judges was primar-
ily concerned with the quality of the presentation
and the paper and did not address the quality or
marketability of the SphereBot design. The formal
feedback did in several places request more data
showing the operating characteristics of the Sphere-
Bot. Unfortunately not having completed our device
test plan our paper was lacking in test data that
would paint a greater picture of the utility offered
by the SphereBot.

XIII. SPHEREBOT USER MANUAL

A. Introduction

High tension power lines are the backbones of
electrical energy distribution systems. As such they
must be diligently maintained. In many cases this
maintenance must be performed by personnel in
direct contact with the power lines. This kind of
inspection is inherently dangerous. The SphereBot
is designed to assist in the inspection of power lines
to mitigate the danger posed to workers.
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B. Description of SphereBot

As its name suggests the SphereBot is a spheri-
cally shaped airborne robot. By attaching a camera
(sold separately) to the SphereBot and guiding it
near the power lines to be inspected a ground
based operator can obtain pictures or video that
can be used to diagnose line faults. Additionally
the SphereBot can be used to deploy and retrieve
appropriately designed line crawler robots (also
sold separately) to more closely inspect lines when
needed. Interfacing with the SphereBot is quick and
easy using industry standard wireless communica-
tion protocols. The user interface program itself runs
on the included Apple iPad device. Access to the
internal electronics, including the onboard battery,
is accomplished by removing the electronics sled
from the center of the SphereBot.

C. Figures of SphereBot showing major compo-
nents

The major components of the SphereBot are
illustrated in Figure 4. The User Interface is detailed
in Figure 4a, and the Mechanical Build is detailed
in Figure 4b.

D. Setting up the SphereBot

1) Charging the battery: The SphereBot comes
with a 35C 11.1V Lithium Polymer and the associ-
ated charger. Before operating the SphereBot please
fully charge the battery. The battery can be charged
by connecting the power and balance connectors to
the charger and selecting the LiPo Balance program.
Charging takes approximately one hour.

2) Putting the battery in the sled: Once the
battery has been charged insert in into the battery
slot on the electronics sled with the connector wires
pointing down on the battery connection side of
the sled as in the Figure 1a. Connect the connector
and secure the wiring with light packing tape as in
Figure 2b.

3) Putting the sled in the SphereBot: Turn the
SphereBot over and feed the servo wires first into
the center cavity as in Figure3. Gently insert the
sled into the center cavity and slide it in until the
bottom disk is flush with the bottom of the central
housing. Do not force the sled in or you will break
the electronic components.

4) Connecting the servo wires: Once the sled is
fully inserted you may connect the servo wires. The
sled side servo wires are labeled 2 through 5. The
servos themselves are numbered 2 through 5 starting
with the left front servo and proceeding clockwise.
Please attach the servo wires accordingly, making
sure that the black wires from the servo and the
sled are lined up.

5) Connecting the Motor wires: The motor and
electronic speed controller wires are color coded.
Using two pairs of hemostats or small pliers reach
inside the access holes, being careful not to damage
the IMU, and connect the motor wires accordingly.

6) Setting up the Wi-Fi router: The Wi-Fi router
comes preconfigured and must be plugged in and
active before the SphereBot is powered on. A good
way to check if the router is ready to go is to connect
to it first with iPad. Once the iPad can connect to
the router you are ready to power on the SphereBot.

E. Powering on the SphereBot
1) Where to find the on switch: The SphereBot’s

main power switch is found in the center of the
forward access hole. Slide it to the left to power on
the SphereBot.

2) Ensuring motor ESCs are cal’d: Immediately
after powering on the SphereBot the electronic
speed controllers are calibrated. A proper calibration
sequence is indicated by a series of three beeps
rising in tone followed by three beeps of the same
tone, then a short delay, and ending in a single beep.
If that sequence of beeps is not heard the SphereBot
has failed to calibrate the speed controllers.

3) Wait until SphereBot is fully booted: Approxi-
mately thirty seconds to a minute after power on the
SphereBot onboard computer should be fully booted
and it is time to log into the SphereBot and start its
control system.

4) Logging in to SphereBot and starting the con-
trol system: Logging into the SphereBot is accom-
plished using the WebSSH application installed on
the iPad. Simply tap the WebSSH icon and choose
the preconfigured connection for the SphereBot.
Once you have logged in change to the SphereBot
directory and start the control system by running the
./SphereBot command.

F. The SphereBot User Interface
1) Overview: The User Interface is illustrated in

Figure 4a. The connection configuration and con-
trols are at the top left, the status and data feedback
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(a) User Interface major components

(b) Mechanical System major components

Figure 4: Major components of the SphereBot
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are at top center, and the safety kill switch is at top
right. In the bottom left is the thumb joystick used
to control the pitch and roll. And, on the bottom
right are the sliders used to control lift and yaw.

2) Connecting to the SphereBot: After you have
started the control system you can use the user in-
terface app on the iPad to connect to the SphereBot.
Simply tap on the SphereBot icon, enter the IP
address and port number of the SphereBot you want
to control, and tap connect.

3) Controlling the SphereBot:
a) Getting airborne and changing vertical po-

sition: Once you have connected to the SphereBot
with the iPad user interface it is time to get airborne!
With the SphereBot propellers pointing away from
the ground increase the throttle by sliding the coarse
throttle slider to the left until the SphereBot is
airborne and then throttle back until the SphereBot
is hovering or is lift neutral. Once the SphereBot
is hovering you can use the fine throttle slider to
move up and down vertically. If you let go of the
fine throttle slider, or slide of the edge, the slider
button will go back to center and the SphereBot will
return to hovering. Do not run the coarse throttle up
to full powering when taking off or your SphereBot
will take off like a rocket!

b) Forward, backward and side to side move-
ment: The thumb joystick on the left side of the
user interface controls forward, backward, and side
to side translation. Slide the thumb stick forward
to move forward, backward to move backward and
to the right and left to move in those directions
respectively.

c) Rotating the SphereBot: Rotating the
SphereBot on its vertical center axis is accomplished
using the Yaw slider in the lower right of the user
interface. Slide the slider to the right to rotate right
and left to rotate left.

4) Shutting down the SphereBot: The SphereBot
onboard computer’s filesystem can be damaged by
improperly shutting down the SphereBot. Before
powering off the SphereBot, with the SphereBot
safely on the ground, tap the Kill Switch on the user
interface. Switch to the WebSSH app with the active
SphereBot connection and type "sudo poweroff".
When prompted for the password enter "temppwd"
and hit enter. After approximately thirty seconds it
will be safe to power off the SphereBot.

5) When things go wrong:
a) Kill the control system: If the SphereBot

goes out of control and you need to stop it in

a hurry, hit the Kill Switch. The kill switch will
immediately stop the control system and disconnect
the user interface from the SphereBot. This will stop
the lift motors and end all stability control. This will
not power down the SphereBot onboard computer
so once the danger is passed you can log back into
SphereBot and restart the control system.

b) Move out of the way of falling SphereBot:
If you must kill the control system while the Sphere-
Bot is in flight then make sure all personnel are out
of the way of the falling SphereBot.

6) Troubleshooting:
a) SphereBot does not power on: Check the

battery to make sure it is charged. Check the battery
connector. Make sure the power switch is in the
right position.

b) SphereBot does not connect to router:
Make sure the router is on and you can connect to it
with the iPad. Check to make sure the SphereBot’s
onboard Wi-Fi adapter is fully seated.

c) Lift motors will not calibrate: SphereBot is
defective, refer to service.

d) Battery dies quickly: Run balance program
on charger. Charge the battery. Replace the battery.

e) User interface won’t connect to SphereBot:
Ensure the router is powered on and that the iPad
has a good connection. Power cycle the SphereBot.

XIV. DOC USER MANUAL

A. Introduction

The Deployable Observation Crawler, or DOC,
is a semi- autonomous line crawler robot designed
to be used for the inspection of high tension trans-
mission lines. It is meant to be deployed onto this
line from an unspecified aerial deployment system.
It will provide additional information about the line
and its current state. This will include, but not be
limited to, images of sections of the power line.

B. Setting up the DOC

1) Charging the battery: To power DOC, a 9.6V
rechargeable battery is used. Before proper function-
ing of DOC can be obtained, the user must make
sure the battery pack is fully charged. Make sure to
use the provided charger to ensure the optimal life
span for the rechargeable batteries.
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2) Positioning Camera: Initial testing and set-up
of the camera itself is necessary by the user. Before
sending the line crawler onto the line, the user will
need to position the camera to the angle of their
choice. This is highly important because once DOC
is deployed onto the line, there will be no chance to
change this angle. The desired angle can be obtained
by running tests and operating the bot while on the
ground and viewing images.

3) Test Deployment Spring: Pick up the robot
and set it down. When the line crawler is released,
the lever switch should be pressed down, at which
point the latch should close, and the tires should
start turning. If this does not happen, realign the
spring and the switch and verify power has been
supplied to the microcontroller.

C. The DOC Operations

DOC is designed to be a semi-autonomous robot
with minimum human interaction necessary once
deployed because of the designed use of the crawler.
This implies that after initial set up of the line
crawler, DOC operations will be handled by pre-
written code. The only user required input dealing
with the operation of the system will be in the
retrieval of the images.

1) Frame Design: The frame is designed to allow
the line crawler to be placed on the line by an
aerial deployment device. It keeps the weight of the
system balanced and provides a platform and mount
for the other mechanical and electrical components
of the system.

2) Latch: The latch acts as a catch system to
prevent DOC from falling off the cable as it travels
down the line and while it is being deployed onto
the line by blocking the opening in the frame into
which the cable was inserted during deployment.
The latch is built from aluminum strips and a rubber
wheel. The physical latch is mounted to a high
torque retract servo to allow it to open and close
based on the input from the microcontroller.

3) IR Distance Sensor: The infrared distance
sensor provides an analog voltage level which is
then used to determine the distance of an object
relative to the front of the line crawler bot. With this
distance the robot will know when it is approaching
a pole or other obstacle that it cannot overcome
and will stop. If this happens, DOC will need to
be retrieved (see Section 8) and moved past the
obstacle it has encounter.

4) Encoder System: The encoder system on DOC
is used to determine the distance traversed on the
line by the line crawler bot. It uses a 20 notched
encoder wheel, an IR sensor, and an IR light bulb.
It uses the number of IR detections to determine
whether the wheel has made a full rotation. Every
niche sends a pulse to the IR detector indicating that
a niche was passed and increments a counter. Once
this counter reaches multiples of 20 (i.e. 20, 40,
etc.) we then increment a wheel rotation counter.
Once the robot stops, the wheel rotation value is
multiplied by the circumference of the wheel to give
us a distance traveled in inches.

5) Camera System: The camera system is op-
erated and controlled by a Raspberry Pi - Model
B microcontroller. There are a couple of items
(included in the package) that you will need in order
to view the images taken. These two items are a
micro USB cable and an HDMI cable.

a) Taking Photos: The code for the camera
system is written to begin taking photos as soon
as the system is turned on, or in our case as soon
power is provided to the circuit. It will continue to
take pictures until the system is turned off. Make
sure the camera angled correctly and position you
want it in before you deploy the system.

b) Retrieving Photos: Proceed to plug one end
of the HDMI cable into the Pi and the other into an
HDMI monitor of your choice. Power to the Rasp-
berry Pi is required in order to retrieve the images
from it. Please make sure that adequate power is
supplied to the Pi by either connecting the battery
pack or, if your battery pack is charging, plugging
one side of the provided micro USB cable into a
computer and the other side into the Pi. In order to
retrieve the images taken by the camera system, the
user will need to sign into the Pi. The username for
logging in is ‘pi’ and the password is ‘password’.
Once you have successfully logged into the Pi,
type the command "startx" in the command prompt
window in order to open the operating system of the
Raspberry Pi. Once this starts up, you will find the
images taken have been saved to a folder with the
path name: ‘/home/pi/ImageCapture/’. Once these
are located, you may plug a USB flash drive into
the Pi and transfer the images from the Pi onto the
flash drive.

6) Deployment: The deployment system consists
of a wire hook attached to the frame on one side
through a small spring which activates a mini lever
switch as the weight of the system is taken off the
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wire, which occurs and the line crawler is placed
down, hopefully on the transmission cable. Once
the switch is activated, the latch closes to keep the
line crawler on the line and the line crawler will
begin to travel down the line.

7) Retrieval: The switch for the deployment
system acts in reverse when the line crawler is
retrieved. As the line crawler is picked up by the
wire hook, the mini lever switch is deactivated
causing the latch to open and the motion of the line
crawler to stops, if it hasn’t already.

XV. HARDWARE

A. SphereBot Block Level

The mechanical build comprises the main body of
the robot, as well as the electronic components that
provide locomotion, control actuation and a delivery
platform for sensors and cargo.

The SphereBot’s electromechanical and elec-
tronic components are comparable to a human’s
muscles, internal organs and sensory organs re-
spectively. The lift motors, propellers and the con-
trol surface servos make up the electromechanical
components. Like human muscles they allow the
SphereBot to move about in and manipulate its
environment. The lift motors used in the SphereBot
are contra-rotating DC brushless motors built in a
single assembly. The contra-rotating setup results in
zero net torque on the robot’s frame while flying,
so that no other mechanism is needed to keep the
robot from spinning. There are additionally four
ultra light, ultra fast micro servos that adjust the
robot’s control surfaces to control its flight. An
11.1V lithium polymer battery powers the robot.
The robot’s internal and sensory organs are its
electronic components. The onboard computer, a
1GHz ARM based BeagleBone Black single board
computer, is its brain. A five volt switching power
supply, a USB hub and a six channel Pololu Mi-
cro Maestro servo controller serve as the robot’s
digestive and nervous systems. The functions of the
eyes and ears are performed via an 802.11b wireless
Ethernet adapter.

B. DOC Hardware, Block Level

The line crawler has a number of electrical and
electromechanical hardware components which are
combined with software to allow the line crawler to
travel down and inspect transmission lines reliably.

Figure 5: Electronics Sled, front and back

Four electromechanical servos are used in the line
crawler, all of which can be safely run by a 5V
supply and are controlled using pulse width mod-
ulation, PWM, sent from the microcontroller. Two
of these servos are continuous rotation servos, for
which the PWM signal sets the speed of the servo’s
rotation, and have been attached to tires to provide
controllable propulsion down the cable. Another
continuous rotation servo is part of the encoder
system, and matches the speed of the propulsion
servos. The attached encoder uses infrared light
and a counter to calculate the number of times
the servo has turned. The last servo is a retract
servo, specifically the Hitec 75-BB, attached to the
latch arm, and, unlike the other servos, the servo is
designed to either open or close by rotating to either
0 degrees or 180 degrees determined by the PWM
value sent to it. In addition to these components,
a normally open mini lever arm switch is used in
the deployment system. The distance to the pole is
determined through an IR sensor, which measures
the amount of infrared light reflected back to it
from the IR led in the sensor and converts it to
a voltage which can be read through an analog
pin on the microcontroller. A 9.6V Nickle-Metal
Hydroxide battery is used to power the system,
which is regulated through the microcontroller and
the motor shield which powers system shown by
the block diagram in Figure 6 An external 5VDC
voltage regulator is used to regulate the voltage from
the battery to power the camera system.

1) DOC Deployment System: The hardware for
the deployment system includes a wire for the
aerial device to connect to, a normally-closed switch
which is activated by the weight of the line crawler
after it has successfully been deployed, and a latch

25



Figure 6: DOC uC32 Block Diagram

system which aids in the transition from the aerial
device and the wire. In order to understand this
system, a block diagram has been generated for
the deployment system and is shown in Figure 7.
The deployment device is controlled by the user

Figure 7: DOC Deployment System Block Diagram

and connects to DOC through a simple wire hook
built into the frame. This hook has a small spring
on it which causes the wire to activate a lever
switch, and sends a high to the microcontroller.

After that contact has been made, the servo the latch
is attached to will activate to close the latch. Once
closed, the latch will maintain near-contact with the
transmission cable. The latch is designed to make
contact if DOC starts slipping, and provides a way
to prevent the line crawler from falling off the line
in the deployment process once it has been aligned
with the transmission line.

2) DOC Control System: For the control sys-
tem, the hardware includes a motor shield, two
continuous rotation servos with attached wheels for
propulsion down the cable, an infrared, or IR, sensor
and the lever switch and latch system from the
deployment system. The motor shield acts as a
shield, and plugs directly into the microcontroller.
Once the shield is plugged in, the pins are connected
between the two boards. The mini-lever switch is a
small switch mounted just below the deployment
wire, which is plugged into pin 2 and will send
a high voltage once the line crawler is deployed,
allowing the latch servo, plugged into PWM pin
13, to close so that the line crawler will not fall off
the line while it is traveling down the cable. The
continuous rotation servos are directly mounted to
the wheels and are physically wired the the PWM,
pulse width modulation, pins 11 and 12 on the motor
shield on the microcontroller shown in Figure 8. The

Figure 8: DOC Control System Block Diagram

IR sensor plugged into analog pin 0 acts as sensor
to detect a pole as DOC nears it, allowing DOC to
stop before it runs into it.
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XVI. SOFTWARE

A. SphereBot Block Level

Because the Electronic Speed Controllers (ESCs)
which drive the lift rotors require boot-time calibra-
tion, and because boot-time calibration of the vane
servos was anticipated, the initial architecture of the
servo module (Figure 9) involved separate submod-
ules for each servo and a supervisor submodule to
coordinate their operation. Communication between
these modules was done via a series of variables
in shared memory, using mutexes and condition
variables to signal when data was available. This
was technically a viable option for the servo module
itself, but it caused difficulties when the time came
to build the stabilization and user modules. Because
any given module could only listen to a single
variable, the core could not receive input from both
the stabilization and user modules. For testing and
development, two versions (Figures 9a and 9b) were
created of this monolithic, first-generation control
system.

(a) Monolithic core/user unit

(b) Monolithic core/stabilization unit

Figure 9: First generation Control System, with monolithic
implementation of user or stabilization functionality

The second generation of the control system elim-

inated this difficulty by replacing the intermodular
communications with message queues. The servo
module retained its shared memory architecture in-
ternally, but receives settings from the core module
via its message queue. Rather than waiting on
either of the two input modules, the core module
waits only on its message queue for input. After
handshaking with the core module, the user and
stabilization modules wait on a network socket and
a serial port, respectively.

Figure 10: The second generation control system achieves
intermodular communication with message queues.

The third generation of the control system (Fig-
ure 11) overhauls the servo module to condense
the seven submodules into a single module. As the
initialization of the ESCs is now performed by the
Maestro servo controller, the extra complexity was
no longer needed. Additionally, an artifact of the
first generation of the control system had a portion
of the core module’s PID controllers implemented in
the servo module; this functionality is being restored
to the core module.

B. SphereBot Subroutine Level

1) Control System core routine: The Control
System’s core module starts by initializing its own
local variables and its incoming message queue.
Next, the core launches the user module, the sta-
bilization module, the servo module, and the heart-
beat submodule, passing the core’s message queue
to each of them. The core then waits to receive
messages indicating events, and responds to them. A
HELLO message indicates that a thread has started
and wishes to pass its own message queue to the
control core; this information is stored in a local
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Figure 11: The third generation control system simplifies the
core and servo modules

array. A UI_DATA or IMU_DATA message indi-
cates that the user module wishes to pass settings for
the PID controllers, or that the stabilization module
wishes to pass plant variables. A TICK message
indicates that the heartbeat module has measured
a fixed interval, configured at compile time. When
this message is received, the control core runs the
PID controller calculations and issues the result to
the servo module. Lastly, when the control core
receives a QUIT message, it passes the message to
all running modules, joins each of the threads as the
modules exit, and then exits itself.

2) Control System PID Controllers: The pitch
and roll channels have the most useful plant variable
data from the Stabilization System, and they are
most vital for the flight stability of the SphereBot.
Therefore, these two channels have robust PID
controllers. Fundamentally, they implement the set
of equations,

ekT = SPkT − PVkT (1)
µkT = PkT + IkT +DkT (2)
PkT = kP ekT (3)

IkT = IkT−T +
kP
TI
ekT (4) Figure 12: Control system core module simplified flowchart

28



DkT = kPTD (PVkT − PVkT−T ) (5)

where:
ekT is the instantaneous error between the setpoint

and the measured process (or plant) variable,
µkT is the control variable produced by the PID

controller,
kP is the proportional constant, a tuning variable,
TI is the reset time, a tuning variable, and
TD is the derivative time, a tuning variable.

The derivative component of the controller (Eqn.
5) uses the process variable, rather than the error, to
eliminate large changes in the output due to changes
in the setpoint. In actual implementation, the PID
controllers for pitch and roll start by updating a
moving average filter in order to reduce noise from
the IMU. Window sizes from 1 to 50 samples have
been tried; 15 samples appears to provide a good
balance with sufficiently low noise and sufficiently
high responsiveness. The individual proportional,
integral, and derivative components are calculated.
The integral portion is clipped to within the out-
put range allowed, and the integrator is quenched
entirely when the lift rotors are not running. These
measures prevent a condition referred to as windup,
in which uncorrectable errors accumulate and lead
to overcorrection. Finally, the three components are
summed, clipped to within the output range allowed,
and returned.

Because the process variable for yaw remains
erratic and the process variable for altitude has
insufficient resolution, the yaw and lift channels
are provided with skeleton PID controllers which
perform proportional calculation only.

3) Control System input modules: When the user
module is launched, it initializes its local variables,
passes a HELLO message to the control core, and
opens a listening TCP socket on all available inter-
faces. It accepts the first available connection and
begins reading data from the socket. If a message
from the User Interface System indicates that the
user has pressed the Kill button, a QUIT message
is passed to the control core; otherwise, the setpoint
data is packed into a UI_DATA message and passed
to the core for processing. The operation of the
stabilization module is similar. After initializing, it
opens a serial connection to the Stabilization System
and begins reading IMU data. If the checksum
passes after a record is read, the process variable
data is packed into an IMU_DATA message and
passed to the control core. In each module, after

each input record is processed, the module checks
its own message queue, solely to determine if it has
received a QUIT message. If not, the module waits
for its next input record.

4) Control System output module: When the
servo module is launched, it likewise initializes its
local variables and passes a HELLO message to the
control core. It then initializes the Pololu Micro
Maestro servo controller and waits for messages
from the core. Upon receiving a SET_VANE mes-
sage, the servo module records the desired con-
trol vane settings, to control pitch and roll. For
a SET_ROTOR message, the module records the
desired lift rotor settings, to control lift and yaw.
When the servo module receives a SRV_COMMIT
message, the module computes the individual servo
settings required to achieve the attitude configura-
tion settings, and commits those servo settings to
the Maestro. Finally, if the servo module receives a
QUIT message, it exits. Otherwise, it waits for the
next input message.

C. DOC Software, Block Level

Figure 13: DOC software block diagram

DOC’s software is split into two sections: the
image system and the microcontroller system. The
microcontroller system consists of five different
block sections interconnected through the program-
ming of the chipKIT uC32, the microcontroller used
in DOC. One block is the sensor used to detect
a pole, and the feedback from this sensor directs
the propulsion block to stop as DOC nears the pole
signifying the end of that section of the transmission
line. The deployment switch block activates when
the line crawler is set on the line and is used as
an indicator that the latch system should close and
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the propulsion system should start moving the line
crawler forward. Finally, the distance input block
acquires information from the encoder’s counter to
calculate information about the location of the line
crawler on the line. This information is intended to
be used to correlate the images taken of the line to
the specific location on the line, but does not impact
the operation of the robot on the transmission cable.

The image system consists of only one block
that is controlled by the Raspberry Pi Model B
microcontroller. One block is used to control, and
also receive data from, the HD camera being used to
take images of the line. This block simply records
video of the line and and receives it from the
camera. Once the video is received and saved, the
block then splits the video into frames and saves
these frames as images. Each image is time stamped
and then saved again to a specified location. This
time stamp is necessary in order to correlate the
encoder’s distance traveled calculations with each
image using the time stamp of each. The images
themselves are going to be used for later viewing
in order to determine the condition of the power
line.

1) DOC Vision System: The most important
thing obtained from a human inspector up on the
high tension power line is their sight, giving them
the ability to see the line up close and determine
potential faults on the line. With this in mind, the
first type of data acquisition tool implemented was
a camera system. The camera will be mounted on
the bot and allow the system to take images of
the power line to be viewed later by a trained
professional while they are safe on the ground.

To implement these sensors developers identi-
fied a few different options for microcontrollers
to choose from. The three that ideal candidates
were the Microchip chipKIT uC32, which is used
to control DOC, the BeagleBone Black, and the
Raspberry Pi. The uC32 is based on the popular
Arduino open source hardware prototyping platform
[25] and was the most familiar to the assigned
developer, but did not provide the processing power
of either of the other two options nor did it have
the amount of library options or functionalities for
video/image processing as the BeagleBone Black
or the Raspberry Pi. The developers decided to use
the Raspberry Pi because it provided the option of
programming the camera system in Python using
OpenCV, which has a good number of libraries for
image processing already written.

The Pi has graphic capabilities that are roughly
equivalent to the original Xbox’s level of perfor-
mance. The Graphics Processing Unit (GPU) is
capable of 1G pixels/s, 1.5G texel/s (texture element) or
24G FLOPs (Floating-point Operations per Second)
of general purpose computing with a 512MB RAM
CPU and many other graphics/image processing
features. It also gives the ability to save the images
to an SD card in order to be viewed later by trained
personnel.

The options for the camera came down to first
deciding whether to use a standard or a high defini-
tion camera. Developers decided to go with a high
definition camera to maximize image clarity: it was
necessary to obtain images with enough resolution
for the viewing technician to be able to effectively
determine whether the power line contained a fault
or not.

Developers chose the Logitech C615 high defini-
tion web camera because it was relatively inexpen-
sive and provided full HD 1080p video capture (3) .
It also had the feature of auto-focus (3), which was
somewhat vital because the operator will not be able
to focus the camera by hand. The final feature that
was looked at was the universal clip that allowed for
a rotating camera and adjustable camera angles and
made the camera more easily mountable to DOC.

D. DOC Subroutine Level

The software for DOC makes it possible for the
line crawler to meet its feature set and is separated
into two sections: the microcontroller software and
the Raspberry Pi software. The microcontroller is
responsible for taking the input from the mounted
sensors, controlling the DOC’s motion, and acquir-
ing the distance DOC has traveled. On the other
side, the Raspberry Pi stores the image data from
the line. Neither process ends until the line crawler
is powered off.

The line crawler initialized the system to clear the
variables, set the servos that the tires are mounted
to stop, and set the latch servo to open the latch as
shown in Figure 15.

In order to keep the line crawler from rocking
on the line, the speed of the line crawler could
not change rapidly. Ideally, an IMU or other sensor
would be incorporated to detect rocking so that it
could be compensated for directly, but too much
time would be required to fully incorporate the
sensor. The alternative solution was to ramp the
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Figure 14: DOC Control System Flowchart

speed so that the system did not begin to rock as a
result of known forces, such as changing directions.
The ramp deration is a result of testing and has
dependence on the design of the overall system,
but the values are stable once they are determined.
The flow chart shown in figures 16 and 17 show
the processes of ramping up the speed as the line
crawler starts moving and decreasing the speed of
the tires as the line crawler stops respectively. The
variables of the ramp are related between the two
subsystems, as it is used to determine the current
speed of the crawler.

XVII. MECHANICAL

A. SphereBot Mechanical Build

As mentioned in Section XV-A, the mechanical
build includes the main body of the robot. The
relationship of the frame to rest of the system
is comparable to the relationship of the human

Figure 15: DOC Startup Flowchart

skeleton to the rest of the human being. The frame
provides a mounting point for the lift motors, the
control surface actuating servos, and a housing for
control, communication and power supply electron-
ics. The spherical frame, like a human’s rib cage,
provides protection for the robot’s vital internal
components and also protects the power lines from
damage caused by the robot’s propellers.

The SphereBot’s frame is comparable to a hu-
man’s skeleton. Its control vanes and lift rotors,
then, are its legs and feet, although wings would
be a more apt analogy. The contra-rotating setup of
the lift rotors results in zero net torque on the robot’s
frame while flying, so that no other mechanism is
needed to keep the robot from spinning.

1) Options and Solutions: Three different ma-
terials were considered for the frame, each with
its own benefits and drawbacks. The first material
considered was carbon fiber. Carbon fiber is very
light, very strong and its dark color and thatched
pattern are very aesthetically pleasing. Carbon fiber,
therefore, would seem like the perfect choice for a
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Figure 16: DOC Line Traversal Flowchart

frame material, however, the cost of carbon fiber
fabrication was found to be very prohibitive. The
high cost, coupled with the fact that none of the
team members had carbon fiber on experience, led
to the decision to forego carbon fiber for the initial
frame build. Similar to carbon fiber is the fiberglass
material used to make circuit boards and this ma-
terial was considered in planning the SphereBot’s
frame construction. Circuit board material is not as
light as carbon fiber and is far more flexible, so
was not as desirable. Its light yellow color and lack
of any surface pattern also make it far less visually
appealing. Like carbon fiber circuit board material is
also hard for laymen to work, requiring special cut-
ting machines and fabrication experience, therefore,
proved impractical for the initial build. ABS plastic
is considerably heavier than either carbon fiber or
circuit board material and not nearly as impressive,
however, it was chosen for the initial frame build
primarily for the ease with which it can be cut and
assembled. ABS’s drastically less expensive cost
also provided the opportunity to make mistakes,

Figure 17: DOC Stop Flowchart

while nailing down the general design of the frame,
that would have been too costly, in both time and
money, if either of the other two materials had been
used. The resultant frame is pictured in Figure 18.

2) Mechanical Improvements: Each phase of
testing revealed shortcomings in the preliminary
mechanical build. By far the most conclusive tests
were the weight and thrust tests. Because the weight
of the SphereBot was determined to be 12.05N
and the maximum thrust was found to be only
10.09N, it was determined that a new lighter frame
would be needed to improve the thrust-to-weight
ratio. Without a lighter frame or stronger lift motors
the SphereBot would never fly. Center of gravity
testing revealed that weight would have to be shifted
from the bottom of the robot towards the middle
in order to increase the influence of the control
surface directed thrust and improve response to
control surface adjustment. Thrust pattern testing
showed that while the disturbances caused by the
control surface link arms were minor, airflow could
be improved and the design could be simplified
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Figure 18: Second-generation ABS frame

by removing the link arms and having the control
surfaces driven directly by the servos. Accessing
the electronics for maintenance and modification, as
well as battery charging, in the testing phase made
painfully evident that a new method must be devised
to access the electronic components in order for the
SphereBot to be deemed a success.

Several improvements were made to the new
frame, each addressing a different shortcoming of
the original frame. The first and most important
improvement was the adoption of carbon fiber for
the build material. Despite being built out of ABS
plastic, making it far too heavy, the initial frame
build was not a total waste of time because it
facilitated the development of a general design that
was used as a model for the new frame. The
sheets from which the frame parts were cut were
fabricated using epoxy pre-impregnated carbon fiber
sheets. The sheets were laid on an eighth inch thick
cardboard honeycomb material called Nomex core
and then heated in a sealed vacuum oven called
an autoclave. The vacuum ensures that a uniform
pressure is applied across the surface of the part
while it is curing. The cure cycle for the epoxy
pre-impregnated sheets and Nomex core sandwich
is accomplished in three stages. The first stage is the
ramp up stage. In the ramp up stage the temperature
in the autoclave goes from room temp to 350 F over
the course of one hour. The second stage is called

the hold stage. In this stage the temperature is held
at 350 for one hour. The third stage called ramp
down. During ramp down the heater is turned off
and the doors to the autoclave are left closed. It is
then allowed to cool down to about 100 F. Once
the sheets are removed from the autoclave they are
allowed to sit for five hours to finish curing. The
sheets are shown from the top, side and close-up in
Figures 19a, 19b and 19c respectively.

The sheets were then sent, along with CAD
drawings of the flat parts, to a facility where the
flat parts were precision cut with a high pres-
sure water-jet cutter. A cylindrical center tube was
constructed with a cylindrical form and the same
pre-impregnated carbon fiber sheets. The center
tube and flat parts were then glued in place using
high-strength epoxy. The resulting SphereBot with
electronics installed weighs approximately one half
what the old SphereBot did. Additionally, an elec-
tronics sled was created that holds all electronic
components and slides right into the center tube
from the bottom. The sled greatly improves access
to the internal electronics. It also carries the lithium
polymer battery and positions it much closer to the
center of the SphereBot. This improves the center of
gravity and enhances the influence of control surface
directed thrust. The improved frame and both sides
of the electronics sled are pictured in Figures 20
and 5.

B. DOC Mechanical Build
DOC’s mechanical components consist of the

frame and the latch. The basic frame consists of an
upside-down Parallax Boe-Bot frame mounted to a
bent aluminum bar which, in turn, is mounted to a
bend piece of aluminum sheet, to which the tires
are mounted. This frame can be seen in Figure 21.
The latch consists of a three pieces of aluminum cut
from a VEX bar. Two are attached perpendicularly
to form the “arm” of the latch with a servo arm
attached to one end of the arm and the 1 inch rubber
tire attached to the other side using two collars and
a 1/8 inch shaft. The last piece of metal is used to
stabilize the previously unsupported side of the shaft
the tire spins on.

XVIII. HARDWARE TESTING

A. SphereBot Mechanical Build
Five basic tests were performed on the Sphere-

Bot’s mechanical build. Those tests were: thrust
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(a) Carbon fiber sheets before cutting

(b) Carbon fiber sheet side view

(c) Carbon fiber sheet up close

Figure 19: Carbon Fiber used in third-generation frame

Figure 20: New SphereBot frame

pattern testing, weight testing, thrust testing, center
of gravity testing and ease of access to electronics.
In thrust pattern testing the directed air flow from
the propellers was checked to see how well the
air column flowed down through the frame of the
robot. It was found during this testing phase that
the link arms that actuate the control surfaces cause
some disturbance of the air column. Weight testing
was done to establish the weight of the robot, so
that it could be compared to the available thrust.
The testing was performed using a digital hanging
scale that gave the equivalent mass measured in
kilograms. The mass was then converted into weight
in units of Newtons by multiplying by 9.8, the
acceleration due to gravity on Earth. The weight
was determined to be 12.05N. The same digital
hanging scale was used to determine the maximum
thrust by hanging the SphereBot upside down on
the scale and zeroing the scale. The lift motors
were then slowly ramped up to max thrust and the
mass reading corresponding to the thrust exerted
by the lift motors was recorded and converted to
Newtons. The maximum thrust value was found to
be 10.09N. The final test, ease of access to internal
components, was completed as a consequence of
work done on the internal electronic components
of the SphereBot. The testing found that access-
ing the internal components of the SphereBot was
exceedingly difficult, requiring the disassembly of
the housing bottle to perform simple tasks such
as charging the battery. The center of gravity test
checked the effect that the low center of gravity
designed into the frame had on the performance of
the SphereBot. The ability of the SphereBot to right
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Figure 21: DOC Chassis

itself while sitting on the ground was part of this
test and the SphereBot was able to right itself. The
combined effect of the low center of gravity and
the influence of the thrust directed by the control
surfaces was also tested. It was found during this
test that the very low center of gravity significantly
reduced the influence of the control surface directed
thrust. This reduced influence caused slow reaction
to attitude adjustment via directed thrust.

B. DOC Frame

Once the frame was manufactured, the servos
with their mounted wheels were attached to the
frame and it was placed on the piece of 3 inch
PVC pipe used as a simulated transmission cable
for most of DOC’s testing to verify the frame was
easy to deploy onto the line and had good contact
with the "cable." The frame arm bent slightly to
balance the expected weight more evenly, and the
frame was ready to go to the next step. A picture
of the frame on the PVC pipe as it was for this test
is shown in Figure 22.

C. DOC Attachment System

As the parts were acquired, they were tested for
functionality as their use in the project required,
including the switch, the servos, and the sensors.
Once it was determined that the individual parts for
the latch system were working, the basic propulsion
codes to ramp the speed of the robot up and stop

Figure 22: Initial balance testing of the DOC frame on the
simulated power line

after a set distance were combined to test low-level
systems, which were then tested to verify the parts
and the code worked and that the logic was sound
for each of the subsystems . For example, once the
flex sensor and the micro servo known to function,
the micro servo was combined with the prototype

35



latch was tested with the flex sensor to verify the
response. This allowed developers to verify that the
latch closed when the Line Crawler was on the line
and opened as it was picked up. The code was
also modified for each subsystem, going back to
the previous subsystem, the latch and flex system
code was modified to turn the latch far enough to
successfully open far enough to easily remove the
line crawler from the line, and close far enough to
prevent the line crawler from falling. Some prob-
lems could not be fixed or adjusted during testing,
for example the flex sensor sliding off the line,
and those were noted and taken into account for
the next version. The other test that was repeated
through each step was the weight distribution on
the robot with the different systems attached. Once
the subsystem had been checked a couple of times,
and the behavior of the system was understood and
accounted for as well as possible, the system would
move onto the next step of integration and retested
to insure the individual subsystems still behaved as
expected and then that they worked together to meet
the requirements of the combined system. Finally,
the entire system was integrated and tested to run
on the PVC line. After a few modifications to the
code of the first prototype latch system, it operated
as it was meant to with the exception of the sliding
flex sensor, and the need to calibrate the flex sensor
as the system was turned off and on, and developers
were able to get more robust parts and trade them
out to make the revised system, with the exception
of the sensor. The testing process followed the same
general steps on the revised system. At this point,
the HS-75BB retract servo has been tested to ensure
it works and verify the PWM signal that activates it.
The micro-lever switch was also verified to insure it
acts like a switch should and can be activated with
the slight pressure the deployment spring provides.
Both passed individually, with the servo smoothly
going to the correct position and the micro-switch
consistently providing a string of “on” or “off”
through the serial monitor when it is activated or de-
activated with clean switching . However, there were
some integration errors in the sub system which
includes both the servo and the micro lever switch
which have been resolved. Finally, the switch was
mounted and tested in response to the deployment
system spring activation. The deployment system
now passes these tests.

D. DOC Propulsion System
Initial testing of the hardware included testing of

the servos to make sure that they worked properly.
This was done before the servos and/or wheels were
attached to the frame of DOC. This test was also to
make sure the developers could make a connection
and get a signal to each servo and that they worked
correctly. The results were positive for this initial
testing and both servos rotated fully 360 degrees
and had a smooth flow.

The next test performed was to make sure that the
servos continued to work correctly once they and
the circuit were effectively mounted to DOC. This
test demonstrated that DOC traversed the line, and it
tested the stability of DOC while on the line. During
this test, the bot traversed the lines multiple times to
make sure that the wheels and servos could support
the weight of DOC. This included testing of added
features like push button start/stop and making sure
that it controlled DOC and that DOC remained
stable on the line when started and stopped.

Every time a new component/feature was inte-
grated into DOC, the developers retested to make
sure this was still true. So far, even with the battery
pack (which is the heaviest component on DOC)
positive outcomes have been seen from the testing.
The servos and wheels have been able to support
the weight of DOC and still move up and down the
line and stop, when need be, effectively.

E. DOC Camera/Data Acquisition System
The main component of this system was the

Logitech High Definition camera itself. The first
thing that need to be tested was that the quality
of the video/images of this camera was adequate
for our purposes. To check this, an operational test
was performed by simply connecting the camera
and looked over numerous images and photos taken
by the camera of various objects and people. This
test demonstrated that the camera has excellent
resolution and would work perfectly for the needs
of the robot.

After the camera was attached securely to DOC,
the next step was to make sure that the camera
system was effective at obtaining images of the line
and provides a clear representation of the entire line
by looking all the photos. A number of different
runs of the bot were went through while obtaining
images (a few images obtained are shown in Figure
25). The different tests consisted of different angles
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and positions of the camera to see which gives the
best and clearest images.

The next big component of the Camera System
that required extensive testing was the voltage reg-
ulation circuit. The battery being used to power
DOC is a 9.6V Lithium Ion rechargeable battery.
The camera system itself takes no more than 5.5V
before the components begin to mess up. After the
circuit was built the first test ran was to check to see
what a fully charged battery pack was outputting.
This was determined to be around 10.7 volts and
was fairly consistent.

After it was determined what this is outputting,
the next step was to directly test the voltage reg-
ulation circuit and see if that circuit is outputting
acceptable levels for voltages. The original testing
gave outputs of no higher than about 5.4V so ini-
tially there were very good results. One major issue
seen with this testing was that the output voltage of
this circuit would start at a certain acceptable level
and continuously drop very quickly for some reason.
The output voltage ended up dropping to as low as
1.3V and staying constant at this voltage level.

F. DOC Control System

The control system consists of a number of a
number of different sensors and components and
required the testing of the integration of these things
with DOC. One of the first sensors that needed
to be tested was the pushbutton that was used to
make DOC start and stop. This was needed to
make sure that the button was getting a signal
to DOC and that DOC responded correctly at the
time. This pushbutton was retested every time a
new component was added to ensure that it still
effectively controlled DOC’s start/stop. This testing
found that the push button worked well with the
system but it was decided to take another route to
control the start/stop DOC.

The next sensor tested was the infrared distance
sensor that would be used to detect obstacles in front
of DOC and stop its movement. To test this sensor,
the developer started by ensuring that an ample
signal was received from the sensor when faced
with an obstacle. Then, calibration was verified by
measuring specified distances on a piece of paper
and holding objects at that distance. While the
object was in front of the sensor, the developer
checked to make sure first that a signal was received
and secondly that the distance being measured was

accurate. These results were very positive and con-
firmed both that the sensor was working correctly
and that the code was doing the correct voltage to
distance conversion.

XIX. SOFTWARE TESTING

A. SphereBot Control System

1) Servo Interfacing: One of the appealing as-
pects of the BeagleBone was the enhanced High
Resolution Pulse Width Modulation (eHRPWM)
modules. There are three modules, with two chan-
nels each, and the SphereBot required six channels
of servo control. Per specification, they can be
configured to the proper period (20 ms) and pulse
width (1500±500 μs) to be compatible with RC
servo signals. The first stage of development was,
then, to interface the PWMs with the servos and
ESCs. Extensive testing and behavior analysis was
performed on the BeagleBone during this phase,
using redirection in the bash shell environment to
pass messages to the MCU’s hardware interfaces
exposed under the /sys filesystem. Through this
testing, it was determined that there is a bug in the
current version of the PWM drivers. Each module
can either drive both channels with an unacceptable
period or drive one channel at the proper period.
With this failure, the BeagleBone was limited to
driving three servos.

Development proceeded past the weakness in
the BeagleBone by offloading the servo interfacing
tasks to the Pololu Maestro, as mentioned previ-
ously. While developing the servo module, operation
of the vane servos was coordinated by variously
using unmounted servos, the servos mounted to the
chassis of the SphereBot, and a test rig (Figure 23)
for independent, parallel development. These meth-
ods showed that the control vanes operated in the
expected direction, based on the input to the servo
module.

2) Data Paths: During the data-driven periods
of development, there was a need to trace the flow
of the program, compare inter-thread timing, ver-
ify expected data manipulation, and identify faults.
Conventionally, a debugger such as gdb would
have been the ideal tool for such tasks. However,
portions of the program are sensitive to timing,
and so extensive use was made of debugging text
(e.g. Figure 24) to meet this need. This text was
generated primarily by the use of the puts() and
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Figure 23: A servo test rig was used to simulate the vanes of
the SphereBot during testing.

Figure 24: Debugging text displayed to the console is used to
monitor the running program.

printf() standard C library calls, and were mon-
itored via the same ssh connection that was used
to launch the control program. Through the course
of development, this method of program monitoring
successfully identified the causes of erratic behavior
for adjustment, and demonstrated correct behavior
when a portion of code was complete.

B. DOC Propulsion System
The first tests ran were to make sure the coding

compiled correctly and effectively made the servos
rotate for a set number of rotations before stopping.
Ultimately, this testing was directly related to the
testing of the hardware aspect of the propulsion
system, which included the servos and wheels. Once
the servos were attached to the frame, a testing

code was written to have DOC move up the line,
stop and then reverse directions. Every time a new
component/feature was integrated onto DOC, the
developers reran this test to ensure it compiled and
that this feature and its variables or functions were
not affected.

C. DOC Camera/Data Acquisition System
The software written for this aspect was designed

to obtain video feed from the webcam and separate
this video into its individual frame. Once they are
separated, each frame will be time stamped and
saved to a file with different names for later viewing.
The testing involved with this included running
through the code multiple times and checking to
make sure that the video was obtained. The quality
of the video was of less concern than the quality
of the images taken of the line. It was also verified
that the code was saving the images to the correct
directory. The images came out to be very clear, as
can be seen from Figure 25.

After this was confirmed then the next tests
run were to ensure that an accurate timestamp
is being printed onto each image. Played around
with different colors and font of the time stamp.
A brighter color seemed to work most effectively
because images had dark backgrounds while others
had a lighter background and with a bright color like
red it could show up on both. Hundreds of images
were taken throughout numerous testing days and
a couple examples are shown with a time stamp
on them in comparison to various backgrounds in
Figure 26.

D. DOC Control System
At one point the developers added a remote

infrared sensor that would control the start/stop of
DOC. When this code was written, a number of
different test compiles were required to effectively
obtain signals from the remote to the sensor. This
testing included a great deal of rewriting, specifi-
cally for the parameters of the input signal being
received by the IR sensor. Ultimately these tests
were unsuccessful because the sensor could not
provide a consistent enough connection with the
remote signal.

When the IR sensor was implemented, original
testing of the code was performed to make sure it
worked correctly. After confirming that voltage was
actually received, then the next step was to test and
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(a) Example 1

(b) Example 2

(c) Example 3

Figure 25: Example images of simulated line

(a) Example 1

(b) Example 2

Figure 26: Example timetamps overlaid on images

rewrite the conversion function based off the data
obtained being compared to physically measured
data. This code didn’t have too much debugging
included in it. The main thing was after calculating
the correct multiplication factor for the conver-
sion, tweaking that number to get a more accurate
measurement reading. Once this was accurate, the
developer integrated this with the other code and ran
multiple test to make sure it still worked effectively.

XX. CONCLUSION

Electrical energy is becoming increasingly im-
portant to modern society. To maintain a reliable
supply of electrical energy, the infrastructure that
carries electrical energy to the consumer must be
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well maintained. High tension power lines are a
major component of that infrastructure. Power line
inspection is dangerous because it presently requires
manual inspection. Recent technological advances
make the creation of robotic inspection platforms
that can reduce the danger of power line inspection
feasible.

From the time the developers first saw the need
for a system that could help reduce the number
of workers sent into hazardous environments to
inspect transmission cables, they have been working
to realize an idea that would achieve that goal.
That idea, originally conceptualized last year, has
been refined, expanded and finally settled through
the last year as the system was developed and
tested. Initially a spherical airborne inspection robot
was proposed. Dubbed The SphereBot, a laboratory
prototype was designed and built over the course
of a semester. The SphereBot was composed of a
thrust-vectored spherical frame, a user interface, a
control system, an attitude stability sensing system,
and an onboard camera. Testing of the SphereBot
laboratory prototype revealed deficiencies in the
original design that would need to be corrected to
make the SphereBot a viable inspection platform.

The first deficiency identified was a poor thrust
to weight ratio due to the weight of the laboratory
prototype’s ABS plastic frame. To improve the
thrust to weight ratio the ABS frame of the
SphereBot was replaced with a new carbon fiber
frame, designed using the original frame as a
model. The onboard camera, originally meant for
line inspection, was removed from the SphereBot
and mounted on a proposed addition to the
inspection system. The proposed addition, a line
crawler system, was developed to be deployed
by an aerial deployment device. The revised
SphereBot, with the carbon fiber frame, was tested
and the reduction in the weight was found to have
greatly improved the thrust to weight ratio, which
allowed the SphereBot to achieve flight. Despite
the improved thrust to weight ratio additional
problems with the stability of the system appeared
once flight was achievable. Experimentation
found that the instability in the SphereBot was
being caused by vibration from the mechanical
components. This vibration caused errors in the
values obtained from the internal measurement
unit. This issue was reduced by securing

loose components and by enabling filters on the
accelerometer and gyroscope devices onboard the
IMU. Despite the reduction in system vibration, the
IMU instability has not yet been fully solved. The
user interface was also tested and proven to control
the movement of the SphereBot.

In the second semester an addition to the line
inspection system was proposed to expand the
available sensors and, therefore, the inspection ca-
pability. The addition consists of a line crawler,
later named DOC, and allows for more detailed
line inspection. To ease development of the line
crawler, two additional team members were brought
onto the team to tackle the task of building the
line crawler. The requirements for the line crawler
included the ability to travel on the transmission
line independently, the ability to acquire and store
images of the line, and the ability to be deployed
onto the line. This system was rapidly developed
from the initial design to a frame with components
mounted on board to allow the line crawler to
meet its feature set. Once a prototype had been
developed, DOC’s features were tested and minor
engineering solutions were made as problems were
identified that prevented DOC from fully meeting
its feature set. The solutions, to testing deficiencies,
that were employed allowed the line crawler, like
the SphereBot, to fully meet its original feature set.

Despite the difficulties encountered during the
development of the line inspection system, the
SphereBot has met the goals of Senior Design set
out by the team at the beginning of the fall 2013
semester. DOC is also fast approaching the end of its
development with all of the basic features met. More
development is required for real world application,
but the project, in its current state serves as a solid
foundation on which to build a robust system that
can greatly reduce the number of lives put at risk in
the course of inspecting high voltage transmission
cables.
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APPENDIX A
GLOSSARY

AHRS Attitude and Heading Reference System, a
device which provides indication of rotational
and translational position; often referred to as
an IMU, but distinguished from an IMU in
that the AHRS has integrated computational
capability.

Arduino A family of single-board microcontroller
systems which provide a consistent platform
for rapid prototyping and hobbyist develop-
ment.

ARM A family of system-on-chip RISC archi-
tectures targeted at embedded microcontroller
needs in small devices. Formerly an acronym
for Acorn RISC Machine, but now recognized
by the given name.

C A compiled programming language originally
developed circa 1970 by Dennis Ritchie. Pro-
vides common programming structures and
little abstraction from the execution platform.
Allows small, fast, and efficient programs, at
the cost of higher-level features.

condition variable A mechanism in programming
languages to indicate freed or available re-
sources shared between concurrent processes.
In C, provided by the phreads library.

debugger A development tool which allows a user
to monitor the state of a program, generally
while stopped at a breakpoint.

eHRPWM enhanced High-Resolution Pulse-Width
Modulator, a feature of many ARM processors
which produces PWM output

ESC Electronic Speed Controller, a motor control
device which regulates the speed of a motor as
a servomechanism, often using a standard RC
servo interface.

FLOPS Floating-Point Operations Per Second — a
rough measure of the computational throughput
of which a processor is capable

FPGA Field Programmable Gate Array, a logic
device which which can be user-configured
to implement arbitrary logic circuits. Used
to allow flexibility and rapid development of
hardware-implemented logic.

FTDI A series of adapters which provide serial
connectivity over a USB interface. Formerly
an acronym for Future Technologies Digital
Interface, but now recognized by the given
name.

GPU Graphics Processing Unit — a purpose-
specific processing unit optimized for mas-
sively parallel operations required for graphics
computation

IMU Inertial Measurement Unit. A device which
uses a combination of accelerometers and gy-
roscopes to determine the attitude and velocity
of a system.

LiPo Lithium Polymer — a category of recharge-
able battery with high energy density, high
power capability, and low memory effects

MCU Microcontroller Unit.
mutex A mechanism in programming languages to

ensure mutually exclusive access to resources
shared between concurrent processes. In C,
provided by the pthreads library.

PID Proportional Integral Derivative, a control sys-
tem which uses a feedback mechanism to min-
imize the error between an applied setpoint and
the measured output of a process.

PWM Pulse Width Modulation, a signal processing
method which regulates the duty cycle of a
periodic rectangular waveform; required for
interfacing with RC servos.

RISC Reduced Instruction Set Computing, a class
of processor architectures which provide a
minimal instruction set in order to reduce
the transistor count, silicon size, and power
dissipation of the processor. Contrasts with
Complex Instruction Set Computing (CISC),
which trades a larger, hotter processor for a
potential reduction in the number of machine
instructions required for any given task.

servo servomechanism; a device which acts to min-
imize error between a measured parameter and
a setting; in the case of RC servos, the setting
is applied by a PWM signal with a period of
20 ms and a pulse width which varies about a
nominal 1500 μs from a minimum of 1000 μs
to a maximum of 2000 μs.

bash Bourne Again SHell, a popular descendant
of the original Bourne shell used on Unix and
Unix-like systems

/sys A virtual filesystem which exposes device
and kernel state to userspace. Used in Linux
and some other Unix-like operating systems to
provide a standard interface to hardware and
other features.

windup a condition in a PID controller in which
uncorrectable errors accumulate, leading to
overcorrection.
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May 4, 2014

To: The Intel Corporation

Re: Thank you for the grant

Dear Intel,

We of Team SphereBot from the 2013–2014 Senior Design class at California
State University, Sacramento would like to extend our heartfelt thanks for
the grant that you provided our team. The grant money was used to help
develop a lightweight carbon fiber frame for our spherical inspection robot.
Without the lightweight frame our robot would not have been able to fly.
Your grant, therefore, was instrumental in completing our Senior Design
successfully. Your generosity reflects greatly on your company and sets you
apart from the rest of the industry. Thank you.

Sincerely,

Aaron Diab, Robert Wortman,
Darrell Cahaill, Rebecca Wingo, and
Emmanuel Dupart



May 4, 2014

To: James Ster, Equipment Technician, CSU, Sacramento

Re: Thank you for your assistance.

Dear Mr. Ster,

We of Team SphereBot from the 2013–2014 Senior Design class at CSU,
Sacramento would like to extend our heartfelt thanks for your advice and
assistance in designing both the SphereBot and Line Crawler robots as well
as your recommendation of Tyler Anderson to help redesign the SphereBot
frame. Your help greatly facilitated the creation of both of our systems
and was instrumental in completing our Senior Design successfully. Your
extensive experience, knowledge, and willingness to help reflect greatly on
yourself, the college of engineering and computer science, and the California
State University, Sacramento. Thank you.

Sincerely,

Aaron Diab, Robert Wortman,
Darrell Cahaill, Rebecca Wingo, and
Emmanuel Dupart



May 4, 2014

To: Tyler Anderson, ME student, CSU, Sacramento

Re: Thank you for your assistance.

Dear Mr. Anderson,

We of Team SphereBot from the 2013–2014 Senior Design class at CSUS
would like to extend our heartfelt thanks for your hard work in helping us
design and manufacture of our new super light and strong SphereBot frame.
Your help was crucial in our success in creating the SphereBot and in success-
fully completing our Senior Design.Your professionalism, competence in your
field, and generosity reflect greatly on yourself, the mechanical engineering
department, and the California State University, Sacramento. Thank you.

Sincerely,

Aaron Diab, Robert Wortman,
Darrell Cahaill, Rebecca Wingo, and
Emmanuel Dupart
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Robert Wortman

Education
1996–1998 Graduate, Naval Nuclear Training Program.

{ Naval Nuclear Power Training Command, Orlando, FL
{ Nuclear Power Training Unit, Ballston Spa, NY

2005–2011 transferred, American River College, Sacramento, CA, 3.967 GPA.
2011–present B.S. (in progress), California State University, Sacramento, 3.895 GPA.

{ major in Computer Engineering

Experience
1998–2001 Nuclear Electronics Technician, United States Navy, U.S.S. Tucson (SSN-770).

{ As qualified Reactor Operator and Reactor Technician, operated and maintained Reactor
Controls Division equipment, including reactor and nuclear instrumentation, steam
generator control, and the reactor plant which provided ship’s electrical energy and
propulsion.

{ Assisted in preventative and corrective maintenance on Electrical division equipment,
including various motors, generators, and distribution panels.

{ Assisted in Nucleonics Division activities, including reactor coolant and steam generator
chemistry sampling.

{ As Logroom Yeoman, tracked and maintained Engineering Department procedural and
systems documentation, and organized manual data acquisition and verification for reactor,
electrical, and propulsion plant systems.

2002 Nuclear Electronics Technician, United States Navy, Pearl Harbor Naval Shipyard.
{ As Physical Security Office front desk clerk, performed personnel authorization and

identification services in accordance with shipyard security procedures.
{ With shipyard information technology division, implemented secure decommissioning

procedures to allow outgoing equipment to be released to local educational activities.
2003–2004 Sales Clerk, HSC Electronic Supply, Sacramento, CA.

{ Maintained sales floor displays.
{ Operated point-of-sale system for customer purchases.

2012–present Student Researcher, California Smart Grid Center, Sacramento.
{ Create data acquisitions systems to relay data from sensors and other devices to a

relational database.
{ Create programming interfaces for gathered data to support other researchers.
{ Lead Mobile Application Team in developing tools to provide context for consumer

decisions.
{ Lead Dispatchable Load Team in developing system to store energy during periods when

generation from renewable sources exceeds energy demand.

Skills
{ Linux system administration
{ Network administration
{ C and C++ programming
{ Unix shell scripting
{ analog and digital electronic theory

B wortmanr@ecs.csus.edu
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AARON DIAB                                                              
                                                                                                    

OBJECTIVE: To obtain a computer engineering career position

EDUCATION                                                                                                                      

American River College
Associate in Science  • Computer Science • Highest Honors • May 2010

California State University, Sacramento
Bachelor of Science • Computer Engineering • 3.68 GPA • June 2014

Related Courses:
• Advanced Computer Organization • Computer Interfacing • Robotics 
• Operating Systems Principles • Signals & Systems • Data Structures
• Advanced Logic Design • Operating System Pragmatics

SKILLS                                                                                                                                

Languages: • C • C++ • Java • Objective C • bash • Verilog • VHDL • Python • LaTeX 
Design: • MIPS ISA • CPU • iOS • Android
Software: • MATLAB • Multisim •  MPLAB • Xcode  • Eclipse • gcc • gdb 
Hardware: • Microchip • Xilinx • Raspberry Pi • ATmega • Parallax Propeller • x86 

WORK EXPERIENCE                                                                                                      

Lead Biomedical Equipment Support Specialist, VA Medical Center, Mather, CA      08/05 - Present
   Lead technician and special project manger in charge of work distribution and providing additional
    technical troubleshooting support to subordinate technicians and interns. Plan, purchase, and
    implement advanced medical equipment and related computer workstation and server systems. 

Student Researcher, California Smart Grid Center, CSUS, Sacramento, CA           06/12 - Present
    Student researcher charged with developing mobile applications on iOS and Android platforms to     
    monitor real time energy usage and predict future usage. Designed and coded prototype iOS
    application to monitor real time energy usage. Developed plans to extend current application to
    provide projected energy usage with sensor input and to provide feedback to the consumer.   
 
Medical Equipment Repairer 91A10, U.S. Army   04/98 - 08/04
    Assembled, configured and maintained a wide variety of advanced medical devices and related
    computer systems. Provided educational support and training to medical equipment end users.
    Coordinated lodging and service activities while managing team of mobile service technicians. 

Medical Equipment Repairer 91A10, U.S. Army Natl Guard, CA  11/95 – 04/98
    Assembled, configured and maintained a wide variety of advanced medical devices and related
    computer systems. Provided educational support and training to medical equipment end users.
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Darrell Cahail
3/22/2013

1830 T Street #4, Sacramento, CA 95811
Cell: (916) 969-4358
dlc88@saclink.csus.edu

I N T R O D U C T I O N
Goal-focused  professional  offering  years  of  experience  in  the
computer  industry  with  excellent  technical  and  communication
skills.  I am motivated and enthusiastic by new challenges and
tasks  and take a proactive approach to achieve success  in  all
projects. I  enjoy working in a complex projects  with significant
technical  and knowledge challenges.   Significant  experience in
working with different operating system and platforms including
Windows, UNIX, Linux and DOS.

O B J E C T I V E S
Engage in a challenging and high performance oriented role in
the field of Computer Engineering and implement the expertise
and experience gained in this field to develop complex project
with efficiency and quality.

E D U C AT I O N
Modesto Junior College
May 2009
Associate of Science, Industrial Electronics
Associate of Arts, General Education
Certificate of Achievement, TRIO Program
TRIO Student Support Services, Student of the Year
Dean’s List Summer 2006 – May 2009
Scholarship Award, Faculty Emeritus, 2009-2010

California State University,  Sacramento
Spring 2014

E X P E R I E N C E
Student Researcher |  California Smart Grid Center
November 2011 - Current



Darrell Cahail

I was responsible for system designing, code review and test 
review. I managed development team issues. I also took the 
task of writing complex programs or modules; while 
maintaining the research computers. I also took the 
responsibility of imparting training to new team members as 
assigned by project manager of my project. I was involved in 
the generation of research documentation and planning.

S T R E N G T H S
 Excellent communication skills - present points precisely 

and clearly

 Exceptional problem solving ability and analytic skills to 
solve problems efficiently

 Good team player with excellent interaction skills to 
coordinate and work within a team

 Superior Technical Skills

 Expertise in working with various operating systems

S K I L L S
 Languages: C, C++, Java, .NET, JavaScript, HTML, CSS, JDK, 

Verilog, VHDL

 Assembly: x86, MIPS, Microchip, Atmel

 Databases: MySQL, Access, Microsoft SQL

 Operating System: UNIX, Linux, Windows, DOS

 Electronics Tools: Multisim, LabVIEW, MATLAB, Spice

 Design: UML

 Productivity Tools: Microsoft Office Suite, Libre Office Suite

 Have sound knowledge of analog and digital circuit design

 Have sound knowledge in networking protocols and device 
programming

 Have experience in working with C and C++ compiler 
programming and system level programming
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Rebecca Wingo  

  

 rebeccawingo@csus.edu 

   

OBJECTIVE 

An entry position in Electrical Engineering.  

 

EDUCATION 

In progress: BS, Electrical and Electronic Engineering
+
, CSU Sacramento, GPA 3.640  

                 
+
Expected May 2014 

Related Courses 

 Product Design Project II* 

Product Design Project I 

Digital Control Systems* 

Robotics 

Electronics II 

Modern Communication* 

Introduction to Microprocessors 

Introduction to Feedback Systems 

Signals and Systems 

Network Analysis 

Introduction to Logic Design 

Engineering Mechanics 

 

 Applied Electromagnetics Electromechanical Conversion  

 * Current Semester 

SKILLS 

Communication/Organization:  
*Strong written and oral communication skills: able to work with multi-discipline teams 

*Able to keep track of multiple deadlines  

 

Leadership/Management:  
*Strong management skills: able to organize a team of people to teach groups of young students  

*Organized in crisis  

 

Tools:  
MATLAB * PSpice * Multisim * Oscilloscope  

 

Programming:  
C/C++ * VHDL * Assembly Language  

 

WORK EXPERIENCE 

 Student Researcher Smart Grid Center 4/13-Present    

 File Clerk Quilt  N' Home 6/09- Present 

 Trigonometry/English Tutor Cerro Coso Community College 9/11- 12/11 

 

PROJECTS 

 High-Tension Power-Line Inspection Robot* 

Member of a five person multi-discipline computer and electrical engineering team designing, building, and testing an airborne 

robot with a deployable line crawler to perform hazardous inspections remotely.  

Solar Regatta- Green Flash* 

Member of an eight person multi-discipline mechanical and electrical student team designing and building a solar-power boat, 

named the Green Flash, to win the Northern California Solar Regatta put on by SMUD.  

The Frankenbot 

Member of a two person team which designed and built a multi-purpose wheeled robot to compete in a series of challenges, 

including line following, a maze, a robot convoy, and a race. 

The Top-Hat Robot  
Member of a three person team which designed and built a robot driven by the user via remote control or autonomously using an 

ultrasonic sensor and bumper switches.  

* Current Project 

 

ACCOMPLISHMENTS and ACTIVITIES 

  Dean's Honor List at CSU Sacramento 

 Tau Beta Pi member 

 DEI Honor's Society 
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Emmanuel George Dupart 
 

EDUCATION 
Bachelors of Science in Electrical & Electronic Engineering, GPA: 3.103 
California State University, Sacramento, Expected Graduation Date: Dec. 2014 

 Related Courses 
Introduction to Microprocessors Electronics I w/ Lab Robotics w/ Lab 
Physical Electronics Program Concept+Method I & II Engineering Economics 
Signals and Systems Analysis Engineering Economics Digital Control Systems* 
Electromechanic Conversion 
Probability and Random Signals 
Network Analysis w/ Lab 

Electromechanics Lab 
Electronics II w/ Lab 
Introduction to Feedback Systems 

Introduction to Machine Vision* 
Senior Design I & II w/ Lab* 
Modern Communication Systems* 

       *Spring 2014 
Affiliations 

 Cooper-Woodson College Student Association, 2013/14, Vice-President 

 National Society of Black Engineers (NSBE) 

EXPERIENCE 

Student Assistant, Sacramento State University Ethnic Studies Dept., Sacramento, CA                    2012-Present 
Job Tasks 

 Coordinated multiple large scale lectures, seminars, meetings, and events that helped educate the 
campus community and promote awareness of resources in the community 

 Provided excellent customer service by greeting visitors, helping them make appointments, getting 
them the information they need, and taking care of their needs 

 Organized supplies, materials, paperwork throughout the office, and confidential information in a 
program database 

Summer Orientation Leader, First Year Experience Program, Sacramento, CA                                 Summer 2012 
Job Tasks 

 Developed understanding of individual majors and all graduation requirements specific to each major 

 Explained complex information in a clear and concise way, to people with varying levels of 
communication skills 

 Led daily tours of campus, explaining different organizations, clubs, and services and answering 
questions 

 Coordinated and facilitated daily group exercises for  group morale and introductions 
Electronics Sales Floor Associate, Wal-Mart, San Leandro, CA                                             2007-2009 
Job Tasks 

 Listened to customers in order to better assist them and provide them with their needs in the most 
effective manner and provide excellent customer service 

 Organized displays with movies, games, music, and more in order to maintain a safe and organized work 
environment 

 Coordinated and oversaw motivational team building exercises 

PROJECTS 
 Solar Tracker (from Intro to Microprocessors) 

 Pendulum Stabilization Micro-Mechtronics/Controls Project* (from Digital Control Systems) 

 High Tension Power Line Crawler Bot* (from Senior Design)    *In-Progess 

SKILLS 
 C and C++ Programming  ChipKIT uC32 & WF32  

 MATAB  Analog Discovery 

 Parallax Propeller  Arduino 

 x86 
 Python on OpenCV 

 Raspberry Pi Model B 
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Robert Wortman has extensive knowledge
of the Linux development environment, and
programs fluently in C. He is academically
familiar with aeronautics and flight dynamics,
and has a professional background in thermo-
dynamics, fluid flow, and electronic theory.

Aaron Diab has been professionally employed
as a biomedical equipment/electronics techni-
cian for 17 years. Much of this time was as
a soldier in the United States Army where he
learned to strive for professionalism and atten-
tion to detail in all pursuits. This professional
experience has provided him with a rich back-
ground in constructing, troubleshooting and
repairing mechanical and electro-mechanical

assemblies and equipment. This background coupled with his studies
in computer engineering in general and iOS programming in partic-
ular provide him with a unique skill set that make him a valuable
asset to Senior Design Team 1.

Darrell Cahail has extensive knowledge in Linux, Java, C/C++,
programming IDEs, and hardware interfacing with a focus being on
control and feedback systems. He programs most fluently in C/C++
with Java coming in a close second.

Rebecca Wingo is an EEE major focusing
in control systems and electronics. She has
experience using microcontrollers and sensors
to control robots as well as some experience
in analog and digital circuitry. In addition,
her experience as a student researcher at the
California Smart Grid has exposed her to a
number of different engineering projects and
communication styles.

Emmanuel George Dupart is a senior Elec-
tronic/Electrical Engineer with a special inter-
est in Controls and Feedback Systems. He has
worked on numerous projects in his academic
career ranging from control system projects,
to full robotic projects, and even machine
vision projects. These projects include, but are
not limited to, implementing a digital control
system to stabilize a pendulum, building a

fully automated robot which included various sensors, and automatic
detection of specified line faults using a camera system and a line
crawler robot.
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