
CSU: SACRAMENTO

SENIOR DESIGN PROJECT: SLAM-BOT

End of Project Documentation

Authors:
Chris LANEY

Thomas HAYWARD

Curtis MUNTZ

Francisco ROJAS

Instructor:
Professor TATRO

In Collaboration With:
FMC TECHNOLOGIES SCHILLING

ROBOTICS

Senior Design Team One is completing a project which will attempt to mitigate the risk of injury to
people who work within hazardous environments. Simultaneous Localization and Mapping better known
as SLAM is the method that team one chose to accomplish this. This paper explains the design process
for the project from its inception to the completion of the Deployable Prototype. It will describe how

the project was chosen, a work breakdown structure, and the technical details of the subsystems required
to make our SLAM-bot work. Documentation is provided that will enable sufficiently prepared teams to

reproduce the project.

Keywords: Extended Kalman Filter, Machine Vision, Path Planning, Robotics, SLAM,
Visual Odometry

i

CONTENTS

I Design Overview 1
I-A Introduction . 1
I-B Project History . 2

I-B1 Team Member Summary . 2
I-C Detailed Descriptions . 2

I-C1 Vision as a Sensor . 2
I-C2 Visual Odometry . 3
I-C3 Ranging . 3
I-C4 Encoders . 3
I-C5 Differential Drive Robotic Platform . 3
I-C6 Filtering . 4

I-D Feature Details . 4
I-D1 Kinematic Model . 4
I-D2 Path Planning . 4
I-D3 Visual Display . 5
I-D4 Filtering . 5
I-D5 Collision Avoidance . 5
I-D6 Gyro & Accelerometer . 5
I-D7 Communication With a Robot Chassis 5
I-D8 Visual Odometry Requirements . 6

I-E Computer and Hardware Requirements . 6
I-F Testing, Debugging, and Specific Documentation 6
I-G Resource Estimates . 6

II Funding Proposals 6

III Work Breakdown Structure 7
III-A Outline of WBS . 7

III-A1 Kinematic Model . 7
III-A2 Path Planning . 7
III-A3 Visual Display . 8
III-A4 Filtering . 8
III-A5 Collision Avoidance . 8
III-A6 Gyroscope & Accelerometer . 8
III-A7 Communication With a Robot Chassis 8
III-A8 Visual Odometry Interface . 9
III-A9 Testing, Debugging, and Specific Documentation 9

III-B Resource Estimate Summary . 10
III-C Project Timeline . 10

III-C1 Milestone 1: Visual Control of a Robot 10
III-C2 Milestone 2: All Features Implemented 10
III-C3 Milestone 3: Filtering Odometry Models 11
III-C4 Milestone 4: Mapping and Path Planning 11
III-C5 Milestone 5: Project Completed . 11

ii

IV Risk Assessment & Mitigation 11
IV-A Kinematic Model: . 11
IV-B Path Planning: . 11
IV-C Visual Display: . 11
IV-D Filtering: . 11
IV-E Collision Avoidance: . 12
IV-F Communication with Robot Chassis: . 12
IV-G Visual Odometry Interface: . 12
IV-H Laptop Risks: . 12
IV-I Camera Risks: . 12
IV-J Eddie Risks: . 12
IV-K Battery Risks: . 12

V User Manual 13
V-A Room Requirements: . 13
V-B Local Mode . 13

V-B1 Hardware Required . 13
V-B2 Laptop Software Required . 13

V-C Remote Mode . 14

VI Design Documentation 14

VII Breakdown of Hardware Subsystems 15
VII-A Encoders . 15
VII-B Camera . 15
VII-C Atmega 328 Development Board . 16

VIII Breakdown of Software Subsystems 17
VIII-A Robot Communication . 17
VIII-B Visual Display . 18
VIII-C Kinematic Model . 20
VIII-D Collision Avoidance . 22
VIII-E Gyroscope & Accelerometer . 23
VIII-F Path Planning . 23
VIII-G Visual Odometry Interface . 24
VIII-H Probabilistic Filtering . 26

IX Mechanical Drawings and Documentation 27

X Test plan for Hardware 28

XI Test plan for Software 28
XI-A Feature Testing Plan . 28

XI-A1 Kinematic Model . 28
XI-A2 Path Planning . 28
XI-A3 Visual Display . 29
XI-A4 Filtering . 29
XI-A5 Collision Avoidance . 30
XI-A6 Serial Communication . 31
XI-A7 Visual Odometry Interface . 31

XI-B System Level Testing . 32
XI-B1 Software Testing Results . 32

iii

XII Conclusion 32

References 32

Glossary 33

LIST OF FIGURES

1 Risk Assessment . 11
3 32 tick encoders . 15
4 Troubleshooting 32 tick encoders . 15
5 Motors with 144 tick encoders . 15
2 Eddie Robot Chasis . 16
6 Andy & Chris & Thomas at Parallax . 16
7 Microsoft Lifecam Studio . 16
8 Logitech C920 . 16
9 Microcontroller w/Pings and Camera to Laptop . 17
10 Robot Hardware Flowchart . 17
12 Visual Display . 18
11 Serial Signal Path . 19
13 Visual Display Flowchart . 21
14 Ping Testing . 23
15 Ping Sensor Flowchart . 23
20 Visual Odometry (VO) Signal Path . 26
21 Covariance Adjustment GUI . 27
16 Path Planning System Flowchart . 34
17 Robot Position & Create Map Flowchart . 35
18 Read Ping Distance Flowchart . 36
19 Path Planning Algorithm Flowchart . 37
22 LVM Layout . 41
23 Arduino IDE Dialout Permission Request . 43

LIST OF TABLES

I Man Hours . 6
II Estimated Budget . 7
III Man Hours . 10

1

I. DESIGN OVERVIEW

A. Introduction

People who work within hazardous environments
inherently put themselves at risk for injury. Rescuers
entering a collapsed mine, a structural engineer
evaluating a building after an earthquake, or a
doctor providing treatment to an infectious patient
are all occupations that carry an inherent risk of
injury to the person performing their task. The risk
is great due to the fact that the person needs to
physically enter or operate within the hazardous
environment. One solution to this problem is to have
an autonomous robotic platform perform these same
tasks thus, removing the individual from the risky
environment altogether. However in order to have
a truly autonomous robotic platform, the platform
must be able to discern its location at any given
time.

In the field of robotics this unique problem is
better known as the, Where am I?, problem. This is a
fundamental robotics issue. One method to solve the
Where am I question is to implement Simultaneous
Localization and Mapping, better known as SLAM.
SLAM allows the robotic platform to take in sensory
data from its environment using cameras, IR sen-
sors, Ping Sensors, gyroscopes or accelerometers,
and then fuse this data with wheel encoder data to
create an accurate map of its surroundings. Ideally,
a SLAM algorithm can be modified to adapt to
any robot platform and be used to maintain a fixed
position or localization in an unknown environ-
ment. It is this application of SLAM that interested
FMC Technologies Schillings Robotics to offer this
project challenge to students at CSUS. Our team
accepted the challenge of creating a SLAM robot
that could perform the specific criteria set by FMC
Technologies Schillings Robotics and they offered
to fully fund the project.

The objective of this project is to focus on a way
to mitigate the risk of injury to people who work
within hazardous environments. It is our hope that
our efforts will have a positive effect on society as a
whole. We intend to accomplish this by developing a
SLAM algorithm that could be applied to a robotic
platform. By the end of this two semester project
our robotic platform will be able to be placed into
an unknown environment for which it has no prior
knowledge, and automatically explore the room and
provide a 2 dimensional map birds eye view of that

room along with specific object of interest within it.
Once the room has been mapped it will be capable
of navigating to a specific object within the room.
In order to accomplish this we have identified key
features that must be completed for our system to
work as envisioned. These features are what we
based our design idea contract on, each feature will
be covered in depth later on in this report.

1) Robot Communication
2) Kinematic Model
3) Visual Display
4) Path Planning
5) Visual Odometry Interface
6) Collision Avoidance
7) Filtering
8) Gyroscope and Accelerometer

In the fall semester, we focused on completing
the essential aspects of our feature set. Specifically
items 1, 2, 3, 4, and 6. Item 1, Robot Communica-
tion, was integral to the completion of this project.
If we were unable to communicate with our robotic
platform, then we would have been unable to move
forward with our project. Fortunately, we were able
to complete this feature early on. Item 2, the Kine-
matic Model, was very important to the complete
this project because it is how we calculate the
robots position in the global environment. Initially,
we started the Fall semester utilizing a differential
drive kinematic model based on wheel encoder
data. However, towards the end of the semester,
we learned that certain assumptions we made were
incorrect and we adjusted our kinematic model. Item
3, Visual Display was first deemed to have less
importance than the other items since at the time the
only use of the visual display would be towards the
end of the project for the display of the 2-D map.
However, we quickly learned that we desperately
needed a method to display the data that we were
gathering. So we quickly created the visual display
to aid us in our debugging. Item 4, Path Planning is
crucial since a key aspect of this project to deliver an
autonomous platform, which cannot be completed
without the use of a path planning algorithm. The
Fall semester saw the implementation of a quick
exploration algorithm using a wall hugger method.
Item 6, Collision Avoidance is an integral part of our
system, it is needed to successfully avoid obstacles
within the unknown environment. The Fall semester
saw a prototype implementation of this feature.

2

The spring semester oversaw the implementation
of path planning, facial recognition, and refined
visual odometry filtering interface. After these fea-
tures were initially implemented, we spent our time
fine tuning the system in full feature system testing,
refining the usability of our platform as we contin-
ued to test, and fixing issues that we encountered
along the way. Now, all of our features have been
implemented and integrated into a working system.

B. Project History

Near the end of the Spring 2014 semester FMC
Technologies Schillings Robotics approached Sacra-
mento State University to look for a team to take
on a project for them during upcoming senior
design year. They were looking for a team that
would be interested in designing and building a
visual based SLAM robot. It was this pitch that
interested and rallied four young students to come
together as Team One. After some paper work and
the signing of several non disclosure agreements.
Team one was officially sponsored by FMC Tech-
nologies Schillings Robotics. Team one, composed
of Chris Laney, Thomas Hayward, Curtis Muntz,
& Francisco Rojas. Each student brings a unique
background to this project. A brief summary of each
student is provided in the section below.

1) Team Member Summary: All group members
are students studying at CSU Sacramento, working
toward degrees in Electrical and Electronics En-
gineering. The teams resumes are attached in the
Appendix.

Curtis Muntz- Curtis has focused most of his
classes on control theory, and has a solid back-
ground in machine vision. He will be focusing
his efforts on the machine vision problems in this
project. Curtis has a background in Linux systems
administration, which will be helpful in maintaining
a software platform on top of Linux.

Francisco Rojas - Francisco has a strong interest
in Digital Signal Processing, and as such he will be
focusing his efforts on the filtering aspects of this
project. He is also interested in working with the
various sensors of the project.

Thomas Hayward - Thomas has a strong back-
ground in troubleshooting and debugging hardware-
software interfaces. He has experience in developing
software designed to automate testing of complex
systems such as radar. He has focused most of his

out of classroom education on the implementation
of software to satisfy embedded system design
requirements.

Chris Laney - Chris has an extensive background
in hardware applications, communication systems
and career experience in the Defense industry work-
ing with a multitude of different systems. He is new
to programming and has had to learn C and C++
programming languages as well as learn how to
program microcontrollers such as the Atmega 328,
Propeller, Microchip and Altera FPGAs all within
the last year.

C. Detailed Descriptions
In order for a robotics platform to replace a

human in environments like those mentioned pre-
viously, it must be able to enter an environment,
produce a map of the environment, plot where
objects are located, and remember its history within
the environment. This process is called simulta-
neous localization and mapping or Simultaneous
Localization and Mapping (SLAM). Our design
idea is to create a SLAM algorithm that has the
capability of producing a 2-D map of a pre-defined
environment with a pre-defined set of objects that
can be applied to commercially available robotic
platforms. The following sections describe some
existing algorithms and platforms, along with our
design choices.

1) Vision as a Sensor: In terms of the human
sensory organs, the vision system is arguably the
most powerful sensor. Likewise, in terms of elec-
tronic sensors, few devices can outperform a camera
in the types of data that can be extracted to form
output information. In recent years, the cost of
cameras has been decreasing significantly. Because
of this, cameras are replacing traditional sensors
in applications such as automation, security, and
robotics. Our system will be comprised of a vision
system utilizing cameras as our primary form of
sensor information.

Camera data is inherently complex, because the
only output is an image. Any information gained
from the image must be processed using computer
vision techniques. In the case of a high resolu-
tion cameras, each frame can be comprised of an
enormous amount of data making this processing
very challenging. Because cameras produce so much
data, and to work with them requires very com-
plex linear algebra, standard microprocessors do

3

not have sufficient processing power to satisfy our
requirements. Vision processing must be done with
a computer using heavily optimized visual tools. To
help assist in optimization, we need the ability to
run processes in parallel with each other. Having
the ability to process our vision data separately from
our other processes will greatly improve our overall
system performance.

2) Visual Odometry: The robotic platform must
be able to discern locomotion through visual stimuli.
In order to satisfy this requirement, we are to
implement a system to perform VO. This concept
is relatively new, having only been around for
about a decade, and exists in both monocular and
stereo forms. The overall process revolves around
gathering motion data by processing sequences of
frames that are on a moving platform. Most im-
plementations follow the models presented in early
VO research, such as analyzing the optical flow as
shown in [1]. One of the first usages of this tech-
nology was on the Mars rovers. In high wheel slip
environments, such as those found on extraterrestrial
bodies, wheel encoder data becomes almost useless.
In order to compensate for the massive amount of
wheel slippage on their robots, NASA used VO [2].
The results of using VO were highly effective and
even compensated for the imprecise odometry data
coming from the encoders.

Stereo based VO implementations are more ac-
curate and typically produce better results as shown
in [3]. The main reason for this is due to the scale
ambiguity problem - a monocular system cannot
determine the scale of the odometry that it produces
[4]. Our goal is to make our system platform in-
dependent. If we require our system to be a stereo
implementation, there are many complex calibration
steps that need to be run in order to produce valid
data. By avoiding stereo implementations, we are
able to skip the complex extrinsic calibration steps.
This will simplify the calibration which will then
allow our system to run on most platforms. Because
we are only using one camera for our implementa-
tion, we will have to focus on a monocular solution
to VO

Various implementations of monocular SLAM
currently exist and most of these require fixed cam-
era heights in order to attach a scale to the odometry
output such as [5] and [3]. We will attempt to
avoid these assumptions in order to make our system
platform independent. If it is decided that we need

scale output from our VO system, we must be
able to assign the camera height of the system, by
assigning it as a variable at run time.

3) Ranging: Computing the output from a vision
system can take considerable time. Therefore, sen-
sors that are less versatile are often used to provide
faster ranging data for collision avoidance. Exam-
ples of these sensors are ultrasonic, infrared, laser,
or small scale radar. Using lasers to gather range
and distance information has proven successfully
in applications described in [6]. Use of small scale
radar systems has recently shown to be promising
[7] for gathering range data. Both lasers and radar
provide ranging information than can be used to
for obstacle avoidance, but converting the input
for immediate use for obstacle avoidance can be
computationally intensive.

Our proposed solution is to use a microcontroller
to gather data from multiple ultrasonic and infrared
sensors. In order to lessen the amount of processing
required by our primary hardware we will off load
the data acquisition from the ultrasonic and infrared
sensors to a microcontroller. This will also afford
us the ability to make our system more modular.
Whether this system is implemented by infrared or
ultrasonic sensors the main control loop will still be
able to use the data. By applyinh a threshold to the
incoming range data, we can make informed control
decisions and implement path planning to avoid
obstacles. This data can also be used in conjunction
with the VO feature to aide in producing a map of
the robots environment.

4) Encoders: Another common sensor used to
help provide localization input to a robotic platform
are wheel encoders. As each wheel spins the sensor
will gather data about the angular position change
of the wheel. Once the encoder input has been
captured it must be converted to linear velocity and
used by a robotic kinematic model to create an
estimate of the distance traveled and possible error.
There are many ways of creating this model. The
mathematical model of the robot platform routinely
becomes more complex as the number of drive
wheels are increased. An example of just how com-
plex these mathematical models are can be found
in [8]. However the most common and heavily
documented robotic platform is the differential drive
robot.

5) Differential Drive Robotic Platform: There
are many advantages to designing our system to in-

4

terface with a differential drive robot. Do to its pop-
ularity, there are many differential drive platforms
available for use. It provides a superior amount of
maneuverability in confined spaces. It is also used as
the basis for modeling more complex robotic drive
systems that have similar drive characteristics. The
differential drive kinematic model easy to compute
because it has forward velocity and its lateral ve-
locity can be set to zero in calculations. It is well
documented and by using a well researched model
we can get a strong estimate of our robots location
from the velocity information collected from the
encoders.

6) Filtering: There is an inherent amount of error
in any sensor. A requirement of any robotics system
is to use the sensor data and an estimate of the error
associated with that data to increase the accuracy of
the system. There are many types of filters used in
robotics to perform this task. These filters are based
upon using probability to increase the likelihood
of gathering viable data from multiple sources. In
essence they are the fundamental building blocks
of sensor fusion required in SLAM. They usually
are derived in some form of Gaussian or Markov
filters. They each have their own advantages and
disadvantages. A complex description of all possible
filters is beyond the scope of this paper. The two
most common filters used in autonomous mobile
robotics SLAM systems are a particle filter or a
Kalman filter that has been extend to function on
non-linear systems.

Systems based upon particle filters are often
referred to as FAST SLAM systems. The general
concept of the particle filter is to track as many key
points via the primary sensor as possible and form
a mathematical relationship between those points to
gather information about the systems location and
pose. They track many more features for mapping
than an Extended Kalman Filter (EKF). Particle
Filters have proven to be highly effective, but are
still experimental. A disadvantage of the FAST
SLAM approach is that it is so new that using it as
a solution to our system will be difficult. Another
difficulty is our system will be need to incorporate
localization data from multiple sources and this task
will be more difficult if all data must be converted
into a particle filter based SLAM algorithm.

The Extended Kalman Filter has been explored
in robotics systems for a number of years and is
considered to be well suited to the task of a visual

SLAM system [9]. The EKF also has the ability
to be adapted to accept data from localization and
ranging sensors and incorporate this data in its
output. The concept of accepting localization and
ranging data into the same EKF filtering algorithm
is commonly referred to as EKF-SLAM. It is also
considered to be a viable solution to the full SLAM
problem of autonomous navigation in an undefined
environment.

D. Feature Details

The previous section discussed various existing
research and implementations, while simultaneously
describing our proposed solution. This section ex-
plains the specific hardware that we plan to use, an
estimated number of man hours needed to imple-
ment, and other required features of our product.

1) Kinematic Model: A fundamental feature of
our system will be the need to interface with a
robotic platform and software to convert raw data to
useful information. This feature should include soft-
ware that gathers angular velocity information from
the navigation/path planning software or encoders
and use this angular velocity information to create
a kinematic model of the robot for localization
purposes. The same kinematic model should be
the mathematical basis for use by the navigation
and path planning model to perform the inverse
operation.

The angular velocity information provided should
distinguish between the left and right drive compo-
nents of the robotics platform. This data is expected
to be gathered from wheel or shaft encoders. After
this feature has gathered the angular velocity of the
robot it will convert it to linear distance traveled.
The accuracy of this measurement needs to be
within 30% of ground truth. The large allowance
of accuracy is due to the nature of the filtering
methods that are going to be used and the error that
wheel encoders produce in high slip environments.
An estimate of the error of this data will be plugged
into the filter prior to final localization estimate.

2) Path Planning: A key feature in almost any
mobile robotics system is the ability to use available
sensor data and create a path to a desired point. Path
planning is the term typically used to describe this
process. There are many models currently available
for path planning. This feature will be required
to plan a path to a predetermined location form

5

the current location. This location can come from
another feature or from a submodule.

This path planning feature must account for the
physical dimensions of the robotics platform, sur-
rounding area, and sensor data. The path planning
section will incorporate data from the collision
avoidance feature. It will also have access to a map
that contains information such as the current and
previous locations of the robot, and the locations of
known obstacles.

This feature can be considered finished when it
has the ability to navigate a defined space between
3 to 6 meters that contains two obstacles without
contacting the obstacles. The navigation goal can
be set by another feature or manually through a
software interface such as a computer terminal with
a physical user.

3) Visual Display: A key requirement for our
system will be to provide an end user with data
about the robot’s location and the physical envi-
ronment it has explored. Our proposed feature to
address this issue is to provide the end user with
a map displaying known obstacles and the robots
path traveled. This feature does not have to be real
time, but the system should be able to replay the
robots path as it explored its unknown environment
or display the systems end estimate of the unknown
environment.

This feature can be considered finished when it
has the ability to display the robots estimated path
and detected obstacles goals on a 2 dimensional
bird’s eye map. This map should display all data
to an appropriate scale so that further debugging or
data can be collected from the end user.

4) Filtering: An essential requirement to incor-
porate multiple sensors into a design such as our
system will be a probabilistic filtering scheme to
perform sensor fusion. Our system will accomplish
this task by using a Gaussian filter that has been
extended to work on a non-linear system. Examples
of such filters are the Extended Kalman Filter, Un-
scented Kalman Filter, or Sparse Extended Informa-
tion Filter. This filter will need to be implemented
in software, preferably writtin in C++. The filter can
be a programmed by the team or open source third
party software can be used if available.

This feature can be considered accomplished
when it can accept input from the VO, kinematic
model, and Inertial Measurement Unit (IMU) fea-
tures and provide meaningful output about the

robots location in relation to its surroundings. The
output of the filter needs to be more accurate than
the least accurate sensor input that is provided to it
when compared to ground truth.

5) Collision Avoidance: Another essential re-
quirement is to incorporate two different types of
collision avoidance sensors. Our system will use
five ultrasonic and five infrared distance sensors.
One sensor of each type will be placed in five
pre-determined locations across the front of the
platform. The ultrasonic sensors will detect semi-
rigid and solid objects while the infrared sensor
can detect loose fabric material. The two sensors
provide redundancy and provide an optimal setup
for proximity and object detection. These sensors
will be programmed to work with a microcontroller
using C and C++.

This feature can be considered accomplished
when the microcontroller can communicate inde-
pendent sensor collision status via USB cable to the
path planning feature for path adjustments.

The workload for this feature should be 150
hours. This allows 30 hours to research the inter-
face requirements for the two sensor types to the
microcontroller. The implementation and testing of
the microcontroller software with the two types of
sensors should take about 50 hours. The time re-
quirement to integrate the collision avoidance output
into the path planning feature should take 50 hours.
The remainder of time will be used for debugging
and physical testing of the feature.

6) Gyro & Accelerometer: An essential require-
ment is to incorporate both a gyroscope and an
accelerometer sensor. Our system will accomplish
this task by fusing a 3-axis gyroscope and a 3-axis
accelerometer to provide x, y and z orientation data.

This feature can be considered completed when
the microcontroller can communicate with both the
gyroscope and the accelerometer sensors, and pro-
vide the fused sensor data to the control system
feature using serial communication.

7) Communication With a Robot Chassis: The
system will be required to communicate with a
robotic platform. Our feature set to perform this task
will be to utilize a Serial Communication software
solution. The software for this feature needs to be
extremely modular to allow it to be modified to
work on various robotic platforms. This feature will
be software based and will essentially be a wrapper
program for complex libraries. It is preferred that

6

the feature be programmed in C++, but Python is
acceptable. The feature should use a well docu-
mented software library to interface between the
operating system and the USB port. By utilizing
well documented libraries it will prevent possible
communication errors.

This feature can be considered accomplished
when it can accept input from the Path Planning
feature and communicate this data to the robotic
platform via USB cable. The feature will have a
minimum 95% success rate for data transmission.
The feature must be able to sustain serial commu-
nication for over 45 minutes without causing system
errors.

8) Visual Odometry Requirements: The VO sys-
tem must be able to accept an image for processing
and output odometry or equivalent data. About 90
hours of this will be performing research, with 100
hours of implementation, and the remainder of the
time should be for debugging physical testing of the
feature.

E. Computer and Hardware Requirements

Due to the fact that the vision system will be our
most computationally intensive part of the project.
To technically implement this, we will require our
system to be able to run on a modern computer with
a multi-core CPU processing speed of no less than
1.3 GHz. Because the desired platform is a robotic
system, this computer needs to be portable. This
implies that we must use a laptop for a portable
computing environment. Even still, it is estimated
that our system will require further optimizations to
increase performance and get more accurate data.
For optimization purposes, we require the ability
to process separate tasks in parallel with one an-
other. One existing technology known as the Robot
Operating Software or Robot Operating System
(ROS) will be chosen to help us accomplish parallel
processing. ROS is a technology that was initially
developed by Willow Garage, and is heavily used
in robotic research and development [10]. Because
ROS is currently only supported on Ubuntu Linux
environments, our laptop computer must be able
to run Ubuntu Linux. This Linux system must be
maintained properly to ensure a stable computing
environment.

The type of camera needed for this project first
and foremost needs to be compatible for use within

a Linux environment. It also needs to have a min-
imum resolution of 640x480. We also need to be
able to control many parameters of the camera itself
including: resolution, white balance, auto focus,
brightness, and sharpness. Being able to fix these
parameters to known values allows for a more
consistent and controllable testing environment.

F. Testing, Debugging, and Specific Documentation

In order to increase modular development and the
lifespan of the system, we need to test each module
to make sure it works. Debugging will occur in
parallel to testing to insure proper fine tuning of
the system.

After the successful implementation of each fea-
ture, we will write specific documentation of said
feature in order to allow others to replicate our final
product.

G. Resource Estimates

The features that were described in the previous
sections all require many hours of research and
development. A estimated summary of the amount
of hours per task is shown in Table I along with
who will be assigned to what task.

TABLE I
Man Hours

Task Estimated Hours Assigned to
Kinematic Model 170 Chris

Path Planning 371 Chris & Thomas
Visual Display 180 Curtis & Thomas

Filtering 230 Chris & Thomas
Collision Avoidance 150 Francisco

Gyro & Accelerometer 160 Chris & Francisco
Robot Communication 170 Thomas

Linux Maintenance 150 Curtis
VO 297 Curtis & Francisco

Goal Detection 110 Curtis & Francisco
Robot Repairs 92 Everyone

Room fabrication 50 Everyone
Total 2130 hours All Team Members

II. FUNDING PROPOSALS

This project was fully funded by our corporate
sponsor FMC Technologies Schillings Robotics.
During our initial meetings with our sponsor, we es-
timated a budget that included the robot, additional
hardware and sensors, a laptop, and miscellaneous
expenses. This budget also includes the materials

7

cost to fabricate a testing environment that can
be broken down and transported in a vehicle. Our
proposed budget for the entire project was $3,000.
Our estimated costs can be seen in Table II Actual
project invoices can be found in the appendix.

TABLE II
Estimated Budget

Item Estimated Cost
Parallax Robot Platform $1,000

USB ra $100
IMU $30

(3) Additional Ping/IR Sensors $150
Microcontroller $50

Laptop $900
Breadboards $20

Miscellaneous Connectors/Wire $50
Environment Setup $150

Unexpected expenses $300
Custom PCB for external sensors $100

Total $2,850

III. WORK BREAKDOWN STRUCTURE

This project is going to be developed by a group
of four individuals. To manage the work breakdown
of this project, careful consideration was taken with
the background of each person in mind and was
therefore assigned specific tasks to complete.

A. Outline of WBS
As described in our design idea contract, this

project involves designing, building, and imple-
menting a software algorithm for use on mobile
robots that work inside of hazardous environments.
With an aggressive nine month time-line, the work
breakdown is as follows:

1) Kinematic Model: This feature should include
software that gathers angular velocity information
from the navigation/path planning software or en-
coders and uses this angular velocity information
to create a kinematic model of the robot for local-
ization purposes. The same kinematic model should
be the mathematical basis for use by the navigation
and path planning model to perform the inverse
operation.

a) Capture Angular Velocity Information: A
fundamental feature of our system will be the need
to interface with a robotic platform and software to
convert raw data to useful information. The angular
velocity information provided should distinguish
between the left and right drive components of

the robotics platform. This data is expected to be
gathered from wheel or shaft encoders.

• Estimated Research Time: 5
• Estimated Implementation Time: 20
• Estimated Cost: $0.00
• Assignee: Chris
• Deliverable: A software object or function that

can gather angular velocity commands from
encoder data.
b) Convert Angular Velocity to Linear Pose:

After this feature has gathered the angular velocity
of the robot it will convert it to linear distance
traveled. It needs to attach a scale to the data.

• Estimated Research Time: 20
• Estimated Implementation Time: 40
• Estimated Cost: $0.00
• Assignee: Thomas
• Deliverable: A software model that can deliver

a measurement of the distance the robot has
traveled.
c) Estimate Covariance: The data generated

by the model needs to have a covariance associated
with it in order for it to be plugged into the
kinematic model.

• Estimated Research Time: 20
• Estimated Implementation Time: 25
• Estimated Cost: $0.00
• Assignee: Chris
• Deliverable: A software object or function that

can provide an estimate of the error of the data
associated with subsection III-A1b.

2) Path Planning: A key feature in almost any
mobile robotics system is the ability to use available
sensor data and find a path to a desired point. Path
Planning is the term typically used to describe this
process. There are many models currently available
for Path Planning. Our system needs to be more
robust than a simple wall hugging robot.

a) Path Planning: This feature will be re-
quired to plan a path to a predetermined location.
This location can come from another feature or
from a sub module. If the plan path is blocked this
section needs to find a method to navigate around
the obstacle.

• Estimated Research Time: 55
• Estimated Implementation Time: 90
• Estimated Cost: $0.00
• Assignee: Chris

8

• Deliverable: A software object of function that
has the ability to navigate a defined space
between 3 to 6 meters that contains two ob-
stacles without contacting the obstacles. The
navigation goal can be set by another feature
sets or manually through a software interface
such as a computer terminal with a physical
user.

3) Visual Display: We need to provide the end
user with a map displaying known obstacles and the
robots path traveled. This feature doesn’t have to be
real time, but the system should be able to replay the
robots path as it explored its unknown environment
or display the systems end estimate of the unknown
environment.

a) Map Display: The map should consist of
a two-dimensional top down representation of the
robots workspace. This map can be made from pre
existing software or generated by the group.

• Estimated Research Time: 50
• Estimated Implementation Time: 90
• Estimated Cost: $0.00
• Assignee: Thomas
• Deliverable: A software object or function that

has the ability to display the robots estimated
path and detected obstacles. This map should
display all data to an appropriate scale so that
further debugging or data can be collected from
the end user. The map should display data from
top down and be two dimensional.

4) Filtering: An essential requirement to incor-
porate multiple sensors into a design such as our
system will be the need to use a complex filter
to perform sensor fusion. The feature our system
will use to accomplish this task will be a Gaussian
filter that has been extended to work on a non-
linear system. Examples of filters that satisfy this
requirement are the EKF, Unscented Kalman Filter,
or Sparse Extended Information Filter.

• Estimated Research Time: 80
• Estimated Implementation Time: 80
• Estimated Cost: $0.00
• Assignee: Thomas & Chris
• Deliverable: This feature can be considered

accomplished when it can accept input from
the VO, Kinematic Model, and IMU features
and provide meaningful output about the robots
location in relation to its surroundings. The
output of the filter needs to be more accurate

than the least accurate sensor input that is
provided to it when compared to ground truth.

5) Collision Avoidance: Another essential re-
quirement is to incorporate two different types of
collision avoidance sensors. The feature our system
will use to accomplish this task will be to install
five ultrasonic and five infrared distance sensors.
One sensor of each type will be placed in five
pre-determined locations across the front of the
platform. The ultrasonic sensors will detect semi-
rigid and solid objects while the infrared sensor
can detect loose fabric material. The two sensors
provide redundancy and provide an optimal setup
for proximity and object detection. The combination
of these sensor types will also detect fabrics and
glass. These sensors will be programmed to work
with a microcontroller using C and C++.

• Estimated Research Time: 50
• Estimated Implementation Time: 100
• Estimated Cost: $250.00
• Assignee: Francisco
• Deliverable: A software object or function that

will prevent the robot from crashing into walls.
6) Gyroscope & Accelerometer: An essential re-

quirement is to incorporate both a gyroscope and
an accelerometer sensor. The feature our system
will use to accomplish this task will be a 3-axis
gyroscope to provide yaw, pitch and roll data as
well as a 3-axis accelerometer to provide x, y and
z axis acceleration data. This data will be fused
together using a complementary filter to resolve
angular pose.

• Estimated Research Time: 40
• Estimated Implementation Time: 120
• Estimated Cost: $30.00
• Assignee: Chris & Francisco
• Deliverable: A software object or function that

will read the data from IMUs and filter
7) Communication With a Robot Chassis: The

system will be required to communicate with a
robotic platform. Our feature set to perform this task
will be to utilize a serial communication software
solution. The software for this feature needs to be
extremely modular to allow it to be modified to
work on various robotic platforms. This feature will
be software based and will essentially be a wrapper
program for complex libraries. It is preferred that
the feature be programmed in C++, but Python is
acceptable. The feature should use a well docu-

9

mented software library to interface between the
operating system and the USB port. By utilizing
well documented libraries it will prevent possible
communication errors.

• Estimated Research Time: 50
• Estimated Implementation Time: 90
• Estimated Cost: $0.00
• Assignee: Thomas
• Deliverable: A software object that can pass

instructions from our main system to the robot
using serial communication with a minimum
of 95% success rate for data transmission. The
feature must be able to sustain serial commu-
nication for over 45 minutes without causing
system errors.

8) Visual Odometry Interface: The VO system
must be able to predict the motion of the camera
through careful processing of image frames. When
completed, the VO system must be able to measure
the odometry of the camera with measurable error
with respect to ground truth. Whether this system
is implemented in house or we use third party
examples, it has to be able to fit within our main
system, and therefore comply with our messaging
requirements

a) Implementation: To publish the required
odometry data, we must implement a system that
receives camera information and images, and pro-
cesses them to output odometry data. This will be
accomplished through the 8-pt algorithm

• Estimated Research Time: 100
• Estimated Implementation Time: 50
• Estimated Cost: $0.00
• Assignee: Curtis & Francisco
• Deliverable: A software object that can gener-

ate odometry data from a moving camera.
9) Testing, Debugging, and Specific Documenta-

tion: In order to increase modular development and
the lifespan of the system, we need to test each
module to make sure it works. Debugging will occur
in parallel to testing to insure proper fine tuning of
the system.

After the successful implementation of each fea-
ture, we will write specific documentation of said
feature in order to allow others to replicate our final
product.

a) Testing & Debugging of the Kinematic
Model: We have to verify that this system works by
itself before we include it into the main project. In

this stage we will attempt to estimate any errors and
limitations associated with this feature. This test-
ing and debugging stage involves attempting to fix
errors and bugs produced by improperly calibrated
sensors, or software issues. In the case that an error
or bug cannot be fixed, it is to be documented for
later tweaking.

• Estimated Research Time: 5
• Estimated Implementation Time: 35
• Estimated Cost: $0.00
• Assignee: Chris
• Deliverable: A set of tests that ensure that the

accuracy of the III-A1b Section delivers an es-
timate of the robots position within 30% when
compared to ground truth when performing
simple.

b) Testing & Debugging of Visual Odometry:
We have to verify that this system works by itself
before we include it into the main project. In this
stage we will attempt to estimate any errors and
limitations associated with this feature. This test-
ing and debugging stage involves attempting to fix
errors and bugs produced by improperly calibrated
sensors, or software issues. In the case that an error
or bug cannot be fixed, it is to be documented for
later tweaking.

• Estimated Time:
• Estimated Cost: $0.00
• Assignee: Curtis & Francisco
• unDeliverable: A software object that can gen-

erate odometry data from a moving camera.

c) Testing & Debugging of Filtering: We have
to verify that this system works by itself before we
include it into the main project. In this stage we
will attempt to estimate any errors and limitations
associated with this feature. This testing and de-
bugging stage involves attempting to fix errors and
bugs produced by improperly calibrated sensors, or
software issues. In the case that an error or bug
cannot be fixed, it is to be documented for later
tweaking.

• Estimated Research Time: 5
• Estimated Implementation Time: 65
• Estimated Cost: $0.00
• Assignee: Chris
• Deliverable: A set of tests that ensure that the

filter is performing as expected to scale and test
for limitations.

10

d) Testing & Debugging of the Visual Display:
We have to verify that this system works by itself
before we include it into the main project. In this
stage we will attempt to estimate any errors and
limitations associated with this feature. This test-
ing and debugging stage involves attempting to fix
errors and bugs produced by improperly calibrated
sensors, or software issues. In the case that an error
or bug cannot be fixed, it is to be documented for
later tweaking.

• Estimated Research Time: 5
• Estimated Implementation Time: 25
• Estimated Cost: $0.00
• Assignee: Chris
• Deliverable: A set of tests that ensure that the

map is to scale and test for limitations.
e) Testing & Debugging of Path Planning:

We have to verify that this system works by itself
before we include it into the main project. In this
stage we will attempt to estimate any errors and
limitations associated with this feature. This test-
ing and debugging stage involves attempting to fix
errors and bugs produced by improperly calibrated
sensors, or software issues. In the case that an error
or bug cannot be fixed, it is to be documented for
later tweaking.

• Estimated Research Time: 5
• Estimated Implementation Time: 30
• Estimated Cost: $0.00
• Assignee: Chris
• Deliverable: A set of tests that ensure that the

accuracy of the III-A2 Section delivers an es-
timate of the robots position within 30% when
compared to ground truth when performing
simple.

B. Resource Estimate Summary

The features that were described in the previous
sections all require hours of research and develop-
ment. An estimate of the amount of hours per task is
shown in Table III along with who will be assigned
to what task.

C. Project Timeline

This project is intended to span two semesters
and the tasks and work breakdown structure for the
duration of the project was initially estimated at the
beginning of the Fall semester. As this project has

TABLE III
Man Hours

Task Estimated Hours Assigned to
Kinematic Model 170 Chris

Path Planning 180 Chris & Thomas
Visual Display 180 Curtis & Thomas

Filtering 230 Chris & Thomas
Collision Avoidance 150 Francisco

Gyro & Accelerometer 160 Chris & Francisco
Robot Communication 170 Thomas

Linux Maintenance 150 Curtis
VO 230 Curtis & Francisco

Goal Detection 150 Curtis & Francisco
Total 1770 hours All Team Members

progressed through the Fall semester, the timeline
was updated to reflect the upcoming tasks, goals
and challenges that lie ahead to produce the final
product.

1) Milestone 1: Visual Control of a Robot: Be-
cause our robot project is designed to use cameras
as a sensor to be used on a mobile robot, it was
determined that as a proof of concept, we should
attempt to demonstrate that we can control our robot
through mainly using machine vision. As a bread-
board proof of our system, we demonstrated visual
control of our robot by making it locate and drive
to an orange soccer ball. This was a very important
milestone as it demonstrated the base functionality
of many subsystems. For this proof of concept to
work, we needed to be able to demonstrate an
assembled robot, functioning communication with
the robot chassis, functional processing of image
sequences, and basic robotic control through path
planning. While most subsystems were in very rudi-
mentary stages of implementation, their implemen-
tation demonstrated that we are prepared to meet
our project goals and milestones.

2) Milestone 2: All Features Implemented: After
we have demonstrated visual control of our robot,
we are to set to work on implementing all the
features listed in the feature set. When all of these
features have been implemented, Milestone 2 is
considered complete. The primary focus of this
milestone is to get functioning data coming from
the encoder odometry as well as the VO. These
odometry models are to be used in tandem for
producing better usable datas than each odometry
model is capable of producing itself. Achieving this
milestone begins a long and involved testing and
debugging phase of our project.

11

3) Milestone 3: Filtering Odometry Models:
After the odometry models have been verified to
produce usable data within a certain percent error
from ground truth data, we are to begin fusing the
two data sources by using an extended kalman filter.
This probabilistic filtering approach will enable us
to tune our system for more precise odometry infor-
mation. The testing and debugging phase involved
in this will be extensive, but once the models are
filtered, our system will be ready for the next face.

4) Milestone 4: Mapping and Path Planning:
After our odometry models have been fused by
using the EKF, our next focus is on the mapping
and path planning milestone. This milestone will
take our fused, known good data and bring it into a
mapping application. It will also use this collected
map data to form a path to known goals.

5) Milestone 5: Project Completed: Once all
subsystems are reporting to the mapping applica-
tion, we have another system testing and debugging
phase. When this phase is completed, the overall
project can be said to be completed. This is an-
ticipated for completion at the end of the Spring
semester.

IV. RISK ASSESSMENT & MITIGATION

Part of any design is to perform a risk assessment
and provide mitigation plan for the items that were
discovered to have a risk of negatively impacting
the project. The following section will address the
critical risk factors and measures we have taken
to address those risks. For each risk an associated
value of Low, Medium, High, or Very High is
assigned depending on the overall impact this will
have on our project. Our estimated probability of
this event occurring is assigned using the same
scale. This allows us to focus on which risks need
the majority of our attention in order to mitigate
them. The following risk assessment chart outlines
the risks and likelihood of failure of our feature set
as perceived by our team.

Note: Risk assessment is in the following format
(Likelihood, Impact)

A. Kinematic Model:

1) There is a chance that the wheel encoders
introduce as much as 2.5 inches of error
second. (Low, Medium)

Fig. 1: Risk Assessment

2) All kinematic models have constraints that
must be addressed in the software and com-
plex programming can cause considerable risk
to a projects success. (Very High,Low)

Steps Taken to address risks:
1) We have researched how to update the en-

coders and possibly the firmware associated
with those sensors.

2) We will test our model thoroughly prior to
demo.

B. Path Planning:

1) There are some considerable constraints
placed on our implementation of Path Plan-
ning, caused by the VO nodes requirements
and this may lead to a much longer develop-
ment time than expected. (High, Medium)

Steps Taken to address risks:
1) We have started research Path Planning mod-

els that are well suited for controlling differ-
ential drive robots that have the ability assist
in working around constraints.

C. Visual Display:

1) Event driven display software is highly sus-
ceptible to runtime errors. (Medium, Low)

Steps Taken to address risks:
1) We will have to use some type of exception

handling or error checking prior to sending
data to this node.

D. Filtering:

1) Non-Linear Filters can be difficult to tune
properly. (Very High, Medium)

12

2) We are using open-source software to perform
our filtering tasks and they might not be fully
functional. (High, High)

Steps Taken to address risks:
1) We have started implementing testing and

debugging protocols to make sure that we
eliminate as many environmental variables as
possible during tuning.

2) We have heavily researched Non-Linear filters
and linear algebra libraries to ensure that if the
software fails we can implement a filter with
minimal time delay.

E. Collision Avoidance:

1) Ultrasonic Sensors cant see all materials or
objects. Our robots workspace is small, so
collision avoidance is difficult and we might
crash without perfect sensor data. (Medium,
Medium)

Steps Taken to address risks:
1) We have IR sensors that can be brought into

the system to allow a total of 10 close prox-
imity sensors.

F. Communication with Robot Chassis:

1) Serial Communication can be prone to error.
(Medium, High)

Steps Taken to address risks:
1) We have allocated a lot of testing time to

ensure that this module is tested thoroughly.

G. Visual Odometry Interface:

1) We are using open-source software and we
are unaware if it has been tested on an au-
tonomous mobile robotics. (Very High, Very
High)

2) Current implementation does not implement
error checking, and allows data to degenerate.
(Very High, High)

Steps Taken to address risks:
1) We have allocated a lot of testing time to

ensure that this module is tested thoroughly.
2) Known issues will be worked around in our

other systems.

H. Laptop Risks:
1) Complete Laptop failure due to hardware or

software complications. (Low, High)
2) Complete data loss (Low, Very High)

Steps Taken to address risks:
1) We continually backup the complete hard

drive image to an external 1 TB drive. Which
allows for recovery in case of hard drive fail-
ure. In addition, the majority of the code that
has been written is stored on Github, which
allows for recovery if we need to reinstall
ROS.

2) Because our system is modular, we can effec-
tively swap the production laptop for one of
our own personal laptops giving us a total a 4
backup laptops which will be able to run the
complete system with minimal setup.

I. Camera Risks:
1) Complete camera failure due to hardware or

driver support.(Medium, Very High)
Steps Taken to address risks:

1) We have purchased a total of three cameras,
in case we ever have the primary camera fail.

J. Eddie Risks:
1) Eddie board failure. (High, Very High)
2) Eddie not as advertised. (High, Low)

Steps Taken to address risks:
1) All of the power inputs on the Eddie board

have been fused for over current protection.
2) Beside the fact that the Arlo platform is

labeled as a turnkey robotic solution, we chose
it because of the proximity of Parallax and
their guarantee that if we should run into
problems they will support us.

K. Battery Risks:
1) Battery case cracks and leaks acid. (Low,

Low)
Steps Taken to address risks:

1) The batteries sit in a dedicated battery housing
under the lower Eddie platform deck. They
are secured in place by hardware standoffs
and the batteries lie between two thick plastic
plates. There is very minimal risk of a battery
case cracking to due to vibration or shock.

13

V. USER MANUAL

This project requires very specific hardware and
software in order to operate. It is assumed that
the user is familiar with the ROS, Linux terminal
commands, both Sketch and Spin IDE’s, as well
as C/C++ and Python programming. The system is
designed to be operated either locally (all commands
typed on the laptop mounted on the robot) or
remotely using an additional laptop and router to
remotely control the robot mounted laptop.

A. Room Requirements:

Eddie must be operated on a flat, smooth, hard
surface (i.e. cement, asphalt, un-waxed tile or hard-
wood flooring, etc.) in an area no less than 3 x 3 me-
ters, and ideally 5 x 5 meters. The room walls must
be either a solid material (wood/brick/steel) or made
of a thick covering such as 12mil polypropylene or
heavier. The floor and wall surfaces must contain a
scattering of small, flat items such as leaves, stick-
ers, or alvar tags in order for the visual odometry to
properly function. The room environment must have
fairly uniform incandescent or fluorescent lighting
and be free of ground debris such as small rocks,
sticks/twigs or any object that will cause the motors
to draw excess current to overcome.

Caution: The drive motor fuses are severely un-
derrated for the amount of current the motors draw
and the fuses will blow if any additional resistance
is added to the path of travel, including an incline or
debris. If ”Eddie” is about to crash into something,
immediately turn off the drive motor power switch
on the distribution board.

B. Local Mode

To operate this project as a standalone system
with no external control:

1) Hardware Required:
• Laptop with at minimum an Intel i3 processor,

1600Mhz DDR3 RAM 4Gb, wireless adapter,
3+ USB 2.0 ports

• Parallax ”Eddie” robot platform w/Eddie Con-
trol Board 1

• Ultrasonic Ping/IR sensors 2

• Logitech C920 USB HD Pro Web Camera

1http://www.parallax.com/product/28992
2http://www.parallax.com/product/725-28998

2) Laptop Software Required:
• Ubuntu 14.04 3

• ROS Indigo 4

• Python PyQT4 5

• Sketch IDE 6

• Simple IDE for Linux 7

To start the system up:
1) Turn on laptop and wait for system to fully

boot up.
2) Place the faces around the environment
3) Turn on the ”Eddie Control board” power

switch (right switch) located on the power dis-
tribution unit. Next, turn on drive motor power
(left switch) on power distribution board.

4) Plug the Eddie control board USB cable into
the laptop. NOTE: This MUST be the First
usb device connected.

5) Plug in the Atmega328 microcontroller de-
velopment board and verify that all 5 ping
sensors are flashing green lights. If not,
open the Sketch IDE and re-load the col-
lision avoidance.ino file. Verify all 5 ping
sensors are flashing before proceeding.

6) Plug in the USB camera
7) Open a Terminal window
8) Launch the production SLAM program from

a bash terminal:
• $ roslaunch production master.launch
• On the control panel, press the ”explore”

softkey and the program will begin.
• The map on the terminal will continu-

ously update the explored area and will
also place a number 4 thru 7 (based on
the face). When the pre-set number of
faces has been identified, the robot will
automatically perform path planning from
its current location to the starting point,
go to each of the faces detected, then
return home and stop.

To drive the robot around:
1) Place Eddie at least 50cm from any walls or

objects
2) Option 1: Perform above instruction including

typing $ roslaunch production master.launch

3http://releases.ubuntu.com/14.04
4http://wiki.ros.org/indigo
5http://wiki.python.org/moin/PyQt4
6http://arduino.cc/en/main/software
7http://learn.parallax.com/propeller-c-set-simpleide

http://www.parallax.com/product/28992
http://www.parallax.com/product/725-28998
http://releases.ubuntu.com/14.04
http://wiki.ros.org/indigo
http://wiki.python.org/moin/PyQt4
http://arduino.cc/en/main/software
http://learn.parallax.com/propeller-c-set-simpleide

14

• Use sliders and commands on control
script to move robot forward, backward
or turn.

3) To ”STOP” robot, press [stop] button on con-
trol script. Allow 200mS for the robot to come
to a complete stop.

C. Remote Mode

To run the system in remote mode, where it can
be controlled from a WiFi connected workstation,
additional hardware is required:

• A second laptop with at minimum an Intel i3
processor, 1600Mhz DDR3 RAM 4Gb, loaded
the with same software and ROS Production
file as the robot’s laptop

• Linksys WRT-110 wireless router
– router settings: DHCP, no firewall restric-

tions, no throttling
To set up the wireless router:
1) Enable wireless access
2) Enable SSID broadcast
3) Enable DHCP
4) Disable all firewall restrictions
5) Disable throttling
Run the following on the robot laptop:
1) Perform the above instructions until you reach

”$ roslaunch production master.launch”. DO
NOT execute this command.

2) Verify the robot Laptop is connected to the
correct wireless network

3) Determine robot IP address of robot laptop
and record $ifconfig

4) Manually set IP address and port number of
robot laptop: xxx-xxx-xx-xx:11311

• $export ROS MASTER URI =
http://(robot ip address from
above):11311

• $export ROS IP = ’hostname -I’
Run the following on the remote control laptop:
1) Turn on remote laptop and open a Terminal

window
2) Connect to the correct Wi-fi network
3) Enter the ROS directory:

• $ cd curtkin
4) Connect to the robot laptop using SSH:

• $ ssh -l team1 (robot ip address from step
8):11311

5) Enter password to login to the robot laptop
6) Determine IP address of the remote laptop and

record
• $ifconfig

7) Manually set the IP address of the remote
laptop: xxx-xxx-xx-xx:11311

• $ export ROS MASTER URI =
http://(remote ip address):11311

• $export ROS IP = ’hostname -I’
8) Launch ROS SLAM program:

• $ roslauch production remote.launch
Finally, to drive the robot around:
1) Use same precautions describe above in man-

ual mode “driving instructions”
• Option 1: Type $ roslaunch production

master.launch and use sliders and com-
mands on control script to move robot

• Option 2: Press the ”Explore” button

VI. DESIGN DOCUMENTATION

The hardware and software requirements to im-
plement a SLAM robot may not appear very chal-
lenging at first - get a robot, load some software,
plug in a few sensors and the system should work,
right? The short answer: No, not even close. Our
experience in choosing a commercially available
robot and implementing the proper software was
anything but straight forward and included hundreds
of hours of research and extensive hardware and
software troubleshooting. Our team researched sev-
eral manufacturer’s of differential drive robots rang-
ing from Vex, iRobot, Dagu and finally decided on
the Parallax ”Eddie” robot. Once the robot platform
was decided on, our team struggled with a means
to integrate all of the software programs that must
run simultaneously into a single control program
structure. It was around this time we learned about
the Robot Operating System (ROS). Our teams’
introduction to this amazing program allowed us to
fully integrate all of our hardware and software in
an environment that performed parallel processing
based on event driven programming. We finally had
all of the necessary building blocks to begin our
SLAM robot project.

The system documentation below is intended to
provide a summary of the hardware and software
used in this project. First, the hardware section will

15

describe all of the main hardware components, in-
cluding interconnection diagrams and a system con-
nection overview depicting the relationship between
our hardware features and ROS. Second, each type
of software program being used will be covered.
This includes an overview of the external programs
interfacing with ROS and associated flowcharts, and
an in-depth look at the relationship of each ROS
node used and the topics associated with each node.
It must be mentioned that there are aspects of
ROS which we do not fully understand due to its
complexity. ROS is an open source program that
has tutorials that enable the user to implement the
code without being bogged down with the program’s
details.Therefore, processes happening internal to
ROS will not be covered.

VII. BREAKDOWN OF HARDWARE SUBSYSTEMS

Our core hardware is comprised of: A laptop,
a Parallax Eddie robot, an Atmega 328 microcon-
troller, five ping/IR sensors and a camera. Eddie
is a differential drive robot comprised of a micro-
controller containing an integrated PID, two optical
wheel encoders, two PWM driven motors and two
lead acid batteries. Eddie is programmed to directly
interface with the ping/IR sensors however, our
SLAM algorithm could ideally interface with any
robot platform that was differential drive. Keeping
this in mind, we chose to use an Atmega328 mi-
crocontroller to control the ping/IR sensors, which
allowed ROS to communicate only encoder data
with Eddie. The assembled Laboratory Prototype
hardware can be seen in Figure 2.

A. Encoders
Initially, Eddie was driven by a GO command

which uses a set velocity for travel but does not
give feedback as to how far the robot has traveled
or in which direction. When we tried to use the GO
SPD command, which uses the wheel encoders for
movement, it did not work. We contacted Parallax
and with some factory support, we managed to get
an alternate set of less accurate 32 tick encoders
to work without learning why our original encoders
failed. Figure 3 shows the replacement encoders and
Figure 4 shows Francisco hard at work debugging
encoder data.

As our project progressed, we needed to use
the original wheel encoders for their accuracy so,

Fig. 3: 32 tick encoders

Fig. 4: Troubleshooting 32 tick encoders

after a second trip to Parallax and some extensive
troubleshooting, we found that one of our original
encoders was bad, which caused the original issue.
Figure 5 shows the new encoders. Thanks to Paral-
lax’s help, we were able to get our project back on
track. Figure 6 shows the team after troubleshooting
the encoder issues with Parallax.

Fig. 5: Motors with 144 tick encoders

B. Camera
In order to process the vision data, we need a

vision sensor. Because webcams are cheap, readily
available, and easy to interface, it was decided
to use one for this project’s vision sensor. After
looking at recommended options, the team decided
on the Microsoft Lifecam Studio as seen in 7.

16

(a) Eddie Front (b) Eddie Side (c) Eddie Rear

Fig. 2: Eddie Robot Chasis

Fig. 6: Andy & Chris & Thomas at Parallax

This camera is capable of producing our desired
640x480 pixel image at 30 frames per second (FPS).
Unfortunately, during the use of the Lifecam, it
became apparent that it would not work for our
project. The Lifecam has a numerous issues during
use on the Linux environment. We attempted to
implement some fixes onto our system (see the
appendix), but we eventually deemed the camera
too unstable to move forward with in the project.
We did some research and physically tested various
readily available webcams before arriving with our
current choice, the Logitech C920 (seen in Figure
8). This camera produces the same 640x480 at 30
FPS video and in testing is a lot more stable within
our software environment than the Lifecam.

C. Atmega 328 Development Board
An Atmega 328 microcontroller development

board is used on this project for rapid protoyping a
solution in order to offload some of the ping data
processing that would normally be calculated on the
Eddie control board. This move is made to isolate

Fig. 7: Microsoft Lifecam Studio

Fig. 8: Logitech C920

17

the Eddie control board to only worry about wheel
encoder data and drive commands.

Fig. 9: Microcontroller w/Pings and Camera to
Laptop

The overall hardware system flowchart can be see
in Figure 10.

Fig. 10: Robot Hardware Flowchart

VIII. BREAKDOWN OF SOFTWARE SUBSYSTEMS

The software descriptions contained in the sec-
tion are intended to provide an introduction to our
overall software subsystems. Every program that
we have developed or are using are developed to
be utilized within the ROS environment. Unless
specifically stated each section is running on it’s
own node and it’s inputs and outputs are passed via
topic through the ROS processing abstraction layer.
The programs are designed to be implemented as
standalone nodes which allows them to be worked

on independently and improved or replaced as
needed. Please note that although individual nodes
are designed to be launched as standalone programs
they will not perform their intended task unless
launched as a whole as their collective collaboration
is required to achieve any measure of success.

A. Robot Communication

With the selection of a robotics platform and a
the laptop properly configured it was now time to
establish communication between the robot control
board and our programs that would need communi-
cation in ROS. This software will be the pathway
that conveys and receives data between two of our
major hardware components. We elected to go with
a standard USB hardware connection with a ROS
node to interact with the serial connection. There
was minimal hardware design requirements due to
using existing communication standards.

With the hardware requirements met we now
began researching to find a serial driver that would
provide the software communication between the
ROS nodes and the control board. We initially
investigated using a previously established ROS
node that was written specifically for our specific
robotics platform. This node would have provided
the serial communication requirements with little
to no alterations. While attempting to implement
this existing code we ran into compatibility issues
regarding specific software dependencies. We spent
about a 80 combined ours attempting to get this
software to work, but every path turned out to be a
dead end.

We no existing software available to meet our
needs we began development on our own ROS node
to accomplish the requirements. The most import
aspect when designing this software was to ensure
that high reliability could be achieved from this. As
this sub-system communicates the control systems
desired velocity information to be implemented by
the robots firmware board. If this communication
were to break it could result in undefined behav-
ior of the robotic chassis and catastrophic system
failure.

With the design priority of reliability set we
began researching existing C++ libraries that allow
for the establishing serial communication via the
USB connection on the PC. There were multiple
implementations that were found, but in the end

18

we chose to find a solution based upon the boost
libraries, because they are open source and highly
documented. We were able to find a light weight
open source wrapper of these libraries that allowed
easy integration into our existing software develop-
ment environment.

Once we had proven that we could establish com-
munication between the robotic chassis and the PC
via the USB cable we then began focusing on how
we are going to integrate our software into the Robot
Operating System environment. The modifications
to our existing serial program involved allowing it
to capture published messages from other nodes and
relaying these messages to the robotic chassis. This
allows multiple nodes to pass or receive messages
at the same time.

During development we discovered that robotic
chassis communicates with signed hex represen-
tation saved into standard c-string format. This
proved problematic due to the inherent nature of
humans to desire visual displays of signed decimal
numbers, even when stored in c-strings. The existing
standard libraries that exist for performing this type
of conversion did not perform to our expectations.

Once this conversion had been established at
began initial testing of this subsystem. For initial
testing we developed a small program that essential
allowed us have a basic terminal interface with the
robot chassis. The testing program was it’s own
node that communicated with the our serial driver
via publishing a ROS topic called eddie do. This
essential simulated our control system providing
commands for our robot chassis to implement.
Initial testing proved that our implementation was
sound and we began adding additional features to
our serial driver node.

One of the tasks that the serial node is responsible
for is retrieving the values of the encoder ticks from
the robot control board. This is accomplished by
sending the command ”DIST” to the robot control
board and waiting for it to provide the amount
of encoder ticks that have passed from the last
sample time. We had originally attempted to utilize
standard threading to achieve the a desired delay
between sample times to allow the robot firmware
to execute other task. The addition of a stand thread
delay resulted in the serial node being unavailable
for time critical functions such as sending stop
commands. We then implemented a standard time
work around that allows us to control the frequency

of the requests. There will be small amounts of time
fluctuations between the samples, but nothing in our
system requires this feature to be deterministic. We
can adjust the amount of samples per second by
simply adjusting the variable that controls this.

This sub-system has about two hundred hours
of functional testing and seems to be functioning
properly. Due to the critical nature of this sub-
system we are considering adding additional run-
time error checking procedures that would allow our
system to perform dynamic communication estab-
lishing if the system is unplugged. This sub-system
is in debugging phase

B. Visual Display
Visualization of data from multiple sources is

critical to provide feedback for debugging and
rapidly displaying the systems current status. The
information that we needed to display consisted of
the outputs from the Visual Odometry, Kinematic
Model, and the output of the filtered data.

The display needed to provide a top down two-
dimensional map of the robots environment and
path. ROS has some built in utilities such as RViz
which allow mapping. The interface with these
utilities was complex and the time to implement
them would have been considerable. Due to the time
crunch it was decided that we would implement our
own mapping node that would display the required
features.

Fig. 12: Visual Display

Initially we decided on some of the key design
features of this node. Since this feature is needed
for assisting in debugging and troubleshooting of the
system we needed to ensure that this data is accurate
and to scale. We also decided that ensuring that this
map could be rescaled to various environment sizes

19

Fig. 11: Serial Signal Path

was a priority. Additionally the map needed to be
threaded to ensure that it limited the amount of pro-
cessing the PC had to do. Graphics representation
can be very processor intensive.

We elected to implement this node in C++ be-
cause of the possibility of needing large amounts
of data storage which means that the if we used a
slower language we would increase the processing

load of our PC. We decided on using the OpenCV
library because it is highly documented and has
many code examples. It is known for having a large
amount of drawing functions and has many back end
accelerators built into the it. In OpenCV an image
becomes a matrix and it is easy to manipulate or
draw on that image creating the display we needed.

This node is built into a parent node that contains

20

the kinematic model and pre-filter functions. This
design choice was made because it allows all three
of these sections to have access to the same data
storage containers. The data storage containers we
chose to use are the C++ standard vectors. This
design choice was made because they are easy to
use and highly documented. They allow much faster
processing time than using standard C++ arrays
and take care of dynamic memory processing much
easier than doing it manually. The use of standard
vectors minimizes the chance of memory leaks,
when compared to implementing data storage alone.
A vector is created for the outputs of the kinematic
model, visual odometry, and EKF. The map then has
access of this information so it can plot the location.

The first step when creating the map was to
decide on how much space the image should take
up. Originally we went with a smaller window,
but this greatly decreased the ability to get precise
visual information from the display. We then set it
up to maximize upon opening. Now that we knew
the working environment of our display we set out
to actually create our display.

We elected to assume that our environment in
square for the display purposes. If it turns out to
be another shape it will still fit inside of a square
with minimal rescaling. We split the display into
two regions, one containing the square to contain
the map of our environment and a second region
to contain the map key and other data. This makes
understanding the meaning of the map intuitive and
easy to learn.

To ensure proper scaling of features in the map
there was some basic steps we had to perform. The
first region, the map square, has a predefined pixel
width that is allocated at the top. At compile time
the user adjusts the estimated physical size of the
room. From this data the node creates a pixel scale
by dividing the physical width of the room by the
number of pixels. This attaches a meter scale to each
pixel. This scale is important because it is used as
the scaling factor to ensure everything in the map
is plotted to scale.

The mapping updates at the request of the parent
program which controls the thread, and thereby the
frequency of the map update. The flowchart explains
the detailed principle of operation.

We have verified that the scale is accurate enough
for us to use for initial testing an debugging pur-
poses. We have utilized the display in presentations

to our sponsors from FMC Technologies Schillings
Robotics and it has been well received.

Our current design satisfies our original design
goal. We are still in search of a program that
will allow us to display 3D data during our final
demonstration. Currently we are exploring the ROS
Rviz package and are hoping to have it ready for
demo day. The reason that we are hoping to use
Rviz is that it is a much more professional looking
product that delivers a high degree of polish and
refinement to the visual display. We will continue
exploring Rviz until we decide that implementation
will require more time or skill than we currently
have.

C. Kinematic Model

Each individual robot has a to have a mathe-
matical model so that odometry information can be
generated from the on board sensors. In our case
we are going to use data from our wheel encoders
to generate localization data regarding our robots
position in the global environment. This localization
information is referred to as odometry, and will refer
to it as wheel odometry.

We attempted to find existing software solutions
to generate this data, but we were unable to find a
suitable model. Having exhausted our search options
we began brainstorming on how we were going to
implement our own node to perform these kinematic
calculations to generate wheel odometry data. We
decided that speed, precision, and data storage were
the essential design characteristics we needed to
achieve. We elected to begin developing in C++,
because it is well suited for speed and had the ability
to interact well with the previously discussed nodes.

The actual kinematic calculations became part of
a larger parent C++ class that the visual display
and pre-processing for the EKF are part of. This
allowed for a more rapid creation of the node and
a more cohesive code flow. By creating the nodes
using common data storage techniques it allows our
program to be faster and easily improved.

We initially started looking into the various types
of models that can be created for a differential
drive robot. Because we are interested in tracking
the location of the robot throughout its run we
focused on forward based kinematic modeling. This
simply means that we are going to use a system of
equations to get the required data that we need.

21

Fig. 13: Visual Display Flowchart

During creation of our first kinematic model we
discovered that our wheel encoders didn’t have the
precision that we originally thought. We discovered
that we had expected 64 encoder ticks per revolu-
tion, but were actually achieving 32. This means that
any direct reading of the encoders could be off as
much as .25 inch every reading. This error would ac-
cumulate over time and could cause significant error
over time. Instead of attempting to directly read the
wheel encoders we decided to capture the velocity
commands being sent to the robot chassis and store
a time stamp. We will then use this command and
the time stamp to generate odometry information.
This method makes a major assumption that the
robot chassis will diligently executed and maintain
this velocity. Equations 1 through 6 show how
from just the left and right wheel velocities we
can generate the required positional and velocity
changes for the robot platform.

˙x[k] =

(
vleft + vright

2

)
∗ cos(θ[k−1]) (1)

˙y[k] =

(
vleft + vright

2

)
∗ sin(θ[k−1]) (2)

˙θ[k] =

(
vright + vleft
radius ∗ 2

)
(3)

x[k] = x[k−1] + ˙x[k] ∗ ∆T (4)

y[k] = y[k−1] + ˙y[k] ∗ ∆T (5)

θ[k] = θ[k−1] + ˙θ[k] ∗ ∆T (6)

The previously discussed method has proven to
work well. In depth detailed comparison hasn’t been
established yet. During physical testing of our robot
platform it was discovered that we could improve
our encoder resolution from 32 ticks per revolution
to 144 ticks per revolution. This is a considerable
increase. In order to capitalize on this increase
we elected to create a second kinematic model
based upon the amount of distance traveled. This is
beneficial because it allows us to create two separate
models and choose which one we feel gives more
reliable results. We used a different approach based
upon distance traveled and not just the commands.

22

The following equations are derived from [11] and
implemented in our C++ code.

vleft =

(
∆left

∆T

)
(7)

vright =

(
∆right

∆T

)
(8)

˙x[k] =

(
vleft + vright

2

)
∗ cos(θ[k−1]) (9)

˙y[k] =

(
vleft + vright

2

)
∗ sin(θ[k−1]) (10)

˙θ[k] =

(
vright + vleft
radius ∗ 2

)
(11)

R =

(
radius ∗ (∆left + ∆right)

∆right − ∆left

)
(12)

ω =

(
∆right + ∆left

radius ∗ 2

)
(13)

x[k] = x[k−1]−R ∗ cos(ω+ θ[k−1]) +R ∗ cos(θ[k−1])
(14)

y[k] = y[k−1] −R ∗ sin(ω+ θ[k−1]) +R ∗ sin(θ[k−1])
(15)

θ[k] = θ[k−1] + ω (16)

The major difference between the two kinematic
models is the is that one is based upon calculating
velocity information for each wheel and the other
is based upon assuming that the robot executes
its previously given command. We expect that the
velocity command based model has more accurate
twist information and that the encoder output based
model has more accurate positional information.

We are actively monitoring which seems to pro-
duce better results. Due to the modular design of
our system switching back and forth between the
two sources is easily accomplished by just chang-
ing a few lines of code. An alternate, but more
complicated, solution is to use the two models and
filter them to get the best results possible, prior to
plugging them into the EKF.

D. Collision Avoidance

Due to the fact that we ultimately envision our
system to run autonomously, some type of collision
avoidance algorithm must be implemented. Luckly
as part of the Eddie Bot turn key solution we
received from Parallax, five dual Ping/IR combo
sensors were included with our purchase. The term
combo basically refers to a fancy mount that holds
both a Ping ultrasonic distance sensor and a Sharp
IR sensor. This setup is designed to be dropped
into our Eddie board. Since the Eddie board has
slots for all five of the dual combo sensors we
originally decided to use them as described from
factory. However, during development we discov-
ered that the IR sensors have a non-linear output
and are subject to various environmental factors. For
example the reading that our IR sensors output are
different depending on the color of the object. This
difference can be as much as 10% which makes
utilizing the IR sensors for Collision Avoidance a
very dangerous proposal. This is why we chose not
to include the use of the IR sensors in our final
design.

For the previously discussed reason we have
chosen to only use the five ultrasonic ping sensors
furthermore we discovered that the on board pro-
cessing power could not simultaneously sample five
ping sensors while sending and receiving serial drive
commands. This created unwanted lag in our system
so we opted to have an external controller dedicated
to just the ping sensors this is how we arrived to the
solution of a dedicated Atmega 328 microcontroller
to control the ping sensors.

To ensure the validity of our ping data, we setup
a small test bench were we performed two tests.
For the first we placed the ping sensor 12 inches
away from a book, for the second we moved the
book to 28 inches. We then directly compared the
result of each ping sensor to the actual measured
distance. We did this for all five sensors and found
that they were were accurate to ±1

2
centimeters.

After the individual testing we tested again with
all the sensors connected and found that this time
the sensor measurements were accurate to ± three
centimeters. This was attributed to possible power
fluctuations from the microcontroller power supply
due to the increase of the sensors. Figure 14 shows
how ping testing was conducted. For our prototype
implementation we have averaged the distance that

23

the pings record with respect to every other ping
sensor in order to return more accurate data.

Once the ping data is collected it placed into an
array and sent to ROS node path planning via the
microcontroller created topic collision avoidance.
It is here that the actual collision avoidance takes
place. The path planning node reads in the data and
makes decisions based on how far away potential
objects are. Path planning takes the read in data and
decides how fast and how much to turn the robot
depending on the its distance to the obstacle. The
flowchart for the pings sensors is show in Figure 15

Fig. 14: Ping Testing

E. Gyroscope & Accelerometer
During our initial system development we were

unsure of the type of vision system we would be
using. We initially expected to be using a ranging
solution or something to that effect. The gyro and
and accelerometer where a design input from a
faculty adviser in order to assist gathering odometry
information.

The Gyroscope & Accelerometer were to help
gather information regarding the angular velocities
and angular position of our robot platform. The Gy-
roscope & Accelerometer are well-suited to perform
this task, when initial filtering is performed via a
complementary filter.

Due to our design choice of implementing a VO
system we have began researching the side effects of
removal of this feature from our system. The output
of the Gyro & Accelerometer sub-system is the
same as the output of the Kinematic Model and VO
sub-systems. This means that we have three sources
that all provide estimates of the same information.
By keeping the Gyroscope & Accelerometer in our

Fig. 15: Ping Sensor Flowchart

sub-system we add an increased level of complexity
and don’t expect to see much gain. Unless com-
pelling reasons can be find we intend to request
removal of this sub-system via change order to be
submitted in February.

F. Path Planning

The path planning program has gone through
several revisions through its development cycle. Ini-
tially, the visual odometry program had very specific
non-holonomic limitations of how the robot could
move without corrupting the visual odometry data.
During testing, there were certain driving conditions
that caused the visual odometry to rapidly interpret
bad map data. This originally included when the
robot performed a hard fast angular turn, when the
forward velocity dropped below a certain threshold,
or when the robot stopped or rotated on its axis.

24

Initially, the original exploration algorithm was im-
plemented inside the path planing program. How-
ever, during the evolution of the visual odometry
system, an alternate VO approach was used that
relied on pure rotation and forward movement only.
This resulted in a separate new exploration program
that runs as its own node. This external program
is automatically disabled when the path planning
process is triggered and then the driving algorithm
takes place inside the path planing program.

The path planning program receives data from 4
primary sources: Robot x,y,theta position data, ping
sensor distance data, facial recognition x,y, ”who?”
data and an ”explore” flag for the SLAM process
to begin. See Figure 16 16 for a system flowchart,
including incoming data. The path planning pro-
gram uses the robot’s estimated position data and
uses scaling to convert the distance the robot has
moved in meters in the x and y axis directions to
a grid map that keeps track of where the robot is
and where it has been, along with unexplored area.
Figure 17 17 shows the process for receiving and
storing position data, as well as map generation.
The testing environment was predetermined not to
exceed 6 meters and the desired size of each grid
is 0.2 meters. This was decided based on the robot
chassis being 0.43 meters across. The map created
also utilizes the ping sensor distance data to project
free unobstructed space away from the robot up
to 0.6 meters. Figure 18 18 shows the flowchart
for incoming ping distance data processing. This
allows for more squares of the of the environment
to acknowledged as ”free space” that has been
explored without the robot physically driving it.
Finally, the facial recognition data is triggered by
the camera software program seeing the face and
predicting the x,y distances from the robots current
position. It is assumed that if the camera can clearly
see the detected face, then there are no obstructions
between the robot and the goal. In this situation,
depending on the angular orientation of the robot,
all of the squares between the goal and the robot
are filled in on the map.

The path planning algorithm, shown in Figure 19
19, is based on a depth first search pattern. During
testing, a single search using a clockwise pattern
starting at the 12 o’clock position plotted a very
inefficient path to the detected object. This led to
using 8 different variants of depth first search to
calculate the most efficient path from point to point.

The grid squares of the route of each independent
goal to goal are stored separately and in the end,
combined into the final driving path of the entire
journey. In addition, an acceptable measure of what
constitutes a successful ”robot has arrived at goal”
point must be established. This goal was set to
40 centimeters or 1 robot width. This ensures
the collision avoidance system can still properly
function while getting goals in case the environment
has any unexpected changes.

The path planning program must be programmed
with a few commands to determine the type of oper-
ation. First, there must be an ”explore” mode, where
the robot automatically roams around the room with
a preset path plan and performs collision avoidance
during travel. Next, there must be a ”find object”
command that allows the user to choose an object
at a known set of coordinates, and have the robot go
to that object - still performing collision avoidance
and obeying the non-holonomic constraints of the
system as to not cause a software failure during
goal seeking. And finally, there must be a remote
stop command to terminate the program. There is
an ”explore” button on the control script that begins
the SLAM program. The path planning program can
be preset to start after detecting 1 to 4 faces before
automatically performing the path planning process,
or the ”fetch” button on the control script can be
pressed any time to begin the process. With no goals
detected, the robot simply goes to the starting home
point.

G. Visual Odometry Interface

One of the main design requirements of our
project was to be able to control a mobile robot by
using a camera as a sensor. Cameras can be used
to control robots in a multitude of ways. We chose
to implement a system that utilizes the camera to
produce localization data. This is commonly known
as VO.

VO is often used to compensate for imprecision’s
on wheel encoder systems. When working with
wheel encoders on mobile robotics, there is no
guarantee that the robot traveled the distance that
the wheel encoders measured. If the wheel spun out
or slipped, the encoders still counted motion, which
makes the robot think that its platform has traveled,
when it actually hasn’t. VO is used to help fix this
localization problem. While the VO sampling rate

25

is often much slower than the wheel encoder sam-
pling rate, it can help alleviate the wheel slippage
problem. When 100% wheel slippage occurs in a
visual odometry system, no motion is measured by
the camera because the camera did not see any
change. Because of this, there is no motion output
from the odometry system, which drastically helps
overall control systems in compensating for robots
that operate in these high slippage environments.

Our robotic platform needs to be able to carry
around a camera that will be used to perform
VO. The specific system is unimportant, our design
needs to be able to have a module for VO to be
plugged into. This modularity is important to our
project, as it will allow us to replace any given
set of VO libraries for another. One goal is, given
enough time, be able to test out several VO libraries,
chose the best option for our system, and produce
recommendations for future robotics groups.

FMC Technologies Schillings Robotics requested
that we implement a monocular VO system, which
has turned out to be one of the main limitations
of our project. This greatly limits our options in
the open source VO implementations and in gen-
eral, complicates the system. Unless mathematical
assumptions are made, it is impossible to gather
scale from a monocular system. This can be a
very massive issue, as the system can tell you that
you’ve driven in a direction, but not how far in
that direction. While still usable, plugging this data
into control loops results in generally poor control
systems.

The current library we have chosen for our VO is
libviso2, written by Andreas Geiger. The algorithm
in this section is abstracted from his paper [3]. Lib-
viso2 was written primarily for use on autonomous
vehicles. There are two separate implementations:
the monocular and stereo cases. The stereo case has
no limitations, while the monocular algorithm has
many.

The monocular library assigns a scale to the
odometry data, but it does so by making some
mathematical assumptions. First it assumes that the
camera is at a fixed height and angle, and that the
camera never deviates from these initial parameters.
Knowing these values allows us to attach a scale
to the output data. The algorithm performs the
following steps [3]:

1) Using random sampling techniques, estimate
the F (fundamental) matrix through an 8-point

algorithm
2) Compute the E (essential) matrix using cali-

bration data
3) Compute 3D points and rotation and transla-

tion
4) Estimate ground plane in 3D points
5) Use known camera height and pitch to scale

rotation and translation
6) Capture new frame

Because libviso2 is a drop in solution to the visual
odometry subsystem, we are mainly concerned on
how it fits into our system rather than the intricate
implementation. The overall flow chart for the VO
signal path can be seen in Figure 20. As shown,
the VO interfaces directly with the Camera, and the
EKF. The EKF that our system uses is VO library
independent. Any library that can produce a ROS
odometry message type can be used.

This library allows us the unique luxury of get-
ting scaled data. Other monocular implementations
do not necessarily give us this luxury. However,
because this library allows us to gather scaled
data trough only camera frames, some mathematical
assumptions have to be made. Because of these
assumptions, we assume values for 3 degrees of
freedom corresponding to the camera pose. This
limits our ability to only be able to extract 3
degrees of freedom data from our camera system. In
order to ensure the system provides proper output
these mathematical assumptions become physical
measurements and mounting requirements of the
camera’s position. These measurements provide the
vertical distance from ground and the pitch of the
cameras viewing angle. The third physical require-
ment is that the camera can not have any play to
roll. The measurements are stored in a file that is
loaded into libviso2 at run time.

One of the inherent problems with the libviso2
library is the fact that it cannot handle data from
the camera if the data gathered was a result of pure
rotation about its non fixed axis. If pure rotation data
is inputted then the fundamental matrix cannot be
trusted. This is due to a common problem in fun-
damental matrices known as matrix degeneration.
This can happen when the fundamental matrix fails
to find a unique solution to the epipolar transform
between image frames [12].

While implementing the library was incredibly
fast and easy thanks to pre-written ROS nodes found

26

online8, this library has consumed a lot of time in
testing and debugging. Initial tests seemed like the
library was producing usable results, but we needed
a way to view the data. Once our visual display
was implemented, we noticed that the data was far
from perfect. A lot of testing and research went
into tweaking the many parameters of our system to
optimize for the VO data. While the incoming data
has improved over the past few weeks, the continued
use of libviso2 is putting many difficult constraints
on our overall system. We are actively trying to
refine the VO system and find the constraints of
libviso2 so that we can implement path planning
methods that can work around them.

H. Probabilistic Filtering
The overall purpose of this sub-system is to

minimize the effects of noise or error in the sensor
readings and fuse the data from multiple sources
into a single output. In the field robotics there are
many options when considering using a complex
filter to fuse sensor data from multiple sources. The
two main types can be categorized as particle filters
and Gaussian based filters. An in-depth explanation
of the differences is beyond the scope of this paper.
Instead we will focus on the filter we chose and
why we chose it, as well as the implementation of
our filter choice.

We spent considerable time researching filters
during our initial system development. We elected
to utilize a probabilistic filter based upon the EKF.
The main reasons we chose to utilize an EKF was
that it has a proven history of being successfully
implemented in systems that are similar to the one
we are attempting to build. The EKF also has many
open source implementations and many detailed
explanations that allow utilizing an EKF to be much
easier than some of the existing systems. There
are fancier forms of the Kalman filter such as the
unscented variety, but they are newer and more
difficult to implement.

We elected to find a existing EKF instead of
programming one from scratch. This will allow
us to focus on the usage of the filter and not
the complex mathematics that make it work. The
particular versions we found to was the EKF from
the robot pose ekf from the ROS open source
libraries. This particular realization of the EKF

8http://wiki.ros.org/viso2 ros

Camera Input

Driver

Image Rectifier

Perform VO

Covariance GUI
for adjusting
Covariance

Transform
information
into robot

reference frame

Convert data
type and append

to Covariance

Recieve
user defined

covariance or
send default

Send data
to EKF

EKF recieves data

Fig. 20: VO Signal Path

is the backbone of other SLAM algorithms and
has a long history of proven success. One of the
biggest factors in determining whether or not to
utilize this particular software was that it is heavily
documented. It is designed to take inputs from VO,
wheel odometry, and IMU input. It will then fuse
this data and publish the outputs.

The first step in setting up to utilize the filter node
was to figure out the particular data types and topic
names in subscribes to. By using the inputs as our
starting point it allowed us to figure out what pre-
processing and conversion needed to be performed
on the individual data sets prior to publishing them
to the filter. It was during this initial step that we

http://wiki.ros.org/viso2_ros

27

discovered that we were going to need to capture
all data sources and append our estimate of the
covariance to it.

We created a C++ class that captures the output of
the kinematic calculations and VO subsystem. The
kinematic calculations occur inside of the same class
and do not need to come from external input. The
output is stored in the previously discussed vectors
where it waits until time to be published to the
robot pose ekf node.

The slower input is the VO so when the output
of that system occurs it sets a Boolean variable
that then causes the VO and kinematic odometry
information to have the covariance attached to it and
published to the EKF. The covariance adjustment
for all of our odometry models is critical to the
overall output of the filter. If the covariance values
are incorrect then the output from the filter can be
completely incorrect. For the duration

When the robot pose ekf node is done process-
ing the data the same C++ class subscribes to the
topic and stores the filter output for usage by the
other nodes. The process happens rather quickly
compared to the VO processing time. The output
is then plotted on our visual display for visual
comparison to the other sources.

We have currently fused the two kinematic mod-
els and have successfully implemented filtering of
VO and wheel encoder data. Our sponsors have
indicated that they would like to be able to have
the vision sensor be the dominant sensor, but we
have been unable to tune our filter for this. This is
mostly due to the current status of our VO node.
We are aware of the difficulty that tuning an EKF
and are ready for the task.

During our initial testing we were forced to
recompile our nodes every time we adjusted the
covariance. This was time consuming and created a
very slow tuning environment. As a way to help us
expedite our tuning we have created Graphical User
Interfaces in python to help us tune the covariance
of the inputs during run-time. This should greatly
increase our tuning and debugging time of the filter.

The GUI allows us to monitor the output of our
data sources as well as update our estimate of the
covariance. The overall design was intended to be
functional and not for presentation during our end
of project presentation. The node that contains this
GUI is written in python QT4. This same node also
allows the user to update a text file that is read

Fig. 21: Covariance Adjustment GUI

during run time that contains the default covariance
values for all data sources. The file is updated
each time the user sends a new covariance update.
The current EKF C++ code doesn’t access this file
directly it subscribes to the covariance updates via
ROS topics. This allows a user three options to
adjust the default covariance: adjust in the C++
pre-filter code, adjust the text file, or dynamically
change the value in the GUI.

We feel that we are in a strong position to finish
the filter tuning in a timely manner. The initial
testing of the overall system seems to deliver within
the required accuracy of 30% and we are on track
to completing this feature. We spent many hours
teaching us the fundamentals of the EKF as well as
understanding the implementation and limitations of
the robot pose ekf node.

IX. MECHANICAL DRAWINGS AND
DOCUMENTATION

The mechanical portion of this project is limited
to the robot chassis. The robot structure consists of
a top and bottom deck pair, and an undercarriage
for holding the batteries. This undercarriage serves
to prevent any acid spray should a battery burst and
also isolates the batteries from electronic compo-
nents on the decks above.

The robot was assembled per the instructions in
Parallax’s assembly documentation. These instruc-
tions have been included in the Appendix.

28

X. TEST PLAN FOR HARDWARE

The majority of hardware we are using is com-
mercially available off the shelf hardware. Due to
the nature of the software requirements we elected
to spend very little time on hardware testing. If the
hardware fails during software testing we elected to
diagnose those errors on the spot.

We had originally hoped that by purchasing an
expensive ”turn key” robot that we would avoid
the majority of issues that could arise from such
a complicated piece of hardware. This turned out to
be a very flawed plan.

The fact is that the one of the single biggest issues
we have had to overcome is our robotic chassis. It
has failed for us repeatedly and we have had to
replace three sets of wheel encoders.

XI. TEST PLAN FOR SOFTWARE

Our design is largely software and our testing
philosophy will be to test each individual feature’s
software independently of the other sections. After
all features have been verified our objectives will
be to test the entire system as a whole. In this
document, we will present the testing plans for our
specific features in Section XI-A, and the testing
plan for our system integration in Section XI-B.

A. Feature Testing Plan
Our project consists of seven features. These fea-

tures are the Kinematic Model, Path Planning, Vi-
sual Display, Filtering, Collision Avoidance, Serial
Communication, and the Visual Odometry Interface.
Each feature has its own unique testing plan as
described below. These feature testing plans are
slightly different than you’d see in normal system
testing, as we are dealing primarily with custom
written event driven software which leads to dy-
namic errors. With event driven software the amount
of time and amount of start/stop cycles are critical
to detect run time errors. The longer we test, the
more likely unplanned run time errors will surface.

1) Kinematic Model: The Kinematic Model fea-
ture is software that gathers information from the
robots wheel encoders and uses that data to calculate
an estimate of the robots position. This feature is
realized in C++ and as such we need to test this
feature by utilizing its existing infrastructure. As
this feature is dependent upon other features we will
be testing this feature in three separate phases.

a) Phase One: This phase will be to run
simulations by creating a node that simulates the
data that is published from the wheel encoders via
the Serial Communication feature. By using known
velocity controls we can precisely calculate where
our robot should be and verify the output of the
feature is correct. This Phase will test the following
elements of our system.

• The mathematical accuracy of our kinematic
calculations.

• The features theoretical ability to communicate
with other features via ROS.
b) Phase Two: This phase will be to test the

accuracy of the wheel encoders which are the inputs
to the wheel encoders. Although wheel encoder data
isn’t specifically mentioned in the feature descrip-
tion it is essential to have a gauge of the accuracy of
the data being inputted into the feature during actual
run time. The testing method will be very simple.
We will send commands to the robots chassis to
have its wheels spin one complete rotation. By
measuring the wheels distance move and comparing
it the output of the wheel encoders we can gauge
if there are errors in the wheel encoder inputs. This
Phase will test the following elements of our system.

• Verify the precision of our encoders.
• Verify accuracy of incoming data to the kine-

matic model.
c) Phase Three: The third Phase will involve

live testing of the feature inside the desired system.
It is critical that the Serial Communication and
Visual Display features are tested prior to beginning
this phase of testing. This phase will involve sending
commands to the robots chassis and comparing the
output of this feature to the physical ground truth
of the chassis. This Phase will test the following
elements of our system.

• The physical accuracy of our kinematic calcu-
lations.

• The features physical ability to communicate
with other features via ROS.

• The reliability of the feature when used with
other independent features.

2) Path Planning: The path planning node is
software written in C++. It accepts the outputs from
the EKF, collision avoidance, and goal detection
software. It will incorporate local data to create a
map of it working environment. The path planning
feature will need to have two distinct tasks. The

29

first task will be to explore its environment. When
it believes it has explored its environment its next
task will be to navigate to various detected goals
throughout the room.

a) Phase One: The first phase of testing will
be to ensure that the path planning feature has the
ability to completely explore its environment. This
test will be performed by placing the robot in a
safe workspace. The workspace should be between
3 - 5 meters. Three obstacles will be placed in
the room. The obstacles will have a circumference
between 12 - 30 cm and a height between 12
cm - 30 cm. This will ensure that the collision
avoidance feature can see the objects. The robot
will be placed at a predetermined starting point and
an explore command will be sent from the control
GUI. The path planning node will be required to
navigate throughout the room until it has explored
all spaces without colliding with any obstacles or
getting stuck in corners. This Phase will test the
following elements of our system.

• The ability of the path planning node to control
wheel velocities.

• The ability of the feature to navigate and ex-
plore its environment.
b) Phase Two: This phase of testing will be

to ensure that the path planning feature can collect
data from the collision avoidance feature as well
as the goal detection feature. The path planning
feature should be able to successfully interpret that
data and store it. This test will be performed by
broadcasting messages from the collision avoidance
feature as well as the goal detection feature. Testing
if the path planning node is receiving the data can
be performed by printing the received data from the
data structure in which it is stored. This Phase will
test the following elements of our system.

• The ability of the feature to store values from
collision avoidance and goal detection.
c) Phase Three: This phase will test the ability

of the path planning node to go to two predeter-
mined goals. This test will ensure that the path
planning node has the ability to navigate to various
preset destinations. This test can be accomplished
by using the goal detection feature or by publishing
artificial goals. When the GOTO button is pressed
on the control GUI the path planning node should
begin to navigate towards the first goal and then
the second goal. The path doesn’t need to be the

optimal path, but the robot should not need to re-
explore the environment to find that location. This
Phase will test the following elements of our system.

• The ability of the feature to allow the robot to
navigate to a specific desired locations.

3) Visual Display: The visual Display captures
data from the kinematic model, IMU, EKF, and
Visual Odometry features. It then displays this data
for a user. This feature will be implemented in
C++. The accuracy of the visual display is important
because it will be used in debugging of the system.
In particular if there are scaling issues it could result
in improper tuning of the EKF which will result in a
deviation from desired result. Testing of this feature
will be in two phases.

a) Phase One: Phase one will be to test the
ability of this features software to capture data from
all sources and display it as it changes on the
display. To perform this phase of testing a separate
program will be written to publish data on the
specific topic that each input will use. This program
will be interfacing with a lot of event triggered
functions so testing the input and output is essential
to ensure proper display. This phase will test the
following elements of this feature.

• The ability of the program to reliably receive
data from multiple sources.

• The ability of the program to convert received
data into a visual map.
b) Phase Two: This phase of testing will be

to help gauge the accuracy and precision of the
visual display. A program will be created to drive
the robot for a preset distance. After the robot has
travelled that distance we will measure the ground
truth distance travelled and compare it to the visual
display. As this will involve using a floating point
scale to assign a distance to each pixel, we will need
to be cautious of rounding error as our environment
grows. We well be testing the visual display from
distances between 0 to 6 meters for accuracy. We
require that the map be at least 10. This phase will
test the following elements of this feature.

• The ability of the visual display to produce
accurate map data.

4) Filtering: The Filtering feature is a combi-
nation of third party and custom a C++ program.
The overall structure of the filtering feature is to
capture data from the vision feature as well as the
kinematic model. We will then convert this data to

30

an appropriate data type and when ready publish the
data to the third party EKF. The actual EKF is 3rd
party software and will need to be tested thoroughly.
We will test this feature in two phases.

a) Phase One: The first phase of testing will
be to test the pre-filter software that we have written.
This software is designed to accept data from the
previously listed sources and the convert it to the
required data type that the EKF allows. This is
imperative so that there is no data type mismatches
during run time. The software involves multiple
event triggered call back functions so testing to
ensure that each thread processes properly is es-
sential to the reliability of the overall system. To
perform this test data from the various sources will
be published and the pre-filter software will have
to capture, convert, and publish correct output. By
populating the incoming data type with preset values
we can observe that the output of the conversion al-
gorithm correctly converts it to the appropriate data
type. This Phase will test the following elements of
our system.

• The ability of the pre-filter to reliably accept
data from multiple sources.

• The reliability of the data conversion algo-
rithms.
b) Phase Two: During the second phase of

testing we will be testing the third party EKF
software. This test will be performed by using post
processed data to ensure that it is as close to real
situations as possible. We will run the robot in a
circle and record the output of the Visual Odometry
and Kinematic features. The accuracy of the two
sources isn’t really an issue as long as they are
being published on the same scale the EKF should
be able to filter out the error and produce some type
of usable data. Tuning of the EKF filter will be done
via our Covariance adjust GUI. This phase will test
the following elements of this feature. This Phase
will test the following elements of our system.

• The ability of the third party EKF software to
accept data at our transmission rate.

• The ability of the covariance GUI to adjust the
covariance of multiple data sources.

5) Collision Avoidance: The Collision Avoid-
ance software consists of ultra-sonic sensors, micro-
controller and software, serial data transfer, and
software on the PC to interpret the data to prevent
collisions. The Path Planning feature should provide

guidance based upon this features data, but this
feature should contain a procedure that stops the
robot if a collision is imminent.

a) Phase One: The first phase will be to test
the data coming out of the ultra-sonic sensors. This
test will also test the ability of the micro-controller
to interpret data that is received by the sensors. The
test will be to place an object in front of each sensor
and see the distance measured by the sensors. This
distance needs to be less than 3cm per meter, unless
the distance is less than a meter in which case +- 3
cm is within acceptable standards. This Phase will
test the following elements of our system.

• The accuracy of the sensors.
• The ability for the micro-controller to interpret

the data being provided by the sensors.
b) Phase Two: The second Phase will be to

test the ability of the micro-controller to provide
data to the software in the PC. This will involve
third party software for the serial communication
and not the robot serial communication feature.
For this phase of testing we will use the same
type of test as phase one, except that we will be
broadcasting the data to the software in the PC.
The PC software only needs to display the output
from the micro-controller. If the accuracy of the
sensors is the same as the value measured in phase
one then it is a safe assumption that there isn’t any
data corruption due to the third party software. This
Phase will test the following elements of our system.

• The accuracy of the data after serial transmis-
sion.

• The reliability for the micro-controller to inter-
pret the data being provided by the sensors.

• The reliability of the third party serial connec-
tion software.
c) Phase Three: The third phase will be to

create PC software to use the data that is being
transmitted to stop the robot. We are going to send
velocity commands to the robot that will set it on
a path to collide with a wall. The PC software that
implements the collision avoidance must stop the
robot from crashing into the wall. There must be
little to no lag between when the stop point of 30 cm
is passed and when the robot begins deceleration.
This phase will test the following elements of this
feature.

• The ability of the PC Software to prevent
collisions.

31

6) Serial Communication: The Serial Commu-
nication model will be used to send data to and
from the robots chassis control board and the laptop.
The data being transmitted will be converted in the
is node to allow decimal communication instead
of hex, as the board requires. The feature will be
realized in the laptop as C++ code and hardware
connection will be with a standard USB cable.
For the purposes of this section input will refer to
data coming from the robot control board into the
laptop and output will refer to data being sent from
the laptop to the robot control board. This feature
involves event triggered programming techniques,
so we will be testing in 2 number of phases.

a) Phase One: A key element of the feature
is its ability to convert data. Specifically the Robot
Control Board requires that numerical values be
transmitted in signed Hex stored in a standard C-
string. This is not a standard form of numerical
notation and is very hard for a human or C++
program to interpret the data. This feature will
handle bidirectional conversion between the decimal
and hex c-strings. This Phase will test the following
elements of our system.

• The reliability and accuracy of our conversion
algorithm.
b) Phase Two: The second stage of testing

for this feature will be reliability of the overall
connection between the two devices. This test will
involve sending data from a testing node and having
the serial communication software transmit it via
the USB to the robot control board. The program
should close the serial connection and reopen it at
least 500 times to verify that the connection can be
re-established without error. This phase should also
have a time test that tests leaving the communication
on for a very long time, such as 3 hours. This Phase
will test the following elements of our system.

• The reliability of the connection and interface.
• The repeatability of the connection and inter-

face.
7) Visual Odometry Interface: The visual odom-

etry feature will accept images, process them, and
output odometry data. The feature will be imple-
mented in C++ or third party software. It is im-
portant that a precise measure of this feature is
understood as our sponsors are very interested in
this feature. The environment which these tests will
be performed needs to be controlled and stale as the

VO calculations will assume that only the camera is
moving. This feature will be tested in three phases.

a) Phase One: The first stage of testing will be
this features ability to accept an image and output
unscaled Rotation and Translation matrix. This is
the first stage of processing for the visual odometry
system and it is imperative that this first step is
understood and tested thoroughly. It is specific to
note that during this phase of testing that run-time
errors are understood, such as segmentation faults.
When errors are found the specific run-time error
should be repaired and then the testing cycle should
start again completely. For example if 300 hours of
testing are to be performed for the phase of testing
to be completed and an error occurs at hour 290
the timer must be reset. To perform testing for this
phase start the VO node and observe the output of
the system for a certain number of time. By varying
the cameras location new images will be produced
which will help identify run time errors. By moving
the camera left and right the tester should observe
that the Rotation and Translation matrix change with
the movement. The tester should keep in mind that
the data is unscaled and will be dependent on the
cameras current environment. This Phase will test
the following elements of our system.

• The reliability of the features ability to accept
and process images.

• The ability of the feature to produce consistent
data.
b) Phase Two: The second stage is to correlate

the data into real world coordinate axis. This can
be accomplished via external calibration standards
such as an IMU. The goal of this test is to ensure
that when the translation matrix states that camera
has moved forward in a specific direction that the
robot has actually moved in that specific direction.
By ensuring proper coordinate axis configuration we
can help prevent scaling and debugging errors. This
Phase will test the following elements of our system.

• The ability of the features ability to produce
data on the appropriate axis.
c) Phase Three: The third phase of testing

will be to test the ability of this feature to produce
data that can be used by the control algorithms.
We are currently unsure of how the control system
will produce data. Testing for this phase will be
re-evaluated upon completion of Phase Two of this
section. We believe that it is critical to perform small

32

scale control testing of the data produced by this
node prior to beginning system level testing.

B. System Level Testing

After completion of all feature testing it will be
time to begin testing the system as a whole. This
will mean that each feature is fully ready to be in-
tegrated into our overall control algorithm. It is our
hope that by thoroughly testing and understanding
our software prior to entire system testing that we
will better understand our overall system and have
be able to troubleshoot it.

d) Phase One: During this phase of testing
we will attempt to launch all programs and be
especially attentive to run-time errors. Our goal for
this testing is course debugging of how the software
interacts with each other as a hole. We need to
ensure that the proper data is being published at
the proper time. During this phase of testing our
path planning, EKF, and VO will probably not be
tuned properly. During this initial phase of testing
we need to ensure the proper data is being published
to each program. If errors should be monitored, but
if possible allow the robot to attempt its mission. By
allowing the robot to run a little longer after the first
error is seen we can see how the error has effected
other elements of the system or if other non-related
errors have occurred. By carefully documenting the
errors during this time we can gauge if the overall
test is working properly. This testing should occur
in the robots environment that it will be tested on
during end of semester demonstration day.

e) Phase Two: During Phase two we will be
working on fine tuning the system. Items such as
tweaking the EKF, VO, and path planning nodes
will be performed during this phase. By taking time
to thoroughly tune our system we can develop a
stronger understanding of the overall system. The
tester should get enough data to make a decision
as to if major overhaul of a feature is required
or not. This phase of testing shouldn’t be consid-
ered completed until every goal in the design idea
contract is satisfied. After phase three it will be
time to qualitatively evaluate the system as a whole.
The key elements are how accurate each of the
Kinematic Model, VO, IMU, and EKF outputs are
compared to ground truth. This data is essential to
gauging if the overall project is a success.

f) Phase Three: The main focus during Phase
three will be to test the system exactly as it will
be on demonstration day. Every effort should be
made to test at the actual site and at the same time
of day. By repeatably testing on sight in the same
environment we should be able to get an idea of the
reliability of the overall robotics system. If Phase
two has passed then there shouldn’t be any major
changes made. If any changes are made they need
to be carefully documented and all members of the
team need to be aware.

1) Software Testing Results: Feature require-
ments successfully tested and meet the requirement
of the Design Idea Contract. All features success-
fully integrated together and passed all phases of
testing.

XII. CONCLUSION

This document has described our development
towards an autonomous mobile robotics system that
can localize based upon external sensor data to
be used in hazardous environments. This robotics
system implemented on a suitable robotics platform
could be used to help reduce risk of injury to
members of our society who put themselves in
harms way on a routine basis. As members of
the engineering community it is our responsibility
to use our skills and knowledge to better society
and we feel that our system can help advance
research towards that goal. By developing a concrete
and reliable SLAM algorithm it allows a robotics
system to be utilized in dangerous situations with
the desired goal of replacing humans in harms way
with machines.

REFERENCES

[1] K. Nagatani, S. Tachibana, M. Sofne, and Y. Tanaka, “Improve-
ment of odometry for omnidirectional vehicle using optical flow
information,” in Intelligent Robots and Systems, 2000. (IROS
2000). Proceedings. 2000 IEEE/RSJ International Conference
on, vol. 1, 2000, pp. 468–473 vol.1.

[2] D. Helmick, Y. Cheng, D. Clouse, L. Matthies, and S. Roume-
liotis, “Path following using visual odometry for a mars rover
in high-slip environments,” in Aerospace Conference, 2004.
Proceedings. 2004 IEEE, vol. 2, March 2004, pp. 772–789
Vol.2.

[3] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3d
reconstruction in real-time,” in Intelligent Vehicles Symposium
(IV), 2011.

[4] S. Choi, J. Park, and W. Yu, “Resolving scale ambiguity for
monocular visual odometry,” in Ubiquitous Robots and Ambient
Intelligence (URAI), 2013 10th International Conference on,
Oct 2013, pp. 604–608.

33

[5] J. Campbell, R. Sukthankar, I. Nourbakhsh, and A. Pahwa,
“A robust visual odometry and precipice detection system
using consumer-grade monocular vision,” in Robotics and Au-
tomation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on, April 2005, pp. 3421–3427.

[6] M. Liu, S. Huang, and G. Dissanayake, “Feature based slam
using laser sensor data with maximized information usage,”
in Robotics and Automation (ICRA), 2011 IEEE International
Conference on, May 2011, pp. 1811–1816.

[7] M. Tatar, C. Popovici, D. Mandru, I. Ardelean, and A. Plesa,
“Design and development of an autonomous omni-directional
mobile robot with mecanum wheels,” in Automation, Quality
and Testing, Robotics, 2014 IEEE International Conference on,
May 2014, pp. 1–6.

[8] J. Marck, A. Mohamoud, E. v.d.Houwen, and R. van Heijster,
“Indoor radar slam a radar application for vision and gps
denied environments,” in Microwave Conference (EuMC), 2013
European, Oct 2013, pp. 1783–1786.

[9] B. Williams and I. Reid, “On combining visual slam and visual
odometry,” in Robotics and Automation (ICRA), 2010 IEEE
International Conference on, May 2010, pp. 3494–3500.

[10] S. Cousins, “Exponential growth of ros [ros topics],” Robotics
Automation Magazine, IEEE, vol. 18, no. 1, pp. 19–20, March
2011.

[11] G. Lucas. (2001) A tutorial and elementary trajectory
model for the differential steering system of robot wheel
actuators. [Online]. Available: http://rossum.sourceforge.net/
papers/DiffSteer/

[12] P. Torr, A. Zisserman, and S. Maybank, “Robust detection
of degenerate configurations for the fundamental matrix,” in
Computer Vision, 1995. Proceedings., Fifth International Con-
ference on, Jun 1995, pp. 1037–1042.

[13] [Online]. Available: http://docs.opencv.org/doc/tutorials/
introduction/linux install/linux install.html

[14] “Arduino ide setup for rosserial.” [Online]. Avail-
able: http://wiki.ros.org/rosserial arduino/Tutorials/Arduino%
20IDE%20Setup

GLOSSARY

EKF
The Extended Kalman Filter is a proba-
bilistic filter used to help remove noise
from data. 4, 8, 20, 22, 25–27

FPS
The rate at which frames are displayed. 16

fundamental matrix
The fundamental matrix contains the data
corresponding to the epipolar geometry
between two image frames. 25

IMU
An Inertial Measurement Unit is a sensor
device that measures current pose data. It
is often configured by sensor fusion of a
gyroscope and an accelerometer.. 5, 7, 8,
26

odometry
A representation of a robot’s position
based upon measured or calculated linear

and angular positions and velocities. 3, 6,
9, 20, 25, 33

ROS
The Robotic Operating System was cre-
ated by Willow Garage, and is a software
framework for use in robotic development.
6, 13, 17, 18, 20, 23, 26–28

SLAM
Simultaneous Localization and Mapping is
the process of producing a map using vis-
ible landmarks and localizing with respect
to that map at the same time. 2–4, 26, 32

VO
Visual Odometry (VO) is a process that
generates odometry data through careful
analysis of image sequences generated by
a moving camera. iii, 3, 5, 6, 8–10, 23–27

http://rossum.sourceforge.net/papers/DiffSteer/
http://rossum.sourceforge.net/papers/DiffSteer/
http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html
http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html
http://wiki.ros.org/rosserial_arduino/Tutorials/Arduino%20IDE%20Setup
http://wiki.ros.org/rosserial_arduino/Tutorials/Arduino%20IDE%20Setup

34

Fig. 16: Path Planning System Flowchart

35

Fig. 17: Robot Position & Create Map Flowchart

36

Fig. 18: Read Ping Distance Flowchart

37

Fig. 19: Path Planning Algorithm Flowchart

38

APPENDIX

Appendix The remainder of pages in this document is supplied as supporting documentation for our
project.

1) Vendor Contacts
• The industry vendor contacts are listed.

2) Project Setup Guide
• The base implementation of the system on top of a Linux environment is documented.

3) Parallax System Schematics
• Schematics for the circuits on the Eddie control board.

4) Logitech C920 Data Sheet
• Datasheet for the project’s camera of choice.

5) HP Elitebook 840 Data Sheet
• Data sheet for the project’s laptop of choice.

6) Eddie Robot Platform Assembly Instructions
• Assembly instructions for the Eddie Robot platform.

7) Project Member Resumes
• The resumes of all project members are included.

39

VENDOR CONTACTS

Vendor Contacts Parallax Inc.
599 Menlo Drive, Suite 100
Rocklin, CA 95765 USA

Daniel Harris dharris@parallax.com

Andy Lindsay alindsay@parallax.com

FMC Technologies Schillings Robotics
Administrative Offices
260 Cousteau Place
Davis, California 95618, U.S.A.

Adwait Gandhe Adwait.Gandhe@fmcti.com

mailto:dharris@parallax.com
mailto:alindsay@parallax.com
mailto:Adwait.Gandhe@fmcti.com

40

Project Setup Guide

This section should outline the layout and imple-
mentation of all software choices and configurations
performed on our project laptop. If you follow this
document and run all the specified commands on
your own laptop, you will be able to run our project.

Operating System

Because our project will be running on top of
a software development platform known as ROS,
the operating system we selected was Ubuntu 14.04,
and the following steps were taken to install Ubuntu:

1) Download Ubuntu 14.04 64-bit from https://
www.ubuntu.com/download

2) Burn the .iso file onto a DVD or a bootable,
LiveUSB

3) Restart computer, booting into the bootable
DVD or the LiveUSB

4) Install Ubuntu on top of LVM

Basic configurations such as username and pass-
word are left to interpretation. The only major
requirement is that the system is installed onto LVM
software (to be discussed in a later section). Once
the OS is installed, it may be wise to perform a bit-
wise backup of the system using cloning/imaging
software such as Clonezilla, or for more experienced
users, Unix’s dd command.

For this project, a base image was produced
using Clonezilla directly after the Ubuntu 14.04
installation procedure.

User Management

To simplify user management, it is proposed that
we have one login to the laptop. This complicates
some things, primarily for those who develop on
the laptop itself. While running a git push, there
will be no sufficient blame history if everyone’s
pushes come from “team 1”. To assist with this
massive design issue, I have set the git global config
user.name to “team1”. This at least gives a little
better blame history.

File and Software Management Considerations
Considering there will be four developers main-

taining code that will likely be ran from one laptop,
there will often be need of a way to distribute
the code. Github was chosen as our distribution
platform, and git was chosen for our revision control
system.

In terms of outside software (stuff that we did
not develop ourselves), it is wise to keep this out
of our github repository. Any software that you
borrow should be added to the .gitignore file, and
documented on the installation process, up to, but
not necessarily including a script to perform the
software install.

Detailed instructions on how to install the soft-
ware required for this project are shown in the later
sections of this paper.

Wireless and Proprietary Drivers
Internet access is required in order to complete

the remainder of the installs. It was determined that
since our laptop is not guaranteed to be plugged
into wired etherent, that we should enable wireless.
Because our HP laptop uses a Broadcom radio,
wireless only works if we use a proprietary driver.
We are using Broadcom 802.11 Linux STA wireless
driver source from bcmwl-kernel-source (propri-
etary). This was enabled in the third party drivers
utility on Ubuntu. To perform this install, the laptop
must be plugged into Ethernet.

After the driver was enabled, a wireless network
was joined. Specific network choice is left as an
exercise to the reader.

Use of LVM
Because we will be developing software to run on

a computer, we need to prepare the system for easy
re-imaging in case of hard disk failure. As such,
the OS was installed on top of a Logical Volume
Manager (LVM). A graphic of the underlying LVM
system is shown in Figure 22

The main benefit of LVM technology is the ability
to snapshot the underlying operating system and

https://www.ubuntu.com/download
https://www.ubuntu.com/download

41

Fig. 22: LVM Layout

data drives for instantaneous backups, as well as
the ability to be able to revert to these point-in-
time snapshots. The scripts that we use for local
backups and then scripts for offloading local back-
ups using snapshot technologies can be seen in
the later sections labeled “Backups” and “Restores”
respectively.

To continue with the install, we have to customize
our LVM install a little bit. We need to make space
for a new logical volume where we can dump our
backups onto for a primary backup solution. To
accomplish these tasks, reboot into a LiveOS like
Ubuntu, click “try” and open a terminal. Type the
commands shown in Listing 1.

1 # note, it seems the best option for this
port is the first USB port on the

left hand side of the computer (
closest to user on the left)

Resize default root partition, reduce
by 50GB

3 sudo su
lvreduce --resizefs --size -50G /dev/

ubuntu-vg/root
5 exit

Listing 1: LVM configurations

Next, reboot the computer and load into the
native install of Ubuntu in order to finish the LVM
configurations. Type in the commands shown in
Listing 2. In this stage, we create logical volumes
on top of our newly free space for a backup mount
point, and add this to auto-mount during startup
using fstab.

1 # Restart computer, booting into the
normal OS

Create a backup volume
3 sudo su
lvcreate --name backups --size 40G ubuntu

-vg
5 mkfs.ext4 /dev/mapper/ubuntu--vg-backups/

7 # make backup directory, configure this
for automount via fstab

mkdir /backups

9 mount /dev/mapper/ubuntu--vg-backups /
backups

echo ‘‘/dev/mapper/ubuntu--vg-backups /
backups ext4 defaults 0 1’’ >> /etc/
fstab

11 exit

Listing 2: LVM Finalizations

Verify that the automount works by rebooting
the OS and checking if /dev/ubuntu-vg/backups is
mounted. In our project, after these configurations
were made, the backup scripts shown in the “Back-
ups” section of this paper were ran.

Software Installs

This section provides installation procedures for
all software used by our project, whether by apt-get
or by compiling software from scratch. The code
listings in the following section list all software to
be installed and a brief explanation of their purpose.

Update Existing Software and set up Appropriate
PPAs: We begin with a basic software update, after
adding a prerequisite PPA that we will use later
in the installation process (OpenCV install requires
ffmpeg). Type the commands from Listing 3

1 # Because ffmpeg is a requisite, we add
the ppa before apt-get update

sudo add-apt-repository ppa:jon-
severinsson/ffmpeg

3

Update existing software
5 sudo apt-get update && apt-get upgrade

Listing 3: Update Existing Software and Set up
Appropriate PPAs

Install Leveraged Software: Next, third party
software is installed. Type the commands in Listing
4.

Git is required to interface with our github repos-
itory. Remote access is required, so a ssh server is
installed. These will need further configurations that
will be shown in the software configuration section.

Libarmadillo-dev is a linear algebra library for
use within cpp programming. guvcview is a dy-
namic parameter adjuster for camera, to test various
settings like autofoucs, etc. System-config-lvm is
a GUI for LVM management, and while it is not
strictly needed, it is helpful for visualization pur-
poses.

42

1 # Install leveraged software
sudo apt-get install git system-config-
lvm libarmadillo-dev guvcview openssh-
server arduino

Listing 4: Install Leveraged Software

Install OpenCV: Since ROS Indigo, OpenCV
is not released from ROS infrastructure. Its ROS-
interface package vision opencv depends on stan-
dalone libopencv* packages. The following script
was modified from the code taken from Ubuntu’s
help center [13]. Type the commands in Listing 5

Install OpenCV onto computer
2 cd ˜/Desktop/
git clone https://github.com/jayrambhia/

Install-OpenCV.git
4 cd Install-OpenCV/Ubuntu/
chmod +x opencv_latest.sh

6 ./opencv_latest.sh

8 version="$(wget -q -O - http://
sourceforge.net/projects/opencvlibrary
/files/opencv-unix | egrep -m1 -o ’\"
[0-9](\.[0-9])+’ | cut -c2-)"

#move opencv samples out of install
folder and into the documents folder

10 cp OpenCV/$version/samples ˜/Documents/
OpenCV_samples

cd ˜/Desktop
12 #rm -rf Install-OpenCV

Listing 5: OpenCV Installation Script

Install ROS Base Software: This project requires
ROS Indigo (ros.org). Type the commands in Listing
6. Note that this script should be supplied creden-
tials before it is ran. This can be done by running
a “sudo-apt-get update” before running the script.

Install ROS. NOTE YOU SHOULD SUPPLY
CREDENTIALS TO BASH BEFORE RUNNING
THIS

2 sudo sh -c ’echo "deb http://packages.ros
.org/ros/ubuntu trusty main" > /etc/
apt/sources.list.d/ros-latest.list’

wget https://raw.githubusercontent.com/
ros/rosdistro/master/ros.key -O - |
sudo apt-key add -

4 sudo apt-get update
sudo apt-get install ros-indigo-desktop-

full
6 sudo rosdep init
rosdep update

8 echo "source /opt/ros/indigo/setup.bash"
>> ˜/.bashrc

source ˜/.bashrc

Listing 6: ROS Installation Script

Finalize Software Installs and Other OS Configura-
tions

SSH Configurations

First, we will configure our SSH server, as cur-
rently it is a security risk. We want to modify it so
that only one user is allowed access to the server. To
do this, we have to modify the server daemon file,
and add the line “AllowUsers team1”. This process
can be done manually, or with the commands seen
in Listing 7

1 # first, backup the old file
sudo cp /etc/ssh/sshd_config /etc/ssh/

sshd_config.factory-defaults
3 sudo chmod a-w /etc/ssh/sshd_config.

factory-defaults

5 # Add AllowUsers team1 to the
configuration

sudo su
7 echo "AllowUsers team1" >> /etc/ssh/

sshd_config
restart ssh

9 exit

Listing 7: SSH Configuration Script

Pre-compiled ROS installations: There are two
main nodes that need to be installed for our software
to work correctly. The first is the camera driver
“uvc camera”. Next, for serial communication, it
is wise for us to use pre-existing drivers provided
through “rosserial”. These are installed using the
commands in Listing 8

1 source ˜/.bashrc
Install uvc_camera driver

3 sudo apt-get install ros-indigo-uvc-
camera

5

#install rosserial
7 sudo apt-get install ros-indigo-rosserial
roscd rosserial

9

11 # the following is required for serial
comms to the arduino. this will
require some setting up. which will be
described in the next section

43

sudo apt-get install ros-indigo-rosserial
-arduino

13

install ros-ar-track-alvar, required
for alvar tagging

15 sudo apt-get install ros-indigo-ar-track-
alvar

Listing 8: ROS Third Party Software Installation
Script

Configuring Arduino IDE, Dailout, and rosserial-
arduino: Because the arduino is used in some of our
nodes, we have to configure some backend options.
First, the Arduino IDE should have been installed by
our very first script. Launch the IDE from Ubuntu’s
menu. The permission prompt shown in Figure 23
is how we enable dialout for our system. Dialout is
required any time the Ubuntu system wants to talk
over teletype (tty). Click the “add” button, and give
the system the sudo password.

Fig. 23: Arduino IDE Dialout Permission Request

Now that we have dialout permissions, and Ar-
duino IDE has been ran once, we can configure
our rosserial settings to work with the Arduino IDE
by following the documentation found on ROS.org
[14]. In this, we rosrun a command to copy the
libraries into the Arduino IDE’s folder. Type the
commands shown in Listing 9.
#Remove existing libraries and copy the

necessary rosserial_ardino libraries
into their appropriate folders.

2 cd ˜/sketchbook/libraries
rm -rf ros_lib

4 rosrun rosserial_arduino make_libraries
.py .

Listing 9: rosserial Configuration Script

Cloning Project Repository: Assuming you have
been granted access to the github page, it is now
time to clone the repository down for local use.
Before we clone the system, it is important to give
git a couple of settings. These settings can be seen in
Listing 10. It is very important to set up these fields
with correct names and email addresses. Failing to
do so will result in improper blame histories, and
can make debugging a nightmare.
Tell git who you are

2 git config --global user.name "John Doe"
git config --global user.email

johndoe@example.com

Listing 10: Configure git

Type the commands in Listing 11 to clone the
master branch onto the local system.

1 # create a git repository
mkdir ˜/curtkin && cd ˜/curtkin

3

initialize empty repo
5 git init

7 # add remote
git remote add origin https://github.com/

haywardt916/Senior-Design.git
9

update
11 git fetch --all

13 # pull down master branch
git pull origin master

Listing 11: github Clone Script

If typing in your credentials to github is too
wearing on your fingers, you can set up git to cache
credentials by typing in the command in Listing 12.
Verify that the system compiles all required software
configure credential caching

2 git config --global credential.helper
cache

Listing 12: Cache Credentials

Verify that your project builds by running a
“catkin make” now. There should be no compiling
or linking errors.

Modify bashrc
Now we can modify our bash configuration file to

include a couple of important configuration changes.
Run the commands in Listing 13 to finish up con-
figuring the bashrc file.

44

add a new source:
2 USER=$(whoami)
echo "source /home/$USER/curtkin/devel/

setup.bash" >> /home/$USER/.bashrc
4

opencv flags
6 # THESE NEED TO BE ADDED TO THE BASHRC

MANUALLY. add them to the end of your
bashrc file.

OpenCV_INCLUDE_DIRS=$(pkg-config --
cflags opencv)

8 # OpenCV_LIBRARIES=$(pkg-config --libs
opencv)

10 # re-source
source /home/$USER/.bashrc

Listing 13: bashrc configurations

Special (compiled) ROS Software Installations:
Interfaced libraries:

• viso2 ros mono odometer
– borrowed from Andreas Geiger [3].

• robot pose ekf (part of the navigation stack)
– borrowed from willow garage’s Navigation

stack
To install viso2 ros mono odometer, go to the

project’s github page https://github.com/srv/viso2
and download the repository, extracting into your
catkin ws/src directory. After this is extracted, a
simple catkin make should build the appropriate
nodes.

To install robot pose ekf, we need to install the
BFL library (install via sudo-apt-get ros-indigo-bfl).
Once this is installed, we download the project from
https://github.com/ros-planning/navigation, and ex-
tract the robot pose ekf to your catkin ws/src di-
rectory. After this is extracted, a simple catkin make
should build the appropriate nodes.

Rapid Prototyping Software: While not strictly
needed to run any of the project’s production fea-
tures, the Octave environment was used to rapid pro-
totype many nodes, ranging from object isolation,
and motor PID control analysis.

It can be installed on Ubuntu by typing “sudo
apt-get install octave” into the terminal.

Running all the ROS nodes
Because we have set the ROS environment up

to optimize for processing power on the laptop,
we have shifted some of the processing to other
computers.

For simplicity, consider the two computers “Mas-
ter” and “Remote”. “Master” will be the main
control guy, performing all mapping and data aggre-
gation, as well as some remote controls. “Remote”
will be the remote computer that will be gathering
the data.

To launch the nodes required by these two com-
puters, first we need to set up the environments.
If these computers are configured with static IP
addresses on a c

Backups

The following scripts will perform primary back-
ups (via snapshots). Post processing copies them
to the /backups directory. Tertiary backups are also
implemented.

Primary Backups

1 # NOTE THIS MUST BE RUN AS ROOT
NOTE THIS MUST BE RUN AS ROOT

3 # NOTE THIS MUST BE RUN AS ROOT
lvcreate -L10G -s -n rootsnapshot /dev/

ubuntu-vg/root
5 mount /dev/ubuntu-vg/rootsnapshot /mnt/

snapshots

7 #back up the snapshot
$TODAY = ‘date +%F’

9 mkdir /backups/$TODAY
tar -pczf /backups/$TODAY/root.tar.gz /

mnt/ubuntu-vg/rootsnapshot
11 dd if=/mnt/ubuntu-vg/rootsnapshot conv=

sync,noerror bs=64K | gzip -c > /
backups/$TODAY/root.dd.gz

13 #cleanup the snapshot (remove)
umount /mnt/snapshots

15 lvremove /dev/ubuntu-vg/rootsnapshot

Listing 14: Primary Backup Script

Secondary Backups

The file system is backed up to the “/backups”
mountpoint, so that a backup is freely available at
any point in time on the actual system should they
be needed. There is still a single point of failure
here: if the hard drive crashes.

Secondary backups should be performed by copy-
ing the “/backups” directory off onto an external
HDD.

https://github.com/srv/viso2
https://github.com/ros-planning/navigation

45

Restores
If, in the case we lose our root partition, we can

restore simply by booting into a Linux LiveUSB,
opening a terminal and running the following set of
commands:

1 # NOTE THIS MUST BE RUN AS ROOT
NOTE THIS MUST BE RUN AS ROOT

3 # NOTE THIS MUST BE RUN AS ROOT
$TODAY = ‘date +%F’

5 gunzip -c /backups/$TODAY/root.dd.gz | dd
of=/dev/ubuntu-vg/root

Listing 15: Restore Commands

Microsoft Lifecam Fixes
Due to the fact that the Lifecam has serious

issues, we have to implement the fixes seen in 16
1 echo autospawn=no > ˜/.config/pulse/

client.conf
pulseaudio --kill

3 sudo modprobe uvcvideo quirks=0x80

Listing 16: Lifecam Fixes

1

1

2

2

3

3

4

4

D D

C C

B B

A A

47R3

47R4

1000pF
C3

1000pF
C4

CH01

CH12

CH23

CH34

CH45

CH56

CH67

CH78 DGND 9CS/SHDN 10DIN 11DOUT 12CLK 13AGND 14VREF 15VDD 16
U1

MCP3008

0.1uFC5

1uFC6

SCLK

SDA

CS

2.2kR5

619k
R1

280k
R2

VBAT

5V

Battery Sense Voltage Divider:
0-16V shifted to 0-5V
1 LSB = 15.625mV

22uFC1

1uFC2

5V

1

7

J1

Analog-to-digital converter

K. McCullough

Eddie Control Board

Letter

A
10/10/2011

ADC.SchDoc

550-28990

Sheet: Size:

Date:
Sheet of
Drawn By:

Description:

Project: Part #: Rev:

599 Menlo Drive
Rocklin, CA 95765
www.parallax.com

PIC101PIC102

COC1

PIC201PIC202

COC2

PIC301 PIC302 PIC303 PIC304

PIC305PIC306PIC307PIC308COC3
PIC401 PIC402 PIC403 PIC404

PIC405PIC406PIC407PIC408 COC4

PIC501PIC502

COC5

PIC601PIC602

COC6

PIJ101

PIJ102

PIJ103

PIJ104

PIJ105

PIJ106

PIJ107

PIJ108

PIJ109

PIJ1010

PIJ1011

PIJ1012

PIJ1013

PIJ1014

PIJ1015

PIJ1016

PIJ1017

PIJ1018

PIJ1019

PIJ1020

PIJ1021

COJ1

PIR101

PIR102
COR1

PIR201

PIR202
COR2

PIR301

PIR302

PIR303

PIR304 PIR305

PIR306

PIR307

PIR308

COR3

PIR401

PIR402

PIR403

PIR404 PIR405

PIR406

PIR407

PIR408

COR4

PIR501PIR502

COR5

PIU101

PIU102

PIU103

PIU104

PIU105

PIU106

PIU107

PIU108 PIU109

PIU1010

PIU1011

PIU1012

PIU1013

PIU1014

PIU1015

PIU1016

COU1

PIC101

PIC201
PIC502

PIC602

PIJ108

PIJ109

PIJ1010

PIJ1011

PIJ1012

PIJ1013

PIJ1014

PIU1015

PIU1016

PIC102

PIC202

PIC301 PIC302 PIC303 PIC304 PIC401 PIC402 PIC403 PIC404

PIC501

PIC601

PIJ101

PIJ102

PIJ103

PIJ104

PIJ105

PIJ106

PIJ107

PIR201

PIU109

PIU1014

PIC305

PIR305 PIU104

PIC306

PIR306 PIU103

PIC307

PIR307 PIU102

PIC308

PIR308 PIU101

PIC405

PIR405 PIU108

PIC406

PIR406 PIU107

PIC407

PIR407 PIU106

PIC408

PIR408 PIU105

PIJ1015 PIR301

PIJ1016 PIR302

PIJ1017 PIR303

PIJ1018 PIR304

PIJ1019 PIR401

PIJ1020 PIR402

PIJ1021 PIR403

PIR101

PIR202

PIR404

PIR501

PIU1011 POSDA
PIR502PIU1012

PIU1010

PO\C\S

PIU1013 POSCLK

PIR102

PO\C\S

POSCLK

POSDA

46

1

1

2

2

3

3

4

4

D D

C C

B B

A A

VIN

EN

1
2

J2

DMG4496SSS

5

4

1 2 3
6 7 8

Q1

47k
R7

AUX Power
+

_

Blue
D1

270
R6

Auxilliary switched power port

K. McCullough

Eddie Control Board

Letter

A
10/10/2011

Aux_SW.SchDoc

550-28990

Sheet: Size:

Date:
Sheet of
Drawn By:

Description:

Project: Part #: Rev:

599 Menlo Drive
Rocklin, CA 95765
www.parallax.com

Absolute Max Vds = 30V
Rds(on) = 22mOhm typ., 29mOhm max

See the datasheet for the MOSFET for
additional drive characteristics.

PID101

PID102
COD1

PIJ201

PIJ202

COJ2

PIQ101 PIQ102 PIQ103
PIQ104

PIQ105 PIQ106 PIQ107 PIQ108
COQ1

PIR601

PIR602
COR6

PIR701

PIR702

COR7

PID102

PIQ101 PIQ102 PIQ103
PIR702

PID101
PIR601

PIJ201

PIQ105 PIQ106 PIQ107 PIQ108

PIJ202

POVIN

PIQ104PIR602 PIR701POENPOEN

POVIN

47

1

1

2

2

3

3

4

4

D D

C C

B B

A A

VNH2SP30TR-E

OUTA1 OUTA 30

OUTA 25

OUTB15 OUTB 16

OUTB 21

NC2

NC4

NC7

NC14 NC 17

NC 22

NC 24

NC 29

NC12

VCC3

VCC13

VCC 23

ENA/DIAGA6 INA5

PWM8

CS9

INB11 ENB/DIAGB10

GNDA 26GNDA 27GNDA 28

GNDB 18GNDB 19GNDB 20

VCC(Slug)31 OUTA(Slug) 32

OUTB(Slug) 33

U2

INB

OUTB

VIN_Battery

INA

EN

OUTA

PWM

IMPORTANT:
All logic requires 5V levels. For design re-use,
level shifters should be used outside this sheet
block.

Circuit Details:
VIN_Battery voltage can be 5.5V to 16V.

Device will under-voltage or over-voltage shutdown if
outside this range.

Circuit Details:
PWM Frequency can be 0 up to 20kHz Max.
PWM Minimum 'OFF' time is 6us.

Current_Sense

1k
R12

Red
D2

470
R11

4.7k
R13

FAULT

1k

R8

1k

R9

1k

R10

100uF
C8

22uF
C7

Circuit Details:
To disable motor drive output, pull EN low
and disable the buffered inputs to INA, INB,
and PWM.

Full H-bridge Motor Driver

K. McCullough

Eddie Control Board A
10/10/2011

H-Bridge Driver.SchDoc

550-28990

Letter
Sheet: Size:

Date:
Sheet of
Drawn By:

Description:

Project: Part #: Rev:

599 Menlo Drive
Rocklin, CA 95765
www.parallax.com

Note: The Current_Sense feature is currently not used.

PIC701

PIC702
COC7

PIC801

PIC802

COC8

PID201

PID202
COD2

PIR801PIR802

COR8

PIR901PIR902

COR9

PIR1001PIR1002

COR10

PIR1101

PIR1102
COR11

PIR1201

PIR1202
COR12

PIR1301

PIR1302

COR13
PIU201

PIU202

PIU203

PIU204

PIU205

PIU206

PIU207

PIU208

PIU209

PIU2010

PIU2011

PIU2012

PIU2013

PIU2014

PIU2015 PIU2016

PIU2017

PIU2018

PIU2019

PIU2020

PIU2021

PIU2022

PIU2023

PIU2024

PIU2025

PIU2026

PIU2027

PIU2028

PIU2029

PIU2030

PIU2031 PIU2032

PIU2033

COU2

PIC701 PIC802

PIR1201

PIU2018

PIU2019

PIU2020

PIU2026

PIU2027

PIU2028

PIC702 PIC801

PIU203

PIU2013

PIU2023

PIU2031

POVIN0Battery

PID201
PIR1101

PID202 PIR1301

PIU206

PIU2010

PIR801 PIU205PIR802POINA

PIR901 PIU208PIR902POPWM

PIR1001 PIU2011PIR1002POINB

PIR1102

PIR1302

POEN

PIR1202

PIU209

POCurrent0Sense

PIU201

PIU2025

PIU2030

PIU2032

POOUTA

PIU202

PIU204

PIU207

PIU2012

PIU2014

PIU2015 PIU2016

PIU2021

PIU2033

POOUTB

PIU2017

PIU2022

PIU2024

PIU2029

POCURRENT0SENSE

POEN

POINA

POINB

POOUTA

POOUTB

POPWM

POVIN0BATTERY

48

1

1

2

2

3

3

4

4

D D

C C

B B

A A

VIN

EN

VIN1

UVLO2

RT3

EN4

RAMP5

AGND6

SS7

FB 8

COMP 9

VOUT 10

SYNC11 CS 12

CSG 13

PGND14

LO 15

V
C

C
16

V
C

C
X

17

HB 18

HO 19

HS 20

EP
21

U5

Circuit Details:
Vout = 12.0V
Vin (min) = 6.75V (set by under-voltage lockout)
Vin (max) = 16V (absolute max 25V - set by capacitors)
Iout (Max) = 2.2A
Iout (Min for CCM) = 400mA
Freq = 283kHz

Circuit Details:
Connect the EN pin to VIN to automatically
turn on the regulator when power is available.
Pull this pin to GND to disable/shut-down the
regulator (reduces supply current to less than
10uA).

Circuit Details:
Under-Voltage LockOut (UVLO) is currently
set to approx. 6.78V.

0.47uF
C28

10k
R18

19.6k

R19

12.0V, 2.2A Regulator

15uH

L2

0.025, 3W
R23

300pF

C30

0.1uF
C35

0.1uF
C33

0.1uF

C31

47k
R17

4700pF

C36

2200pF

C34
10k

R22

SS8P3L-M3/86A
D6

SS8P3L-M3/86A
D5

0 ohmR20

4.02k
R24

464
R25

0 ohmR21

22uF
C25

22uF
C26

1uF
C27

1uF
C29

22uF
C37

0.1uF
C41

0.1uF
C42

100uF
C39

100uF
C40

22uF
C38

VREG_12V

DMG4496SSS
5

4

1 2 3
6 7 8

Q3

DMG4496SSS

5

4

1 2 3
6 7 8

Q2

1uF
C32

12V buck-boost regulator

K. McCullough

Eddie Control Board

Letter

A
10/10/2011

Power_12V.SchDoc

550-28990

Sheet: Size:

Date:
Sheet of
Drawn By:

Description:

Project: Part #: Rev:

599 Menlo Drive
Rocklin, CA 95765
www.parallax.com

PIC2501

PIC2502
COC25

PIC2601

PIC2602
COC26

PIC2701

PIC2702
COC27

PIC2801

PIC2802 COC28

PIC2901

PIC2902
COC29

PIC3001PIC3002

COC30

PIC3101PIC3102

COC31

PIC3201

PIC3202 COC32
PIC3301

PIC3302
COC33

PIC3401PIC3402

COC34

PIC3501

PIC3502
COC35

PIC3601PIC3602

COC36

PIC3701

PIC3702
COC37

PIC3801

PIC3802
COC38

PIC3901

PIC3902
COC39 PIC4001

PIC4002
COC40

PIC4101

PIC4102
COC41

PIC4201

PIC4202
COC42

PID50A

PID50K
COD5

PID60A PID60K

COD6
PIL201 PIL202

COL2

PIQ201 PIQ202 PIQ203
PIQ204

PIQ205 PIQ206 PIQ207 PIQ208
COQ2

PIQ301 PIQ302 PIQ303
PIQ304

PIQ305 PIQ306 PIQ307 PIQ308
COQ3

PIR1701

PIR1702

COR17

PIR1801

PIR1802
COR18

PIR1901 PIR1902

COR19

PIR2001 PIR2002

COR20

PIR2101 PIR2102

COR21

PIR2201PIR2202

COR22

PIR2301

PIR2302
COR23

PIR2401

PIR2402
COR24

PIR2501

PIR2502
COR25

PIU501

PIU502

PIU503

PIU504

PIU505

PIU506

PIU507

PIU508

PIU509

PIU5010

PIU5011

PIU5012

PIU5013

PIU5014

PIU5015

PIU5016 PIU5017

PIU5018

PIU5019

PIU5020

PIU5021

COU5

PIC2501 PIC2601 PIC2701

PIC2801

PIC2901

PIC3002

PIC3102

PIC3202 PIC3302

PIC3701 PIC3801 PIC3902 PIC4002 PIC4101 PIC4201

PIQ301 PIQ302 PIQ303

PIR1801

PIR1901

PIR2102 PIR2301

PIR2501

PIU506

PIU5014

PIU5021

PIC2502 PIC2602 PIC2702 PIC2902

PIQ205 PIQ206 PIQ207 PIQ208
PIR1701

PIU501

POVIN

PIC2802

PIR1702

PIR1802
PIU502

PIC3001 PIU505

PIC3101 PIU507

PIC3201

PIU5016
PIC3301

PIU5017

PIC3401

PIC3601

PIR2401

PIR2502

PIU508

PIC3402

PIR2202PIU509

PIC3501

PID50K

PIL201

PIQ201 PIQ202 PIQ203

PIU5020

PIC3502

PIU5018

PIC3602PIR2201

PIC3702 PIC3802 PIC3901 PIC4001 PIC4102 PIC4202

PID60K

PIR2402

PIU5010 POVREG012V

PID50A
PIR2002 PIR2302

PID60APIL202

PIQ305 PIQ306 PIQ307 PIQ308

PIQ204

PIU5019

PIQ304

PIU5015

PIR1902 PIU503

PIR2001PIU5012

PIR2101

PIU5013

PIU504

POEN

PIU5011

POEN

POVIN

POVREG012V

49

1

1

2

2

3

3

4

4

D D

C C

B B

A A

VREG_3V3VIN

10uF
C10

Input Voltage Requirement:
For proper operation, VIN should be
greater than 4.7V.

Guaranteed max dropout is 1.4V at full
1A load.

Component Details:
Component is rated for up to 1A output, and thermally
protects at 150 degC. For TO252-3L package, Thermal
Resistance (Junc-to-Amb) is 73 degC/W. Therefore derate
below 1A for temperatures above about 25 degC when VIN
is at 5.0V

Circuit Details:
Minimum 10uF cap (0.15ohm <= ESR <= 20ohm) must be
connected on output.

10uF
C12

10uF
C13

3.3V, 1A Regulator

0.1uF
C9

0.1uF
C11

AP1117D33L-13

IN3

G
N

D
1

OUT 2

U3

3.3V linear regulator

K. McCullough

Eddie Control Board

Letter

A
10/10/2011

Power_3V3.SchDoc

550-28990

Sheet: Size:

Date:
Sheet of
Drawn By:

Description:

Project: Part #: Rev:

599 Menlo Drive
Rocklin, CA 95765
www.parallax.com

PIC901

PIC902
COC9

PIC1001

PIC1002
COC10

PIC1101

PIC1102
COC11

PIC1201

PIC1202
COC12

PIC1301

PIC1302
COC13

PIU301

PIU302PIU303

COU3
PIC901 PIC1001 PIC1101 PIC1201 PIC1301

PIU301

PIC902 PIC1002

PIU303POVIN
PIC1102 PIC1202 PIC1302

PIU302 POVREG03V3POVIN POVREG03V3

50

1

1

2

2

3

3

4

4

D D

C C

B B

A A

VREG_5V

VIN BOOT 1VIN2

SW 3

GND4

FB 5

COMP 6

EN7

SS8

PA
D

(G
N

D
)

9

U4

RT8250

Circuit Details:
Output voltage is set by voltage divider on feedback pin
(FB). Feedback reference voltage is 0.925V typ.

Vout = Vfb(1+R1/R2)

49.9k
R15

11.3k
R16

EN

Circuit Details:
Connect the EN pin to VIN to automatically turn on the
regulator when power is available. Pull this pin low to
disable/shut-down the regulator (reduces supply current
to less than 3uA).

Circuit Details:
VIN supply voltage required by IC is
4.5V to 23V for proper operation
(required operating conditions).

However, capacitors are only rated to
25V so suggest VIN stays below about
16V.

501-10008
RB751S40T1GD4

DNI (This is an alternate part)

D3

0.01uF
C19

4.7k
R14

5.6nF
C18

DNI
C20

22uHL1

10uF
C14

0.1uF
C16

10uF
C15

0.1uF
C17 22uF

C22
22uF
C23

5.0V, 3A Regulator

100uF
C24

0.1uF
C21

1 DO NOT INSTALL (SEE BOM FOR COMPONENT PLACEMENT)

1

1

IMPORTANT NOTE:
Do not power-cycle this part too rapidly and repeatedly.
Rapid power cycling causes excessive stress on the IC and
may cause it to fail and damage the board and connected
accessories. Therefore, after switching main board power
off wait at least 5 seconds before switching power back on.

5V buck regulator

K. McCullough

Eddie Control Board

Letter

A
10/10/2011

Power_5V.SchDoc

550-28990

Sheet: Size:

Date:
Sheet of
Drawn By:

Description:

Project: Part #: Rev:

599 Menlo Drive
Rocklin, CA 95765
www.parallax.com

PIC1401

PIC1402
COC14

PIC1501

PIC1502
COC15

PIC1601

PIC1602
COC16

PIC1701

PIC1702
COC17

PIC1801

PIC1802COC18

PIC1901

PIC1902 COC19

PIC2001

PIC2002 COC20

PIC2101

PIC2102
COC21

PIC2201

PIC2202 COC22
PIC2301

PIC2302 COC23 PIC2401

PIC2402
COC24

PID301PID303

COD3

PID401PID402

COD4

PIL101 PIL102

COL1

PIR1401

PIR1402
COR14

PIR1501

PIR1502
COR15

PIR1601

PIR1602
COR16

PIU401PIU402

PIU403

PIU404

PIU405

PIU406

PIU407

PIU408

PIU409

COU4

PIC1401 PIC1501 PIC1601

PIC1701

PIC1801

PIC2001

PIC2101 PIC2201 PIC2301 PIC2402

PIR1601

PIU404

PIU409

PIC1402 PIC1502 PIC1602

PIU402POVIN

PIC1702 PIU408

PIC1802

PIR1401

PIC1901 PIL101PIU403

PIC1902

PID303

PID402

PIU401

PIC2002

PIR1402

PIU406

PIC2102 PIC2202 PIC2302 PIC2401

PID301

PID401

PIL102

PIR1502

POVREG05V

PIR1501PIR1602

PIU405

PIU407

POENPOEN

POVIN

POVREG05V

51

1

1

2

2

3

3

4

4

D D

C C

B B

A A

RESET

I2C_DATA
I2C_CLK

RX
TX

P041

P142

P243

P344

P41

P52

P63

P74

P89

P910

P1011

P1112

P1213

P1314

P1415

P1516

P16 19

P17 20

P18 21

P19 22

P20 23

P21 24

P22 25

P23 26

P24 31

P25 32

P26 33

P27 34

P28 35

P29 36

P30 37

P31 38

V
D

D
8

V
D

D
18

V
D

D
30

V
D

D
40

V
SS

5

V
SS

17

V
SS

27

V
SS

39
BOE6

RES7

XI28

XO29

U7
P8X32A

P16
P17
P18
P19
P20
P21
P22
P23
P24
P25
P26
P27

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15

3.3V

A01

A12

NC3

GND4 SDA 5SCL 6WP 7Vcc 8

M24512-RDW6TP

U6
3.3V

5MHz
1 2

Y1

10k
R27

3.3V

10k
R28

3.3V

1uF
C46

1uF
C43

1uF
C44

1uF
C45

1uF
C47

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11
P12
P13
P14
P15

P16
P17
P18
P19
P20
P21
P22
P23
P24
P25
P26
P27

DNI
R26

1 2

DNIJ3

3.3V

DNIJ4
Jumper can be installed to DIS-able writing to the EEPROM

Propeller microcontroller and related circuitry

K. McCullough

Eddie Control Board

Letter

A
10/10/2011

Propeller.SchDoc

550-28990

Sheet: Size:

Date:
Sheet of
Drawn By:

Description:

Project: Part #: Rev:

599 Menlo Drive
Rocklin, CA 95765
www.parallax.com

Note: EEPROM is twice as
large to provide extra
data/variable space.

PIC4301

PIC4302
COC43

PIC4401

PIC4402
COC44

PIC4501

PIC4502
COC45

PIC4601

PIC4602
COC46

PIC4701

PIC4702
COC47

PIJ301 PIJ302
COJ3

COJ4
PIR2601

PIR2602

COR26

PIR2701

PIR2702
COR27

PIR2801

PIR2802
COR28

PIU601

PIU602

PIU603

PIU604 PIU605

PIU606

PIU607

PIU608

COU6

PIU701

PIU702

PIU703

PIU704

PIU705

PIU706

PIU707

PIU708

PIU709

PIU7010

PIU7011

PIU7012

PIU7013

PIU7014

PIU7015

PIU7016

PIU7017

PIU7018

PIU7019

PIU7020

PIU7021

PIU7022

PIU7023

PIU7024

PIU7025

PIU7026

PIU7027

PIU7028

PIU7029

PIU7030

PIU7031

PIU7032

PIU7033

PIU7034

PIU7035

PIU7036

PIU7037

PIU7038

PIU7039

PIU7040

PIU7041

PIU7042

PIU7043

PIU7044

COU7

PIY101 PIY102

COY1

PIC4301 PIC4401 PIC4501

PIC4601

PIC4701

PIJ302

PIR2702 PIR2802

PIU608

PIU708 PIU7018 PIU7030 PIU7040 PIC4302 PIC4402 PIC4502

PIC4602

PIC4702

PIR2601

PIU601

PIU602

PIU604

PIU705

PIU706

PIU7017 PIU7027 PIU7039

PIJ301
PIR2602

PIU607

PIR2701

PIU605

PIU7036

POI2C0DATA

PIR2801

PIU606

PIU7035

POI2C0CLK

PIU603

PIU707POR\E\S\E\T\
PIU7028

PIY101 PIU7029PIY102

PIU7037

POTX
PIU7038

PORX

PIU7041
NLP0POP0

PIU7042
NLP1POP1

PIU7043
NLP2POP2

PIU7044
NLP3POP3

PIU701
NLP4POP4

PIU702
NLP5POP5

PIU703
NLP6POP6

PIU704
NLP7POP7

PIU709
NLP8POP8

PIU7010
NLP9POP9

PIU7011
NLP10POP10

PIU7012
NLP11POP11

PIU7013
NLP12POP12

PIU7014
NLP13POP13

PIU7015
NLP14POP14

PIU7016
NLP15POP15

PIU7019
NLP16 POP16

PIU7020
NLP17 POP17

PIU7021
NLP18 POP18

PIU7022
NLP19 POP19

PIU7023
NLP20 POP20

PIU7024
NLP21 POP21

PIU7025
NLP22 POP22

PIU7026
NLP23 POP23

PIU7031
NLP24 POP24

PIU7032
NLP25 POP25

PIU7033
NLP26 POP26

PIU7034
NLP27 POP27

POI2C0CLK
POI2C0DATA

POP0
POP1
POP2
POP3
POP4
POP5
POP6
POP7
POP8
POP9
POP10
POP11
POP12
POP13
POP14
POP15

POP16
POP17
POP18
POP19
POP20
POP21
POP22
POP23
POP24
POP25
POP26
POP27

POR\E\S\E\T\

PORX
POTX

52

1

1

2

2

3

3

4

4

D D

C C

B B

A A

OUTA

OUTB

INA

INB
PWM

VIN_Battery

Current_Sense

EN

Left_Motor
H-Bridge Driver.SchDoc

RESET

I2C_DATA
I2C_CLK

RX
TX

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P1
0

P1
1

P1
2

P1
3

P1
4

P1
5

P1
6

P1
7

P1
8

P1
9

P2
0

P2
1

P2
2

P2
3

P2
4

P2
5

P2
6

P2
7

Prop
Propeller.SchDoc

VIN
VREG_12V

EN

12V_Reg
Power_12V.SchDoc

VBAT

VIN
VREG_5V

EN

5V_Reg
Power_5V.SchDoc

5V

VREG_3V3VIN

3.3V_Reg
Power_3V3.SchDoc

3.3V

OUTA

OUTB

INA

INB
PWM

VIN_Battery

Current_Sense

EN

Right_Motor
H-Bridge Driver.SchDoc

RESET

RXD
TXD

USB
USB-to-Serial.SchDoc

2
1
3
4

S1

3

1

2

Q4
47k
R29

5V

EN_Motors

EN_Motors

47k
R30

Power-mode Select SW
3. Board + Motors
2. Board
1. OFF

100k
R32

SCLK
SDA

CS

ADC
ADC.SchDoc

5V

22uFC48

1uFC49

AUX B

Green
D7

470
R39

Board Pwr
Enabled

3.3V

Green
D8

EN_Motors

Motors
Enabled

270
R38

P0
P1
P2
P3
P4
P5
P6
P7

P12

P25
P26
P27

P17

P18

L-Motor

+

_

R-Motor

+

_

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P1
0

P1
1

P1
2

P1
3

P1
4

P1
5

P1
6

P1
7

P1
8

P1
9

P2
0

P2
1

P2
2

P2
3

P2
4

P2
5

P2
6

P2
7

VBAT

Main PWR (5A)

MTG1

MTG2

MTG3

4.7kR35

1M
R33

S2

3

1

2

Q5

EN_Board

EN_Board

5V VBAT

0 ohm
R31

DNI
R34

Note: For possible cooling fan see:
Digikey: 259-1463-ND

VIN

EN

Aux_A
Aux_SW.SchDoc

P16 AUX A

VIN

EN

Aux_B
Aux_SW.SchDoc

1

10

J7

1
2

J8

P8
P9
P10
P11

1
2
3
4

DNI

J16

P13
P14
P15 0 ohmR43

0 ohmR42
0 ohmR41
0 ohmR40

Digital I/O

Encoders

Spare GPIO

12

J12

12V 5V 3.3V

12

J13

12

J14

12

J15

4.7kR36

4.7kR37

VIN

EN

Aux_C
Aux_SW.SchDoc

AUX C

20A

F1

5A

F2

J10

J11

VBAT_Motors

VBAT_Aux

VBAT_Motors

VBAT_Aux

VBAT_Aux

VBAT_Aux

MTG4

Motor PWR (20A)

12V

2
1

J6

2
1

J17

2
1

J18

21 3

J9

Power Input Port

Kinect 12V

1
2

J5

1 6

5
2

U11A

3 4

5
2

U11B

EN_Motors

EN_Motors

1 6

5
2

U12A

3 4

5
2

U12B

EN_Motors

EN_Motors

1 6

5
2

U13A

3 4

5
2

U13B

EN_Motors

EN_Motors

P24

P19

P20

P21

P22

P23

300-28990

Raw PCB

Fan (Optional)

Reset Switch

Top level system integration schematic

K. McCullough

Eddie Control Board

Letter

A
10/10/2011

System Integration.SchDoc

550-28990

Sheet: Size:

Date:
Sheet of
Drawn By:

Description:

Project: Part #: Rev:

599 Menlo Drive
Rocklin, CA 95765
www.parallax.com

PIC4801PIC4802

COC48

PIC4901PIC4902

COC49

PID701

PID702
COD7 PID801

PID802
COD8

COF1

COF2

PIJ501

PIJ502

COJ5

PIJ601

PIJ602

COJ6

PIJ701

PIJ702

PIJ703

PIJ704

PIJ705

PIJ706

PIJ707

PIJ708

PIJ709

PIJ7010

PIJ7011

PIJ7012

PIJ7013

PIJ7014

PIJ7015

PIJ7016

PIJ7017

PIJ7018

PIJ7019

PIJ7020

PIJ7021

PIJ7022

PIJ7023

PIJ7024

PIJ7025

PIJ7026

PIJ7027

PIJ7028

PIJ7029

PIJ7030

COJ7

PIJ801

PIJ802

PIJ803

PIJ804

PIJ805

PIJ806

COJ8

PIJ901 PIJ902 PIJ903
COJ9

PIJ1001 PIJ1002
COJ10

PIJ1101 PIJ1102
COJ11

PIJ1201PIJ1202
COJ12

PIJ1301PIJ1302
COJ13

PIJ1401PIJ1402
COJ14

PIJ1501PIJ1502
COJ15

PIJ1601

PIJ1602

PIJ1603

PIJ1604

COJ16

PIJ1701

PIJ1702

COJ17

PIJ1801

PIJ1802

COJ18

PIMTG101

COMTG1

PIMTG201

COMTG2

PIMTG301

COMTG3

PIMTG401

COMTG4

COPCB

PIQ401

PIQ402PIQ403

COQ4

PIQ501

PIQ502

PIQ503
COQ5

PIR2901

PIR2902

COR29
PIR3001

PIR3002

COR30

PIR3101

PIR3102
COR31

PIR3201

PIR3202
COR32

PIR3301

PIR3302
COR33

PIR3401

PIR3402
COR34

PIR3501

PIR3502

PIR3503

PIR3504 PIR3505

PIR3506

PIR3507

PIR3508

COR35

PIR3601

PIR3602

PIR3603

PIR3604 PIR3605

PIR3606

PIR3607

PIR3608

COR36

PIR3701

PIR3702

PIR3703

PIR3704 PIR3705

PIR3706

PIR3707

PIR3708

COR37

PIR3801

PIR3802
COR38

PIR3901

PIR3902
COR39

PIR4001PIR4002
COR40

PIR4101PIR4102
COR41

PIR4201PIR4202
COR42

PIR4301PIR4302
COR43

PIS101

PIS102 PIS103

PIS104

COS1

PIS201

PIS202

COS2

PIU1101

PIU1102

PIU1105
PIU1106

COU11A

PIU1102
PIU1103 PIU1104

PIU1105
COU11B

PIU1201
PIU1202

PIU1205
PIU1206

COU12A

PIU1202
PIU1203 PIU1204

PIU1205
COU12B

PIU1301

PIU1302

PIU1305
PIU1306

COU13A

PIU1302
PIU1303 PIU1304

PIU1305
COU13B

PIJ1401PIJ1402

PIR3802

PIC4801

PIC4901

PIJ7011

PIJ7012

PIJ7013

PIJ7014

PIJ7015

PIJ7016

PIJ7017

PIJ7018

PIJ7019

PIJ7020

PIJ803

PIJ804

PIJ1301PIJ1302

PIQ402
PIR3001

PIR3102

PIJ601

PIJ1201PIJ1202

PIQ501

PIR3201

PIR3302
PIS101

NLEN0Board

PIQ403

PIR2901

PIR3902

PIU1105

PIU1205

PIU1305

NLEN0Motors

PIC4802

PIC4902

PID702 PID802

PIJ602

PIJ701

PIJ702

PIJ703

PIJ704

PIJ705

PIJ706

PIJ707

PIJ708

PIJ709

PIJ7010

PIJ801

PIJ802

PIJ901

PIJ1501PIJ1502

PIMTG101

PIMTG201

PIMTG301

PIMTG401

PIQ502

PIR2902

PIR3301

PIS102

PIS201

PIU1102

PIU1202

PIU1302

PID701
PIR3801

PID801
PIR3901

PIJ501

PIR3101 PIR3401

PIJ502

PIQ503

PIJ7021 PIR3501

PIJ7022 PIR3502

PIJ7023 PIR3503

PIJ7024 PIR3504

PIJ7025 PIR3601

PIJ7026 PIR3602

PIJ7027 PIR3603

PIJ7028 PIR3604

PIJ7029

PIR3701

PIJ7030

PIR3702

PIJ805 PIR3703

PIJ806 PIR3704

PIJ903
PIJ1001

PIJ1601PIR4001

PIJ1602PIR4101

PIJ1603PIR4201

PIJ1604PIR4301

PIJ1701

PIJ1702

PIJ1801

PIJ1802

PIQ401

PIR3002

PIS104

PIR3202

PIS103

PIS202

PIU1104

PIU1106

PIU1204

PIU1206

PIU1304

PIU1306

PIR3508

NLP0

PIR3507

NLP1

PIR3506

NLP2

PIR3505

NLP3

PIR3608

NLP4

PIR3607

NLP5

PIR3606

NLP6

PIR3605

NLP7

PIR3708

NLP8

PIR3707

NLP9

PIR3706

NLP10

PIR3705

NLP11

PIR4002

NLP12

PIR4102

NLP13

PIR4202

NLP14

PIR4302

NLP15

NLP16

NLP17

NLP18

PIU1303

NLP19

PIU1301

NLP20

PIU1203

NLP21

PIU1201

NLP22

PIU1103

NLP23

PIU1101

NLP24NLP25NLP26NLP27

PIJ902

PIJ1101

PIR3402

PIJ1102

PIJ1002

53

1

1

2

2

3

3

4

4

D D

C C

B B

A A

+5V 5

D- 4

D+ 3

NC 2

GND 1

J19

USB MINI-B

FB1

RESET

2N3904

Q6

OE1

A2

GND3 Y 4

VCC 5
U9

74LVC1G126

OE 1

A 2

GND 3Y4

VCC5
U10

74LVC1G126

0.1uF
C50

1uF

C51

USB_3V3

USB_3V3

0.1uF

C53

RXD

TXD

0.1uF

C54

10k
R44Only populate this resistor if USB_3V3

doesn't decay to ground fast enough
after USB is removed.

0.1uF
C52

10k
R45

270

R46

VCCIO4

RXD 5

RI# 6

G
N

D
21

DSR# 9

DCD# 10

CTS# 11

CBUS4 12

CBUS2 13

CBUS3 14

NC8

USBDP15 USBDM16

3V3OUT17

G
N

D
7

RESET#19

VCC20

G
N

D
18

CBUS1 22CBUS0 23

NC24

A
G

N
D

25

TE
ST

26

OSCI27

OSCO28

TXD 1

DTR# 2

RTS# 3

U8 FT232RL

3.3V

Blue

D9

Red

D10

270R47

270R48

USB_VCCIO

USB_VCCIO

USB to Serial interface

K. McCullough

Eddie Control Board

Letter

A
10/10/2011

USB-to-Serial.SchDoc

550-28990

Sheet: Size:

Date:
Sheet of
Drawn By:

Description:

Project: Part #: Rev:

599 Menlo Drive
Rocklin, CA 95765
www.parallax.com

Design Note:
TXD and RXD must be buffered to
prevent back-flow through the I/O pin
into the power net of the IC which can
weakly power on the device.

PIC5001

PIC5002
COC50

PIC5101PIC5102

COC51

PIC5201

PIC5202
COC52

PIC5301 PIC5302

COC53

PIC5401PIC5402

COC54

PID901PID902

COD9

PID1001PID1002

COD10

PIFB101PIFB102

COFB1

PIJ1901

PIJ1902

PIJ1903

PIJ1904

PIJ1905

PIJ1906PIJ1907

PIJ1908 PIJ1909 COJ19

PIQ601

PIQ602

PIQ603
COQ6

PIR4401

PIR4402
COR44

PIR4501

PIR4502
COR45

PIR4601PIR4602

COR46
PIR4701 PIR4702

COR47

PIR4801 PIR4802

COR48

PIU801

PIU802

PIU803

PIU804

PIU805

PIU806

PIU807

PIU808 PIU809

PIU8010

PIU8011

PIU8012

PIU8013

PIU8014

PIU8015

PIU8016

PIU8017

PIU8018

PIU8019

PIU8020

PIU8021

PIU8022

PIU8023

PIU8024

PIU8025 PIU8026

PIU8027

PIU8028

COU8

PIU901

PIU902

PIU903 PIU904

PIU905

COU9

PIU1001

PIU1002

PIU1003PIU1004

PIU1005

COU10

PIC5402

PIU905

PIU1001

PIC5001

PIC5101

PIC5301

PIC5401

PIJ1901

PIJ1906PIJ1907

PIJ1908 PIJ1909

PIQ602

PIR4401

PIR4501

PIU807 PIU8018PIU8021PIU8025 PIU8026

PIU903

PIU1003

PIC5201

PIR4502

PIR4602

PIC5202

PIU802

PID902PIR4702

PID1002

PIR4802

PIFB102PIJ1905

PIJ1902

PIJ1903 PIU8015

PIJ1904 PIU8016

PIQ601PIR4601

PIQ603
POR\E\S\E\T\

PIR4701PIU8023

PIR4801PIU8022

PIU801

PIU902

PIU803

PIU805 PIU1004

PIU806

PIU808 PIU809

PIU8010

PIU8011

PIU8012

PIU8013

PIU8014

PIU8024

PIU8027

PIU8028

PIU904 POTXD

PIU1002 PORXD

PIC5002

PIC5302

PIR4402
PIU8017

PIU901

PIU1005

NLUSB03V3

PIC5102

PID901

PID1001

PIFB101

PIU804

PIU8019

PIU8020

NLUSB0VCCIO

POR\E\S\E\T\

PORXD

POTXD

54

LOGITECH® HD PRO WEBCAM C920

Hi-Def Yourself.
Full HD 1080p video that’s faster, smoother and works on
more computers.

Say it bigger. Say it better. Full HD 1080p calls and clips in
widescreen let friends and family see you in the sharpest, smoothest
video quality available. Video call, vblog, and share your videos
with ease. Plus it works seamlessly with your favorite applications.
The term ‘webcam’ doesn’t quite do it justice.

Logitech Fluid Crystal Technology
Gives you smoother video motion, sharper
video, richer colors and clearer sound.

Full HD 1080p widescreen video
calls on Skype®
•	 Sharpest video-call picture available
•	 Easy HD 720p video calls on free

Logitech Vid™, Yahoo!® Messenger
and most other IM clients1

HD your Facebook®
•	 Full HD 1080p video recording
•	 1-click HD video uploads in Facebook,

YouTube™ and Twitter™
• H.264 compression for faster, smoother

video uploads2

• Snap and share brilliant 15MP photos

Focus on the details that matter
•	Ultra-smooth 20-step autofocus
•	 Premium Carl Zeiss optics for richly detailed

video and stills
•	Advanced auto light correction for dim and

harsh lighting
•	Dual noise-cancelling mics—you’re heard in

crystal-clear HD quality stereo sound

FEATURE AT A GLANCE

1 For HD video calling on other video-calling software, please check for availability.
2 Requires installation of QuickTime. QuickTime and the QuickTime logo are trademarks or registered trademarks of Apple, Inc., used under license.
© 2011 Logitech. Logitech, the Logitech logo and other Logitech marks are owned by Logitech and may be registered. All other trademarks are the property of their respective owners. Windows,
Windows Vista, and the Windows logo are trademarks of the Microsoft group of companies. Mac and the Mac logo are trademarks of Apple Inc., registered in the U.S. and other countries.

WORKS WITH

Windows® XP (SP2 or higher), Windows Vista®
and Windows® 7 or (32-bit or 64-bit)

For HD 1080p video recording:
•	2.4 GHz Intel® Core 2 Duo processor
•	2 GB RAM or more
•	Hard drive space for recorded videos
•	USB 2.0 port

For full HD 1080p and 720p video calling:

Minimum upload and download at least a 1 Mbps
connection for 720p video calling, and 2 Mbps
for 1080p.

(Requirements for H.264 and MJPEG formats vary)

Visit your preferred video calling provider’s
website for information on video-calling software
requirements.

WHAT’S IN THE BOX?

•	Webcam with 6-foot cable
•	Logitech webcam software with Logitech

Vid HD (for PC)
•	User documentation
•	Tripod-ready base
•	2-year limited hardware warranty

Which Logitech HD
Webcam is Right for You?
Find even more at logitech.com

HD WEBCAM
C310

HD WEBCAM
C615

HD PRO WEBCAM
C920

GOOD BETTER BEST

What to look for

High-definition (HD) video HD 720p Full HD 1080p Full HD 1080p with H.264

Photo quality 5MP 8MP 15MP

Focus type
Always

focused* Autofocus** 20-step
Autofocus**

Built-in noise-cancelling mic Single Single Dual stereo

Auto light correction Premium Premium Premium

1-click video upload to Facebook®,
YouTube™ and Twitter™***

HD 720p Full HD 1080p Full HD 1080p

Video Effects Standard Premium Premium

360-degree full-motion camera rotation •

Portability Fold-and-go webcam
Tripod-ready base Tripod-ready base

Compatibility

Windows® XP, Windows Vista®, Windows® 7 • • •
Mac® OS X 10.5 or higher •

* 40 cm and beyond
** 10 cm and beyond
*** Twitter uploading requires software download on the C920. To download, go to logitech.com/support-downloads

55

 	 Single	 Case Pack	

 Part #	 960-000764	 N/A	

 UPC	 097855074355	 10097855074352	

 Weight	 16.75 oz.	 4.41 lb.	

 Width	 7.52 in.	 7.95 in.	

 Depth	 2.83 in.	 6.30 in.	

 Height	 8.94 in.	 9.49 in.	

 Cube	 0.1101 ft.3	 0.275 ft.3	

 Case Pack Count	 N/A	 2 single units	

 Pallet Count	 370 units	 185 case packs	

LOGITECH® HD PRO WEBCAM C920

© 2011 Logitech. Logitech, the Logitech logo and other Logitech marks are owned by Logitech and may be registered. All other trademarks are the property of their respective owners. Windows,
Windows Vista, and the Windows logo are trademarks of the Microsoft group of companies. Mac and the Mac logo are trademarks of Apple Inc., registered in the U.S. and other countries.

PACKAGE SPECIFICATIONS

Product description
100-word description

Logitech® HD Pro Webcam C920. Full HD 1080p video that’s faster,
smoother and works on more computers. Your loved ones can see you
in more clarity and detail than ever with HD 720p video calling. No time
to talk? Send the people you care about a Full HD 1080p video clip.
Or upload it to Facebook®, Twitter™ or YouTube™ with just one click.
You’ll enjoy amazing clarity and detail—thanks to Carl Zeiss® optics and
9-point autofocus. And you’ll get two mics positioned for natural, stereo
audio. Plus, you’ll enjoy faster, smoother HD video uploads thanks to
the H.264 video standard.

50-word description

Logitech® HD Pro Webcam C920. Full HD 1080p video that’s faster,
smoother and works on more computers. Your loved ones can see you
in more clarity and detail than ever with HD 720p video calling available.
No time to talk? Send the people you care about a Full HD 1080p video
clip. Or upload it to Facebook®, Twitter™ or YouTube™ with just one click.

25-word description

Logitech® HD Pro Webcam C920. Full HD 1080p video calling and
recording that’s faster, smoother and works on more computers thanks
to H.264 encoding.

56

Data sheet

HP EliteBook 840 Notebook PC
Ultra-productive in and out of the office, thanks to security,
performance, and management features.

HP recommends Windows. Sleek and sturdy

• It’s time for an upgrade to the dramatically thin, light design of the HP EliteBook 840 G1
Ultrabooks21 with a luxurious soft-touch finish.

• Join forces with the latest generation Intel® architecture,21 operate at peak performance levels
with Intel Smart Response Technology22 for disk cache, and expand total storage options with an
additional mini-card SSD.

• Dock up for an enterprise desktop experience using the optional UltraSlim Docking Station10 with
a convenient side connector and dual DisplayPorts for multiple display support.23

It’s all about the connections
• Exercise full control over your wireless connections through a single user interface with support

for most networks, including optional new 4G WWAN,10,15 using HP Connection Manager.24

• Easily share your internet connection with up to five devices with HP Wireless Hotspot.11 Help
colleagues get online and improve productivity.

• Take productivity to a whole new level with innovative software like HP ePrint12 and HP
PageLift25 on the HP EliteBook 840 G1.

• Bridge distances on the HP EliteBook 800 series, optimized for communication with Microsoft
Lync,26 premium audio/video, and optional full-HD display.10,8

Solid security
• HP Sure Start restores productivity and reduces IT help desk calls in the event of a BIOS attack or

corruption. Exclusively from HP, HP Sure Start helps reduce downtime for users and IT.27

• Keep sensitive information in safe hands. HP Trust Circles helps protect your data by ensuring
that only assigned contacts can access critical files.20

• Stay up and running. HP BIOS Protection offers enhanced protection against virus attacks to the
BIOS and other security threats, and is designed to help prevent data loss and reduce
downtime.28

• Safeguard data, devices, and identities with HP’s hassle-free Client Security portfolio,29 including
HP Drive Encryption,18 HP Device Access Manager with Just In Time Authentication, and HP Secure
Erase.19

• Ensure smooth sailing with stable and consistent images, managed lifecycle transitions, and
Global Series support you can rely on.

Now employees can hit the road
with a travel pro. The HP
EliteBook 840 G1 industry-
leading Ultrabook21 is ultra-
productive in and out of the
office. Work with confidence,
thanks to proven enterprise
technologies and enterprise
security, performance, and
management features that will
meet all your business needs.

57

Data sheet | HP EliteBook 840 Notebook PC HP recommends Windows.

2

Road ready
• Never fear accidental bumps and minor spills. HP EliteBooks undergo challenging tests so you

don’t have to. During the HP Total Test Process, PCs experience 115,000 hours of performance
trials to ensure they can withstand rigorous work environments.

• Designed to be travel-tough, the HP EliteBook thin and light notebooks feature a new, soft-touch
finish and are designed to undergo MIL-STD 810G testing.31

• Enjoy the intuitive control of the tough Corning Gorilla Glass touchscreen that lets you make the
most of Windows 8.1

Hardware specifications

Product Name HP EliteBook 840 G1 Notebook PC

Operating systems Preinstalled:
Windows 8 Pro 641
Windows 7 Professional 64 (available through downgrade rights from Windows 8 Pro 64)2

Windows 7 Professional 32 (available through downgrade rights from Windows 8 Pro 64)2
Windows 8 641
Windows 7 Professional 643
Windows 7 Professional 323
Windows 7 Home Premium 643
Windows 7 Home Premium 323
SUSE Linux
FreeDOS

Processor Intel Core™ i7 processor; Intel Core i5 processor; Intel Core i3 processor14

Chipset Chipset integrated with processor

Memory DDR3L SDRAM, 1600 MHz, two slots supporting dual-channel memory, up to 16 GB total4

Internal Storage 320/500 GB /1 TB 5400 rpm HDD;5 320/500 GB 7200 rpm HDD5
500 GB 7200 rpm SED (Self Encrypting Drive);5 500 GB 5400 rpm FIPS SED5
128/180/240 GB SSD;5 256 GB SED SSD;5 HP 3D DriveGuard7
120 GB M.2 (NGFF) SSD5 (planned to be available 4Q2013)
If selected, any of the HDDs and SSDs can be configured as secondary storage.

Flash Cache 32 GB M.2 (NGFF)

Expansion Slot 1 Media Card Reader

Display 14" diagonal LED-backlit HD8 anti-glare (1366 x 768); 14" diagonal LED-backlit FHD anti-glare slim (1920 x 1080)
14" diagonal LED-backlit HD8+ anti-glare (1600 x 900); 14" diagonal LED-backlit HD8+ anti-glare + touch (1600 x 900)

Graphics Integrated: Intel HD8 Graphics 4400
Discrete: AMDTM Radeon HD8 8750M with 1 GB dedicated GDDR5 video memory

Audio/Visual HD audio with DTS Studio Sound; integrated dual-microphone array; 2 integrated stereo speakers

Wireless Support WLAN:
Intel Dual Band Wireless-AC 7260 802.11ac (2x2) WiFi and Bluetooth® 4.0 Combo32
Intel Dual Band Wireless-N 7260AN 802.11a/b/g/n (2x2) WiFi and Bluetooth 4.0 Combo9
Intel Dual Band Wireless-N 7260NB 802.11a/b/g/n (2x2) WiFi9
Broadcom 802.11a/b/g/n (2x2) and Bluetooth 4.0 Combo9
WWAN:
HP hs3110 HSPA+ Mobile Broadband10,15
HP lt4111 LTE/EV-DO/HSPA+ Mobile Broadband10,15, 30

Communications Intel I218-LM Gigabit Network Connection (10/100/1000 NIC)

Ports and Connectors 3 USB 3.0; 1 USB 3.0 charging; 1 DisplayPort 1.2; 1 VGA; 1 combo stereo headphone/mic jack; 1 AC power; 1 RJ-45; 1 side-docking connector

Input Device and
Camera

Full-sized, spill-resistant keyboard with drain; optional10 backlit, dual-point (touchpad with scroll zone and point stick),
2 discrete buttons (WLAN on/off, speaker mute)
720p HD8 webcam optional10

Software
(Windows OS only)

Buy Office, HP 3D DriveGuard,7 HP Connection Manager (Windows 7), HP Wireless Hotspot,11 HP PageLift (Windows 8 only), HP Recovery Manager, HP
Support Assistant, HP ePrint12

Security HP Client Security Suite (requires Windows) includes: HP Credential Manager, HP Password Manager,16 HP File Sanitizer17 and HP Device Access Manager
with Just in Time Authentication, HP BIOS with self healing,28 HP Drive Encryption,18 HP Secure Erase,19 HP Trust Circles,20 Microsoft Security Essentials
(Windows 7) & Microsoft Defender (Windows 8), HP SpareKey (requires initial user setup), Absolute Data Protect,6 TPM Embedded Security Chip 1.2,
security lock slot

Dimensions
(w x d x h)

13.35 x 9.33 x 0.83 in./33.89 x 23.7 x 2.10 cm (at front)
13.35 x 9.33 x 0.89 in./33.89 x 23.7 x 2.25 cm (touchscreen)

Weight Starting at 3.48 lb/1.58 kg (weight will vary by configuration)

Power Primary battery: 3-cell (24 WHr) HP Long Life; 3-cell (50 WHr) HP Long Life
Secondary Battery: 6-cell (60 WHr) HP Long Life slice optional10
Integrated: 45W Smart AC adapter; 65W Smart AC adapter
Discrete: 65W Smart AC adapter

Expansion Solutions HP 2013 UltraSlim Docking Station optional10

Warranty Limited 3-year and 1-year warranty options available, depending on country, 3-year limited warranty on HP Long Life Battery (only available with 3-year
platform warranty). Optional10 HP Care Pack Services13 are extended service contracts which go beyond your standard warranties. For more details visit:
hp.com/go/cpc.

58

Data sheet | HP EliteBook 840 Notebook PC HP recommends Windows.

3

1. Not all features are available in all editions of Windows 8. Systems may require upgraded and/or separately purchased hardware, drivers, and/or

software to take full advantage of Windows 8 functionality. See microsoft.com for details.
2. This system is preinstalled with Windows 7 Pro software and also comes with a license and media for Windows 8 Pro software. You may only use

one version of the Windows software at a time. Switching between versions will require you to uninstall one version and install the other version.
You must back up all data (files, photos, etc.) before uninstalling and installing operating systems to avoid loss of your data.

3. This system may require upgraded and/or separately purchased hardware to take full advantage of Windows 7 functionality. Not all features are
available in all editions of Windows 7. See windows.microsoft.com/en-us/windows7/products/home for details.

4. Maximum memory capacities assume Windows 64-bit operating systems or Linux. With Windows 32-bit operating systems, memory above 3 GB
may not all be available due to system resource requirements.

5. For hard drives and solid state drives, GB = 1 billion bytes. TB = 1 trillion bytes. Actual formatted capacity is less. Up to 16 GB (for Windows 7) of
system and up to 36 GB (for Windows 8) disk is reserved for system recovery software.

6. Absolute Data Protect agent is shipped turned off, and must be activated by customers. Service may be limited; check with Absolute for
availability outside the U.S. The optional subscription service of Absolute Recovery Guarantee is a limited warranty. Certain conditions apply. For
full details visit: absolute.com/company/legal/agreements/computrace-agreement. If Data Delete is utilized, the Recovery Guarantee payment is
null and void. In order to use the Data Delete service, customers must first sign a Pre-Authorization Agreement and either create a PIN or
purchase one or more RSA SecurID tokens from Absolute Software.

7. Some functionality of this technology, such as Intel Active management technology and Intel Virtualization technology, requires additional third-
party software in order to run. Availability of future “virtual appliances” applications for Intel vPro technology is dependent on third-party
software providers. Microsoft Windows required.

8. HD content required to view HD images.
9. Wireless access point and internet service is required and is not included. Availability of public wireless access points limited.
10. Sold separately or as an optional feature.
11. The wireless hotspot application requires an active internet connection and separately purchased data plan. While HP Wireless Hotspot is active,

on-device applications will continue to work and will use the same data plan as the wireless hotspot. Wireless hotspot data usage may incur
additional charges. Check with your service provider for plan details. Requires Windows 8.

12. Requires an internet connection to HP web-enabled printer and HP ePrint account registration (for a list of eligible printers, supported documents
and image types, and other HP ePrint details, see hpconnected.com). Mobile devices require internet connection and email capability. May require
wireless access point. Separately purchased data plans or usage fees may apply. Print times and connection speeds may vary. Some HP LaserJet
printers may require firmware upgrades.

13. Service levels and response times for HP Care Packs may vary depending on your geographic location. Service starts on date of hardware
purchase. Restrictions and limitations apply. For details, visit hp.com/go/cpc.

14. Multi-Core is designed to improve performance of certain software products. Not all customers or software applications will necessarily benefit
from use of this technology. 64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating
system, device drivers, and applications enabled for Intel 64 architecture. Processors will not operate (including 32-bit operation) without an Intel
64 architecture-enabled BIOS. Performance will vary depending on your hardware and software configurations. Intel’s numbering is not a
measurement of higher performance.

15. WWAN is an optional feature sold separately or as an add-on feature. WWAN connection requires wireless data service contract and network
support, and is not available in all areas. Contact service provider to determine the coverage area and availability. Connection speeds will vary due
to location, environment, network conditions, and other factors.

16. Requires Internet Explorer, IE8 or IE9. Some websites and applications may not be supported.
17. For the use cases outlined in the DOD 5220.22-M Supplement. Does not support Solid State Drives (SSDs). Initial setup required. Web history

deleted only in Internet Explorer and Firefox browsers and must be user enabled.
18. Requires Windows. Data is protected prior to Drive Encryption login. Turning the PC off or into hibernate logs out of Drive Encryption and prevents

data access. 2013 Desktops are planned to support drive encryption in October 2013.
19. For the methods outlined in the National Institute of Standards and Technology Special Publication 800-88.
20. HP Trust Circles Standard, when included, allows up to 5 Trust Circles with up to 5 contacts in each Trust Circle. Optional Trust Circles Professional

required for unrestricted number of Trust Circles.
21. Not all configurations will be classified as Ultrabooks.
22. Requires a compatible Intel Core processor, enabled chipset, Intel Rapid Storage technology software, and non-SED HDD+ optional mSATA SSD

flash cache module. Intel Smart Response Technology is only available on select 2013 HP systems. Depending on system configuration, results
may vary. mSATA SSD is planned to be available in August 2013.

23. Support for external displays as a standard feature through integrated processor-based graphics is dependent upon the particular PC
platform/form factor; the actual number of displays supported will vary. An optional discrete graphics solution will be required for the support of
additional displays. Additional cables required. DisplayPort with multi-stream through integrated graphics is planned to be available in fall 2013
as an integrated feature and as a web update in late summer 2013.

24. HP Connection Manager available on Windows 7 only.
25. Requires Microsoft Windows 8.
26. Microsoft Lync software sold separately. Requires optional webcam and internet access, sold separately.
27. HP Sure Start is available only on HP EliteBook 800 and HP Workstation ZBook series products.
28. HP Tools partition with HP BIOS required for automatic recovery.
29. HP Client Security requires Windows.
30. 4G LTE not available on all products, in all regions, and only available on products featuring Intel processors.
31. MIL-STD testing is pending and is not intended to demonstrate fitness for U.S. Department of Defense contract requirements or for military use.

Test results are not a guarantee of future performance under these test conditions.
32. Wireless access point and internet access required. Availability of public wireless access points limited. The specifications for the 802.11ac WLAN

are draft specifications and are not final. If the final specifications differ from the draft specifications, it may affect the ability of the notebook to
communicate with other 802.11ac WLAN devices.

For more information visit
hp.com

Share with colleagues

Rate this document

© 2013 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein. AMD is a trademark of Advanced
Micro Devices, Inc. Bluetooth is a trademark of its proprietor and used by Hewlett-Packard Company under license. Intel, the Intel logo, Intel Core, and Core
Inside are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. All other trademarks are the
property of their respective owners.

4AA4-8335ENUC, September 2013

59

Web Site: www.parallax.com
Forums: forums.parallax.com
Sales: sales@parallax.com
Technical: support@parallax.com

Office: (916) 624-8333
Fax: (916) 624-8003
Sales: (888) 512-1024
Tech Support: (888) 997-8267

Copyright © Parallax Inc. Eddie Robot Platform (28990 & 28992) v1.3 1/16/2013 Page 1 of 17

Eddie Robot Platform
(Assembled: #28990 / Unassembled: #28992)
Eddie is a mobile robotics development platform designed to foster creativity, innovation and
experimentation. Compatible with Microsoft’s Robotics Developer Studio, Eddie can roam autonomously,
see in 3D using the power of the Microsoft Kinect, and be driven remotely using a wireless controller
(sold separately).

Eddie’s Control Board uses the Propeller multicore microcontroller to directly control two high-torque 12 V
motors and collect data from multiple sensors mounted on the robot. Eddie is controlled over a simple
USB connection and a convenient, open-source command interface.

Features
 Compatible with Microsoft Robotics Developer Studio

(RDS4)

 Two-tiered design provides plenty of room for
electronics as well as convenient laptop mounting for
un-tethered, autonomous navigation.

 High-torque 12 VDC gear motors

 Durable 6” diameter pneumatic rubber tires traverse
various types of surfaces and terrain.

 Three Infra-red distance sensors and two ultrasonic
distance sensors for object detection and collision
avoidance

 Integrated control board handles all low level hardware
operations to control motors and collect sensor data

 Twin high-capacity 12V , 7.5 Ah sealed lead acid (SLA)
batteries provide significant run-time between charges

 USB connectivity

 Built-in charging jack (charger included)

Key Specifications
 Communication Interface: Serial

commands over USB interface

 Operating temperature: 32 to 158 °F (0 to
70 °C)

 Dimensions: 21.75” (55.25 cm) high
17.8” (45.2 cm) Diameter

 Robot Weight: 25.3 lbs (11.5 kg)

Application Ideas
 Autonomous navigation and mapping

 Development and testing of machine
vision systems

 Tele-presence robots

 Voice-activated personal assistant robots

 Security and surveillance robots

 Crowd interaction and advertising

60

Copyright © Parallax Inc. Eddie Robot Platform (28990 & 28992) v1.3 1/16/2013 Page 2 of 17

Additional Items Required
 Laptop Computer

 Kinect Camera

 Philips (cross-head) screwdriver

 Scissors

 5/32” Allen wrench

 Microsoft RDS software

 A Keen Imagination

Important Precautions
 After switching main board power off, wait at least 5 seconds before switching power back on.

Rapid and repetitive power cycling of the board and motor power supplies causes significant
stress on electronic components and may damage the board and/or connected electronic
accessories.

 Use caution when handling the drive motors or Control Board as some components may become

hot after prolonged operation.

 As in most electronic devices, Eddie contains components which are sensitive to static discharge.
Exercise proper grounding practices prior to touching or working on the robot.

Assembly Instructions
Note: For pre-assembled Eddie (28992), go to Step 10

Step 1: Motor Mount and Wheel Kits

Pre-assemble the Motor Mount and Wheel Kit and the Caster Wheel Kits, by following the
instructions that came with each of those products. Set them aside for now.

Step 2: Parts Inventory

After you have completed the assembly of the Motor Mount and Wheel Kit and the Caster
Wheel Kits, carefully unpack the remaining components and sort them into their respective
groups. You should have the items listed in the Bill of Materials table below.

61

Copyright © Parallax Inc. Eddie Robot Platform (28990 & 28992) v1.1 1/16/2013 Page 3 of 17

Bill of Materials
Part # Quantity Description

27971 1 Eddie Motor Mount and Wheel Kit w/ Quadrature Encoders

28971 2 Caster Wheel Kit

765-28977 1 Robot Base

765-28990 1 Eddie Second Deck

700-00235 1 Eddie Wiring Harness

721-00013 2 Kinect Mounting Cam Hook

452-00072 4 Eddie Kinect Cable Clip

800-28990 1 Eddie Kinect Power Cable

713-00049 4 Standoff, 5”, ½” Diameter

713-00050 2 Standoff, 12”, ½” Diameter

721-00014 1 Eddie Laptop Screen Clamp

765-00003 1 Eddie Battery Shelf

752-00007 2 Battery, 12V, 7.2Ah, SLA

28015 2 Ping))) Ultrasonic Distance Sensor

28995 3 Sharp 2Y0A21YK0F Distance Sensor

550-28990 1 Eddie Control Board

805-00002 2 Servo-extension Cable, 14” Length

805-28995 3 Sharp IR Sensor to Servo Cable

725-28995 3 Sharp IR Stand Acrylic

725-32008 2 Ping Stand Acrylic

710-00033 10 Screw, Cap, SKT, 6-32x1/2”

710-00035 24 4-40 x 5/8” black pan head screw

713-00005 6 Spacer, nylon, #4, ¼” thick

713-00019 6 Spacer, nylon, #4, 1/8” thick

713-00015 4 Spacer, nylon, #4, 1/16” thick

700-00240 1 Eddie Battery Charger

806-00001 1” x 10” Snap Velcro

700-00028 4 Screw, Pan Head, Zinc, Phillips, 4-40 x 1/4”

700-00083 4 4-40 x ½”, F/F Hex Standoff

710-00024 4 Screw, Button Head SS, ¼”x20 x ½”

710-00032 6 Screw, Cap, SS, #6-32 x 3/8”

710-00034 4 Screw, Flat Head, Black ¼-20 x 5/8”

721-00012 1 Eddie Kinect Platform

710-00040 4 Screw, Pan Head, Black 4-40 x ½”

710-00100 2 Screw, Pan Head, Black 4-40 x 1/4”

710-00105 10 Screw, Button Head, ¼-20 x 5/8”

710-00106 2 Screw, Button Head, Blk, ¼-20 x ¾”

712-00008 2 Washer, ½” dia, .060 Delrin

713-00001 6 Standoff, 4-40 x 5/8” F/F Round

713-00022 4 Standoff, 4-40 x 1.5” F/F Hex

62

Copyright © Parallax Inc. Eddie Robot Platform (28990 & 28992) v1.1 1/16/2013 Page 4 of 17

Step 3: Ping))) and IR Sensor Module assembly

Figure 3a shows the components for each sensor assembly. You will need a small Phillips screwdriver to
assemble each sensor module.

Figure 3a

Each Ping assembly consists of: Each IR sensor assembly consists of:

(1) Ping))) sensor (#28015) (1) IR sensor (#28995)
(1) Cable, servo extension (#805-00002) (1) IR Sensor to servo cable (#805-28995)
(2) 4-40 x 5/8” black machine screws (#700-00028) (2) 4-40 x 5/8” blk mach. screws (#710-00035)
(2) 1/16” thick nylon spacers (#713-00015) (2) 1/8” thick nylon spacers (#713-00013)
(2) ¼” thick nylon spacers (#713-00005) (2) ¼” thick nylon spacers (#713-00005)
(1) Acrylic Ping stand (#725-32008) (1) Acrylic IR Stand (#725-28995)

Refer to Figure 3b, and note the different locations of the spacers on each assembly. In each case, make
sure the “labeled” or etched sides of the Stands are on the opposite side from the sensor assemblies.

For the IR module, insert two 5/8” long, black machine screws through the mounting holes from the
backside of the module. Place (1) of the 1/8” long spacers and (1) of the ¼” long spacers on each of the
machine screws (as shown in Figure 3b). Carefully align this assembly onto the backside of the acrylic IR
stand, and gently tighten each of the machine screws until they’re snug. Nuts are not required. The
machine screws will cut their own threads as you screw them into the acrylic. Do not over tighten.

Assemble the Ping))) module by sliding a 1/16” thick nylon spacer onto each of the two 5/8” long, black
machine screws. Insert these screws (with the 1/16” washers) through the Ping’s PCB mounting holes.

63

Copyright © Parallax Inc. Eddie Robot Platform (28990 & 28992) v1.1 1/16/2013 Page 5 of 17

Place two ¼” long spacers onto the screws, and align the screws to the self-tapping mounting holes on
the acrylic stand. The screws will cut their own threads. Screw them all the way in, but do not over-
tighten.

Figure 3b

You should now have assemblies that look like those shown in Figure 3c. Repeat these steps for the
remaining Ping))), and IR Sensor assemblies.

Figure 3c

Connect the appropriate cables to each of the sensors. Be sure to observe proper polarity on the Ping
cables, as shown in Figure 3c. The IR cables are polarized. Line up the tab on the cable, and insert it
into the receptacle. Be sure to fully insert them – they should “click” into place.

Set these assemblies aside for now.

64

Copyright © Parallax Inc. Eddie Robot Platform (28990 & 28992) v1.1 1/16/2013 Page 6 of 17

Step 4: Battery Shelf Preparation

Figure 4a

As shown in Figure 4a, the Battery Shelf components consist of a Delrin shelf, (6) 1/2” tall, round
aluminum standoffs, and (6) 4-40 x 5/8” screws.

The physical sizes of SLA batteries differ depending on brand and capacity. Figure 4b shows typical
locations for standoff placements, for the batteries that come with the Eddie platform. Mount the
standoffs in hole locations that provide the tightest fit for the batteries that you’re using.

Place the Delrin shelf so that the Parallax Logo is face down, and attach the standoffs as depicted in
Figure 4b.

Figure 4b

Set the Battery Shelf Assembly aside for now.

65

Copyright © Parallax Inc. Eddie Robot Platform (28990 & 28992) v1.1 1/16/2013 Page 7 of 17

Step 5: Main Base Assembly

Place the two pre-assembled Casters and Motor Mounts a shown in Figure 5a. Orient the Base Plate so
that the two sets of three holes (in a triangular pattern) are visible (“face-up”), as shown in Figure 5a.
These are “blind” holes (they do not go all the way through). The Caster assemblies are attached from
the bottom of the Base with short screws that do not mar the finish of the top-side.

Figure 5a

Use the 7/64” ball-end, Allen wrench to screw in the (3) 3/8” long socket-head cap screws to attach each
of the Caster Wheel assemblies to the Base, as shown in Figure 5b. Make them “snug”, but do not over
tighten.

Before you mount the drive wheels to the Base, verify that the ID jumpers (A and B) on the Position
Controller for the left motor are set to “1” (both jumpers installed) and that the ID jumpers on the right
Position Controller are set to “2” (A installed, B removed). (See Motor Mount and Wheel Kit for additional
information).

66

Copyright © Parallax Inc. Eddie Robot Platform (28990 & 28992) v1.1 1/16/2013 Page 8 of 17

Figure 5b

Flip the Base over (as shown in Figure 5c), and attach each pre-assembled drive motor unit to the Base
using (2) ¼ x 20 button head screws for each motor, as shown. Tighten using a 5/32” Allen wrench.

Connect (2) long, three-pin servo extension cables to each of the Quadrature Encoder Boards. Be sure to
observe proper polarity, as noted on the Encoder board silk screen. Connect each of the other ends of
the cables to the Control Board when it’s installed. It is recommended that the cables are routed across
the top side of the robot platform.

Figure 5c

67

Copyright © Parallax Inc. Eddie Robot Platform (28990 & 28992) v1.1 1/16/2013 Page 9 of 17

Step 6: Control Standoff Assembly

Insert (8) 4-40 x 5/8” Black oxide screws from the underside of the Base, and fasten to the two sets of
(4) of standoffs, as shown in Figure 6a. The ½” long standoffs are for the Eddie Control Board, and the
1.5” standoffs are for the Wiring Harness / Switch Plate assembly.

Figure 6a

Place (but do not attach) the Wiring Harness / Switch Plate assembly onto the Base as shown in Figure
6b. Carefully thread the Red and Black wires through the hole that’s between the set of short standoffs.
Double-check to make certain that the Power Switches are both “off” as shown in Figure 6b.

Figure 6b

68

Copyright © Parallax Inc. Eddie Robot Platform (28990 & 28992) v1.1 1/16/2013 Page 10 of 17

Step 7: Battery Shelf Installation

Flip the Base over, place the two Sealed Lead Acid batteries on the bottom of the Base, and connect the
Red and Black wires to the corresponding colored terminals, as shown in Figure 7a.

Figure 7a

Refer to Figure 7b. Carefully rotate the batteries, and gently place them between the two drive motor
assemblies. This should be a nice, tight fit. Be careful to not short the terminals of the batteries against
the frames of the motor assemblies. See Figure 7b.

Figure 7b

69

Copyright © Parallax Inc. Eddie Robot Platform (28990 & 28992) v1.1 1/16/2013 Page 11 of 17

Place the pre-assembled Battery Shelf over the cells and slide it into alignment so that the the thru holes
line up with the tapped holes in the Motor Bearing Block. Secure the Battery Tray with (4) ¼-20 x ½”
long button head screws, as shown in Figure 7c.

Figure 7c

Step 8: Switch Plate and 5” Upper Deck Supports Installation

Place the assembly on its side, as shown in Figure 8a. Attach (4) ½” diameter by 5” long machined
aluminum standoffs with ¼-20 x 5/8” long button head screws as shown.

Connect the Switch Plate to the (4) 1.5” tall standoffs with (4) #4-40 x ½” long black, Phillips head
screws, as shown in Figure 8a as well.

Figure 8a

70

Copyright © Parallax Inc. Eddie Robot Platform (28990 & 28992) v1.1 1/16/2013 Page 12 of 17

Attach the Ping))) and IR Sensors to the Base as shown in Figure 8b. Place the #6/32 x ½” socket head
cap screw through the holes in each of the stands and then carefully screw them down evenly into the
Base. Take it slow and easy. Make a few turns on one screw and then a few turns on the other, gently
bringing the assembly down into full contact with the Base. Make them snug, but do not over-tighten.

Figure 8b

Step 9: Eddie Control Board Installation

Orient the Control Board as shown in Figure 9a, and use (4) 4-40 x 1/4 “ machine screws to attach it to
the (4) hex standoffs in the center of the platform.

Be certain that the switches are in their “Off” positions (the switches light up when they’re “ON”).
Connect each of the motor drive connectors to their respective receptacles on the Control Board.
Connect the Main Power connector (coming from the Switch Plate) to the large power connector on the
Control Board.

Figure 9a

71

Copyright © Parallax Inc. Eddie Robot Platform (28990 & 28992) v1.1 1/16/2013 Page 13 of 17

Viewing Eddie from the front, (as in Figure 9a), connect the left-most IR Sensor cable to “AD1”, the
center IR sensor to “AD2”, and the right-most IR Sensor to “AD3”. Connect the left-most Ping))) to I/0
“1” and the right-most Ping))) to I/O “2” on the Eddie Control Board. Be sure to observe proper polarity
– the black wires (ground) should be attached to the outer-most pins of the 3-pin headers.

Connect the left-most (towards the outer edge of the deck) three-pin cable from the left Encoder to
header pin 9 on the I/O section of the Control Board. The black wire should be on the outer-most pin of
the three-pin header. Now connect the other Encoder cable to header pin 10 on the Control board.
Connect the right-side motor’s innermost cable into header pin 11 on the Control Board, and then the
final Encoder cable to header pin 12. Be certain that all the black wires are oriented towards the outside
edge of the Board.

Locate the power enable switch on the Control Board near the USB connector. Slide the “Motors – Board
– Off” switch to the “Motors” position (all the way closest to the USB connector). This switch will leave
board power and motor power enabled since they are switched externally using the high-current red and
blue power switches.

Step 10: Second Deck Installation

The Second Deck’s “top” side is indicated by the (4) counter-sunk holes that line up with the (4) 5” long
aluminum standoffs. The “counter sink” is the top.

Attach the two 12” long standoffs to the Second Deck by inserting (2) ¼ - 20 x 5/8” button head screws
from the bottom side of the Second Deck.

Place the Second Deck onto the 5” standoffs as shown in Figure 10, and fasten with (4) ¼ -20 Flat head
Black Screws.

Figure 10

72

Copyright © Parallax Inc. Eddie Robot Platform (28990 & 28992) v1.1 1/16/2013 Page 14 of 17

Step 11: Kinect Plate Assembly

The Kinect is attached to Eddie in a non-destructive manner. That is, there are no modifications
necessary to the Kinect unit itself.

The bottom of the Kinect unit has two rectangular holes as shown in Figure 11a. Note the orientation of
the “Kinect Cam Hooks” below the device.

Figure 11a

Place a Cam Hook into one of the rectangular slots as shown in Figure 11b.

Figure 11b

73

Copyright © Parallax Inc. Eddie Robot Platform (28990 & 28992) v1.1 1/16/2013 Page 15 of 17

Rotate or “cam” the hook into the slot as shown in Figure 11c.

Figure 11c

Do the same with the remaining cam hook in the other slot. The assembly should now look like the one
shown in Figure 11d.

Figure 11d

74

Copyright © Parallax Inc. Eddie Robot Platform (28990 & 28992) v1.1 1/16/2013 Page 16 of 17

Place the Mounting Plate onto the bottom of the Kinect, such that the Cam Hooks go into the rectangular
holes. The Cam Hooks will not come all the way through – they’ll be “just below the surface” of the
acrylic. Now, place washers onto the 4-40 x ¼” long, black, pan head Phillips screws and screw them
into the tapped holes in the bottom of the Kinect Cam Hooks, as shown in Figure 11e.

Figure 11e

Step 12: Kinect Mounting and Cable Connections

Slide the rectangular Screen Clip down onto one of the 12” long standoffs as shown in Figure 12a.

Using two ¼-20 x ¾” black button head screws attach the Kinect Plate assembly to the top of the two
12” long aluminum standoffs.

Route the Kinect cable alongside the remaining 12” standoff, attach it with the (4) cable clips, and pass
the cable down through the large thru-hole in the Top Plate.

Attach the Kinect Cable to the Kinect Cable Adapter, and then plug the two-pin power jack (on the Kinect
Cable Adapter into the Kinect Power plug on the Eddie Control Board.

Connect a USB mini-B cable to the USB connector on the Control Board, and route it up through the cable
hole on the Top Plate.

 Figure 12a Figure 12b

75

Copyright © Parallax Inc. Eddie Robot Platform (28990 & 28992) v1.1 1/16/2013 Page 17 of 17

A strip of self-adhesive Velcro-like material is included if you wish to mount your laptop computer onto
Eddie’s Second Deck.

Although you can attach your laptop anyway you choose, a convenient way to do so is to cut the strip
into (8) 1” square pieces, and then “snap” them together into (4) sets, as shown in Figure 12a. Peel off
one side of the adhesive (on each of the four sets) and stick them to the underside of your laptop. Then
remove the protective film from the four sets and carefully place your laptop onto the upper deck.

If properly applied, you should be able to remove your laptop and re-attach it as required.

Your Robot should now resemble that shown in Figure 12b.

Using the (5) zip-ties, bundle excess lengths of wire so that all conductor routing is clean and organized.

This completes Eddie’s hardware assembly – Congratulations!

Additional Specifications
Parameter Value

Robot Footprint 17.8” (45.1 cm) diameter circle

Height (without Kinect) 21.75” (xx cm)

Height (with Kinect) 24.50” (65.4 cm)

Overall Weight 27.5 lbs (11.5 kg)

Maximum Cargo Capacity(1) 50 lbs (22.7 kg)

Run Time(2) 4 to 7 hours

Ground Clearance(3) 0.88” (2.23 cm)

Wheel Center-to-center Distance 15.4” (39.0cm)

Operating Temperature(4) 32 to 158 F (0 to 70 C)

Notes:
1. Maximum cargo capacity is the suggested maximum cargo weight for typical operation. The robot may be able to carry

additional weight, but this is not guaranteed and may result in diminished performance, or mechanical failure.
2. Run time is approximate and depends on many factors.
3. Ground clearance is limited by the screws to mount the battery support tray. Minimum ground clearance is directly

between the two main drive wheels. Clearance in other areas is greater.
4. Eddie is designed to be operated indoors.

Additional Resources and Downloads
Visit www.parallax.com/eddie for additional information and the latest product documentation and
downloads, including:

 Eddie product documentation – this document.
 Eddie Control Board product documentation – provides details and specifications about the

control board hardware.

Revision History
1.0: Initial document release.
1.1: Picture references updated.
1.2: Changes to Bill of Materials
1.3: Updated to include assembly instructions for Quadrature encoder.

76

Curtis Muntz
Objective: To obtain a position where I can apply my passion for robotics, computer vision, and control systems.

QUALIFICATIONS
Experience in:
Computer vision algorithms using OpenCV and Matlab. Monocular and stereo machine vision projects. Sensor fusion via
probabilistic filters. System integration and debugging using Robot Operating System (ROS). Algorithm development and
simulations using Matlab and Python. Circuit simulations using PSpice and Simulink. Windows and Linux systems administration.
VMware administration. PID control system projects.

Programming and Misc. Languages:
C++, Python, Matlab/Octave, Bash, LATEX.

ENGINEERING PROJECTS
Senior Project - SLAM Robot:
Implementing a Simultaneous Localization and Mapping algorithm on an autonomous robotics platform. The robot is able to
autonomously navigate around a room without prior knowledge of the environment using an Extended Kalman Filter to fuse wheel
encoder odometry and monocular visual odometry data.

6-DOF Robotic Manipulator:
Developed software for controlling a 6 degree of freedom robotic manipulator. Created debugging GUI in PYQT4 to expedite
calibration and algorithm development. Inverse kinematics were performed numerically by using Monte Carlo simulations.
Stereo Vision Object Tracking:
Object detection with real world position and velocity estimation using stereoscopic camera correspondence.

Servo Motor:
Custom servo built using PID position control of a brushed DC motor, gear reduction, and an IMU as a feedback sensor.
Reconfigured system to use a webcam as a feedback sensor to track objects and keep them in frame.

Camera Gimbal:
Implemented a two axis gimbal system in order to maintain a constant attitude of a camera through the control of two servo
motors. I2C used to interface a digital gyroscope and accelerometer, sensor fusion performed using a digital filter.

SELECTED WORK EXPERIENCE
City of Roseville Information Technology JUN 2008 – MAY 2015

Junior Systems Administrator
Managed over 300 enterprise class servers across two data centers. Experienced in nearly every area of systems
administration including VMware, Linux, Windows, storage, backups, antivirus, and compliance. Extensive experience
in virtualization products such as VMware vSphere and Citrix Xenapp.

Intel Corp JUN 2006 – DEC 2006

Testing Intern
Assembled computers and tested Intel’s RAID drivers on pre-release hardware and software.

EDUCATION
B.S. Electronics Engineering CSU, Sacramento IN PROGRESS – MAY 2015 EXPECTED GRADUATION

Completed Courses:
Machine Vision Digital Control Systems Robotics Linear Systems Analysis
Feedback Systems CMOS & VLSI Electromechanical Systems Signals & Systems
Microprocessors Communication Systems Probability of Random Signals Solid State Electronics I,II

HONORS
City of Roseville Above & Beyond Award FEB 2011

Pride of Roseville Award 2011

77

Thomas Hayward

OBJECTIVE
A position leading to a career in Software Engineering.

EDUCATION
Bachelor of Science, Electrical and Electronic Engineering
California State University Sacramento, GPA 3.20 Expected December 2015

STRENGTHS

Teamwork - Over 11 years of team building experience while serving in the United States Navy.

Problem Solver - Skilled troubleshooter who can resolve errors quickly.

System Development - Fully capable of creating innovative solutions to complex problems in C++,
Python, RISC Assembly, Octave, Matlab, and PSPICE.

Communication - Routinely provides informal and formal training to small and large groups regarding
regulations and professional knowledge. Experience in drafting meticulous documents while working
as a paralegal.

Office Computing - Proficient with PowerPoint, Project, Excel, Word, Access, and SharePoint.

RELATED PROJECTS
Simultaneous Localization and Mapping Robot

Project is inspired and sponsored by Schillings Robotics, FMC Technologies, to develop a control
algorithm for use on an autonomous robotics platform. Specific contributions involve creating the
system integration plan, a visual display, multiple GUI’s, an Unscented Kalman Filter, and a serial
driver in C++ and Python. Specific libraries utilized: Boost ASIO, OpenCV, PYQT4, Scipy, and ROS

Embedded Controller Design
Designed and implemented a control system utilizing an ARM based single board computer loaded
with Debian. The system challenges involved integrating a machine vision algorithm, a GUI, a PID
Controller, a serial driver, and thread manager utilizing C++. Specific libraries utilized: OpenCV,
Atomic, Boost Thread, and QT4

WORK EXPERIENCE
Administrative Leading Petty Officer June 2008 - Current
Legalman, Operational Support Unit, United States Navy Reserves

Support JAG Attorneys in generating presentations while performing duties as a paralegal.

Technician

John’s Incredible Pizza Company, Roseville, CA September 2008 - June 2012

Perform maintenance and repairs of small amusement rides, computers, network equipment, commercial
appliances, and arcade games.

Consolidated Automated Support System Technician

Aviation Electronics Technician, United States Navy March 2003 - June 2008
Utilize manual and automated test equipment to troubleshoot and repair complex avionics systems.

HONORS

• Received Letter of Commendation from Commander Naval Air Force Pacific Fleet for technical insight
that was instrumental in software development that resulted in a cost savings of $1,169,200.

• Awarded Navy Achievement Medal for initiating engineering investigations relating to faulty test set
hardware while working as an automated support system technician.

78

Christopher Laney

Summary of Qualifications
Electronics Technician with comprehensive experience in both civilian and military
small and large scale communication systems, RADAR, commercial electrical
wiring including generators and a multitude of electronic and computer systems.
Extensive experience at board level discrete component repair. Effective at
training technicians and laypersons.

Industry Certifications
 CompTIA A+ and Network Plus Certified

 NFPA Certified Electrical Safety Compliance Professional (CESCP)

Accomplishments
 Engineered electronics communication interface between newer large scale

multi-user system and existing peripheral communication devices

 Increased propgation characteristic parameters of communication
trasmission stations by improving ground plane characteristics, designing
filter modifications, and recalculating A-spacing height adjustments for
improved lobing patterns

Professional Experience
Defense Companies 1997 – Present

 Maintain and repair electronics equipment

 Troubleshoot and design solutions to equipment problems

Technical Skills
Test Equipment Oscilloscope, Spectrum Analyzer, Vector Volt Meter, Network
 Analyzers, RF generators, and most industry test equipment

Hardware Discrete component and IC chip project design using various
 chips types (FPGA’s, Parallax Propellor IC, MicroChip IC’s, etc.)

Education
A.S. Degrees in: Mathematics, Physics, Engineering, Electronics Technology

79

Christopher Laney

Summary of Qualifications
Electronics Technician with comprehensive experience in both civilian and military
small and large scale communication systems, RADAR, commercial electrical
wiring including generators and a multitude of electronic and computer systems.
Extensive experience at board level discrete component repair. Effective at
training technicians and laypersons.

Industry Certifications
 CompTIA A+ and Network Plus Certified

 NFPA Certified Electrical Safety Compliance Professional (CESCP)

Accomplishments
 Engineered electronics communication interface between newer large scale

multi-user system and existing peripheral communication devices

 Increased propgation characteristic parameters of communication
trasmission stations by improving ground plane characteristics, designing
filter modifications, and recalculating A-spacing height adjustments for
improved lobing patterns

Professional Experience
Defense Companies 1997 – Present

 Maintain and repair electronics equipment

 Troubleshoot and design solutions to equipment problems

Technical Skills
Test Equipment Oscilloscope, Spectrum Analyzer, Vector Volt Meter, Network
 Analyzers, RF generators, and most industry test equipment

Hardware Discrete component and IC chip project design using various
 chips types (FPGA’s, Parallax Propellor IC, MicroChip IC’s, etc.)

Education
A.S. Degrees in: Mathematics, Physics, Engineering, Electronics Technology

80

	I Design Overview
	I-A Introduction
	I-B Project History
	I-B1 Team Member Summary

	I-C Detailed Descriptions
	I-C1 Vision as a Sensor
	I-C2 Visual Odometry
	I-C3 Ranging
	I-C4 Encoders
	I-C5 Differential Drive Robotic Platform
	I-C6 Filtering

	I-D Feature Details
	I-D1 Kinematic Model
	I-D2 Path Planning
	I-D3 Visual Display
	I-D4 Filtering
	I-D5 Collision Avoidance
	I-D6 Gyro & Accelerometer
	I-D7 Communication With a Robot Chassis
	I-D8 Visual Odometry Requirements

	I-E Computer and Hardware Requirements
	I-F Testing, Debugging, and Specific Documentation
	I-G Resource Estimates

	II Funding Proposals
	III Work Breakdown Structure
	III-A Outline of WBS
	III-A1 Kinematic Model
	III-A2 Path Planning
	III-A3 Visual Display
	III-A4 Filtering
	III-A5 Collision Avoidance
	III-A6 Gyroscope & Accelerometer
	III-A7 Communication With a Robot Chassis
	III-A8 Visual Odometry Interface
	III-A9 Testing, Debugging, and Specific Documentation

	III-B Resource Estimate Summary
	III-C Project Timeline
	III-C1 Milestone 1: Visual Control of a Robot
	III-C2 Milestone 2: All Features Implemented
	III-C3 Milestone 3: Filtering Odometry Models
	III-C4 Milestone 4: Mapping and Path Planning
	III-C5 Milestone 5: Project Completed

	IV Risk Assessment & Mitigation
	IV-A Kinematic Model:
	IV-B Path Planning:
	IV-C Visual Display:
	IV-D Filtering:
	IV-E Collision Avoidance:
	IV-F Communication with Robot Chassis:
	IV-G Visual Odometry Interface:
	IV-H Laptop Risks:
	IV-I Camera Risks:
	IV-J Eddie Risks:
	IV-K Battery Risks:

	V User Manual
	V-A Room Requirements:
	V-B Local Mode
	V-B1 Hardware Required
	V-B2 Laptop Software Required

	V-C Remote Mode

	VI Design Documentation
	VII Breakdown of Hardware Subsystems
	VII-A Encoders
	VII-B Camera
	VII-C Atmega 328 Development Board

	VIII Breakdown of Software Subsystems
	VIII-A Robot Communication
	VIII-B Visual Display
	VIII-C Kinematic Model
	VIII-D Collision Avoidance
	VIII-E Gyroscope & Accelerometer
	VIII-F Path Planning
	VIII-G Visual Odometry Interface
	VIII-H Probabilistic Filtering

	IX Mechanical Drawings and Documentation
	X Test plan for Hardware
	XI Test plan for Software
	XI-A Feature Testing Plan
	XI-A1 Kinematic Model
	XI-A2 Path Planning
	XI-A3 Visual Display
	XI-A4 Filtering
	XI-A5 Collision Avoidance
	XI-A6 Serial Communication
	XI-A7 Visual Odometry Interface

	XI-B System Level Testing
	XI-B1 Software Testing Results

	XII Conclusion
	References
	Glossary

