

RENEWABLE ENERGY SELF
SUSTAINING SERVER MODEL

Deployable Prototype Documentation

SPRING 2017

CHENG, ARIK
JAMES, TAYLOR

MIETZ, ZACH
SHERWOOD, RYAN

Abstract—In looking at the societal problem of there being a finite amount of

fossil fuels left, our group wanted to find a system that requires large amounts of

energy and see if we could make it fully self-sustaining on renewable energy. Our

goal is to create a fully self-sustaining, batch processing server, running only on

power form a renewable source with battery backup. This document will focus

on the design, funding, scoping, risk assessment, testing, status, and forecast of

our product.

Index Terms-Renewable energy sources, maximum power point trackers, dc-dc

power converters, photovoltaic systems, energy efficiency, servers, global

warming, solid state circuit design

i

TABLE OF CONTENTS
EXECUTIVE SUMMARY ... iii

I. INTRODUCTION ... 1

II. SOCIETAL PROBLEM 2

III. DESIGN IDEA ... 7

A. Resources Needed 8

B. Feature Set .. 8

1) Solar Array: ... 8

2) Chemical Based Storage Device: 8

3) Server Platform: 8

4) Batch Processing: 8

5) Monitoring System Power: 8

6) Display Processed Data: 8

7) Future Power Prediction: 8

C. Goal ... 8

IV. FUNDING ... 9

V. PROJECT MILESTONES 9

A. Solar Panel and Regulator 9

B. Battery Storage System 10

C. Server Running Batch Processing 10

D. Monitoring and Control System 11

VI. WORK BREAKDOWN STRUCTURE 11

VII. RISK ASSESSMENT 12

A. Hardware ... 13

B. Software ... 15

C. Mitigation ... 16

VIII. DESIGN DOCUMENTATION 18

A. PV System ... 18

B. Voltage Regulation 18

C. Solar Charge Controller 19

D. Measurement Controller 19

E. Load Control Server 20

F. Database and Web GUI 20

G. Server ... 21

IX. PROTOTYPE STATUS 22

A. Hardware .. 22

B. Software .. 23

X. MARKET FORECAST 24

A. Green Conscience Enterprises 25

B. Developing Countries 25

C. Similar Projects 25

D. Opportunities... 26

E. Integration Challenges 27

F. Final Forecast ... 27

XI. CONCLUSION ... 27

REFERENCES .. 30

GLOSSARY ... 32

APPENDIX A. .. A-1

APPENDIX B ... B-1

APPENDIX C ... C-1

A. Block Diagrams and Flow Charts C-1

B. The Sieve of Erathosthenes C-2

C. Load Control Server C-3

D. Power Measurement Controller C-8

APPENDIX D ... D-1

APPENDIX E ... E-1

APPENDIX F ... F-1

LIST OF FIGURES
Fig. 1. Energy Reserves Left vs Time [2] 3

Fig. 2. U.S. Energy Consumption by Energy Source

[5] ... 4

Fig. 3. Projected Timeline of Energy Usage in

California [6] ... 5

Fig. 4. Past and Projected Growth Rate of Total U.S.

Data Center Energy Use [9] 7

Fig. 5. Buck Experiment [17] 18

Fig. 6. Solar Array [16] 18

Fig. 7. Buck and Boost Circuit [18] 19

Fig. 10. Original Charge Controller Circuit [19] 22

Fig. 9. Snubber Charge Controller Circuit [20] 22

file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671270
file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671271
file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671271
file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671272
file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671272
file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671273
file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671273
file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671274
file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671275
file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671276
file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671277
file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671278

ii

Fig. 11. PSPICE Sim Original Charge Controller [21]

... 23

Fig. 12. 3D Model Case for Components [23] 23

Fig. 13. Actual Component Case [24].................... 23

Fig. 8. PSPICE Sim Snubber Charge Controller [22]

... 23

Fig. 14. Falling Price of Utility-Scale Solar

Photovoltaic Projects [31] 26

Fig. 15. Voltage Regulator Circuit [33] 1

Fig. 16. LM317 Schematic Diagram [33] 1

Fig. 17. Load Control Server Flow Diagram [34] 1

Fig. 18. Flow Chart for Load Algorithm [35] 2

Fig. 19. Flow Chart for the CPU Throttling Process on

the Server [36] ... 2

Fig. 20. Flow Chart for the Network Receiving Thread

[37] ... 2

Fig. 21. Flow Chart for the Network Sending Thread

[38] ... 2

Fig 22. Back View Component Enclosure [39] 1

Fig. 23. Front View Component Enclosure [40]........ 1

LIST OF TABLES
TABLE I ESTIMATED BUDGET [11] 9

TABLE II ACTUAL BUDGET [12] 9

TABLE III TASK ASSESSMENT AND HOURS [13] 12

TABLE IV RISK ASSESSMENT [15] 13

TABLE V LOAD ALGORITHM PERFORMANCE DATA

[25] ... 24

TABLE VI LOAD SERVER TEST RESULTS [26] 24

file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671279
file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671279
file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671280
file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671281
file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671282
file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671282
file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671283
file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671283
file:///C:/Users/rpsherwo/Documents/school/senior%20design/spring/Deployable%20Prototype%20Documentation/Deployable%20Prototype%20Document.docx%23_Toc481671285

iii

EXECUTIVE SUMMARY

This report provides an analysis and evaluation

of the project progress from winter 2016 through

spring 2017. All aspects of the laboratory

prototype have been expanded upon or refined to

deliver a deployable prototype.

Methods of analysis include calculation,

simulation, and execution of circuit design;

drafting and revision of software; market research

of potential market entry and viability; and

rigorous testing of system components.

 Results of the market data analyzed show that

this project fits best in more specified markets.

Data show that potential clients include green

conscience small enterprises and businesses,

schools, or governments of developing countries.

In developing countries PV electricity generation

is economical because it may be one of the

cheapest sources of electricity.

 Thorough testing of the solar charge controller

revealed many holes in the team’s approach to

rapid prototyping. Many iterations of the

MPPT/Buck circuit were created and tested to

find a topology that would be sufficient for the

desired power specifications of the project.

Analysis of the circuit resulted in an inductive

spiking phenomenon that would many times

cause fatal temperatures in the circuit. This was

finally corrected with the implementation of a

snubber circuit across the inductor as referred to

in Figure # [#]. The method of finding maximum

power point has been changed to reduce

complexity and minimize the chance of error.

 Calibration of the measurement, voltage

regulation, and gas gauging of the system were

necessarily and fortunately smooth in

implementing. The minor problem in power

measurement was an erroneous offset that occurs

when the microcontroller is powered with

differing power sources. This was quickly

remedied by powering the microcontroller with a

fixed power source.

The software was expanded upon to include a

database to allow a deeper analysis of the data,

potentially to make calculations to predict by

season or other time frames. A web based

graphical user interface is implemented to show

real time results on easy to read graphs.

 The report finds the prospects of the projects in

its current positions are positive and may have a

strong viability in specified markets. Data

analysis from results collected provide a stronger

foundation to the working principals of the

hardware electronics and well as more robustly

handle electrical fault situations. Expansion of the

project provides a more refined user interfaces

and a more compact product ready for

deployment.

The report also investigates the fact that the

analysis conducted has limitations. Some of the

limitations include: forecasting power generation

based on long-term time frames (such as

seasons), scalability, and heat management.

1

I. INTRODUCTION

With the rate at which we consume energy

climbing and the finite amount of fossil fuels

dwindling there is a great need to quickly

increase our reliance on renewable energies.

Unfortunately we cannot just say we want to

switch to using only renewable energies as the

current state of renewable energy technology isn’t

up to the task of fully powering the world.

Furthermore, our demand for energy needs to at

least remain idle but preferably decrease some.

With these things in mind we decided to focus

more on how we could demonstrate the ability to

minimize the use of fossil fuels while showing

the effectiveness of renewable energies. From

there we looked into things that have a high

energy need while also being high in demand

now and for the foreseeable future. In narrowing

our focus we found that a server would be the

perfect model with which to work. Now with a

product, we had to choose a form of renewable

energy with which to power our server and

decided to go with photovoltaic solar arrays. With

a chemical based storage device to hold the

power from the solar array, we believed we could

run our server, with batch processing, over a full

24 hour period. In thinking deeper about the

product we wanted to show the ability to control

the flow of voltage and current into the storage

device from the solar arrays and onto the server

itself. To accomplish this accurately we needed a

device called a solar charge controller.

Accompanying the charge controller would be a

microcontroller that measures current and

voltages throughout the circuit between the solar

arrays and the output of the chemical storage

device. This microcontroller could then make

calculations on this data and send that

information to a mini-computer for data

collection and display through a database and

web GUI. The mini-computer, or load control

server, would then be in charge of controlling the

server’s utilization based on perceived power

availability from the chemical storage device. To

procure the parts for this project we did not

receive any outside funding. However, if not for

one of our members having access to server

hardware we would not have been able to afford

them ourselves. Also we had originally budgeted

to purchase solar arrays ourselves but Professor

Tatro allowed us to borrow two of the schools

arrays. Next we needed to break our project down

into manageable sub tasks that would be assigned

to certain group members. With our group

structure consisting of two Electrical Engineers

(EEE) and two Computer Engineers (CpE) we

mostly split the project into two categories. The

EEE members would do tasks that concentrated

on hardware and circuit design. While the CpE

members would handle the software

programming. Some exceptions, programming of

Arduino was done by EEE members and

hardware install of server was done by CpE

members. In addition we broke the project into

four sub tasks with each sub task having either

one or multiple activities. Member Arik, with

help from Zach, handled the solar panel and

regulator design circuitry. The storage system and

providing power to the microcontrollers and

server was handled by Zach. Member Taylor,

with help from Ryan, handled the software

programming of the server. While Ryan was in

charge of programming the monitoring and

control system. With this completed we were

instructed to look at all sub tasks and activities to

assess the possible risks of failure and find

critical paths that would slow down the project

drastically if not completed on time.

Subsequently, we were asked to think of ways to

mitigate these possible risks if they were to occur.

In doing this task we discovered that our most

critical juncture of the project revolved around

the designing of the solar charge controller

circuit. With this knowledge we decided to

purchase an already build controller and leave the

implementing of our own charge controller for

the spring semester. During the spring semester

we found out just how truly difficult it is to

construct a solar charge controller. There were

multiple some design changes that happened

throughout our year long process of constructing

this product specifically with the designing of the

solar charge controller. We went through multiple

microprocessors before we decided on the

Arduino Mega to handle the current and voltage

2

data collection as well as controlling the PWM

signal for the maximum power point tracking

algorithm. With the current status of our project

hitting all our original goals or feature sets, we

started to look at ways of improving the prototype

if given more time. Lastly we went through and

researched what we be the most effect way to

market our product and what areas would we try

and target. What follows is an in depth look at the

process from finding a societal problem to a

working deployable prototype.

II. SOCIETAL PROBLEM

The future of energy lies in the proliferation of

renewable energies, but what does that really

mean and how do we accomplish such a task?

What it means is that our reliability on fossil fuels

as the dominate form of energy as a society

cannot be sustained. Fossil Fuels are by nature a

finite resource. As we will explore later in our

paper this resource can be exasperated in our

lifetime. With this information we, as a society,

have no other option then to research and or

create alternative solutions to fossil fuels for our

energy consumption. While it is very difficult for

certain aspects of our society to just quit using

fossil fuels cold turkey, some are capable of

moving to using more renewable energies.

Nevertheless, there is very little stopping entities

(residential, commercial, or industrial) in non-

third world countries from utilizing some form of

renewable energy to offset the use of fossil fuels.

However we still have industries that refuse to

see the writings on the wall and incorporate some

aspects of renewable energy into the fold. One

area that in recent years that has seen an

acceptance of at least trying to incorporate

renewable energies into their plans are tech

companies. This is important specifically

concerning data centers, as they take quite a bit of

energy, and the need only increasing with so

many products able to connect to the internet. To

this end we believe a good solution would be to

make data centers, more specifically a server, run

only on renewable energies.

A. Increasing Demand

As heavily populated countries develop into

first world nations, their energy consumption has

skyrocketed. In the future energy demand will

only be increasing at greater and greater rates due

to our increasing population and continued

reliance on non-renewable energies. There have

been many strides towards meeting this demand

of electricity through cleaner sources and

renewable resources. Going forward we will have

to be able to leverage technology to not only

optimize the production of electricity but also the

consumption of electricity. As technology has

developed, along political incentives, have

pushed companies to make more efficient devices

with less power draw. Even with these

improvements energy demand is skyrocketing

and it must be managed in order to limit the

environmental impact of non-renewable

resources.

B. Why Are Fossil Fuels A Problem

3

The number one reason fossil fuels should be

avoided is due to the environmental hazards that

they provide, namely pollution. Fossil fuel

consumption is the major contributor to the

increasing concentration of carbon dioxide in the

atmosphere and a key cause of global warming

[1]. This same study shows that global warming

reduces agricultural production and causes other

biological problems [1]. If the burning of fossil

fuels continue, the planet may face some very

steep consequences in the near future. Fossil fuels

are currently the major energy source being used

in the world. However, it is only a matter of time

before this finite source of fuel will run out.

Globally, every year we currently consume the

equivalent of over 11 billion tons of oil in fossil

fuel and use crude oil at a net rate of 4 billion

tons a year. Based off a CIA factbook study, oil is

projected to last until 2052. Furthermore, gas

would last us until 2060 and coal until 2088.

Figure 1 [2] does not account for the amount of

fossil fuel to be added to current supply.

According to Tim Appenzeller of National

Geographic’s,

“more than a quarter trillion tons of

coal lie underfoot, from the

Appalachians through the Illinois

Basin to the Rocky Mountains—

enough to last 250 years at today's

consumption rate. You hear it again

and again: The U.S. is the Saudi

Arabia of coal. About 40 coal-burning

power plants are now being designed

or built in the U.S. China, also rich in

coal, could build several hundred by

2025.”

Even still, this is not the practical way to

continue as a source of energy. There is no easy

way to capture all the carbon dioxide from the

traditional burning of coal and we will eventually

run out. The move to renewable energy is a

beneficial alternative to that of fossil fuel.

Although, it doesn’t come without its own

obstacles. A study done by the US Bureau of the

Censor shows that Coal, petroleum, natural gas,

Fig. 1. Energy Reserves Left vs Time [2]

4

and other mined fuels provide 75% of US

electricity and 93% of other US energy needs [3].

According to the United States Energy

Information Administration, the US total energy

consumption in 2007 was over 27 trillion

kWh. The majority of the energy consumed is

generated by non-renewable and non-

environmentally friendly fossil fuel sources such

as coal petroleum, and natural gas.

Currently, the use of renewable energy

(including hydroelectric energy) in the United

States is only 6.8% of the total energy consumed,

which is a level much lower than other developed

nations, where fossil fuel prices are historically

higher than the United States. In anticipation of

the United States move towards greater

renewable energy utilization, the ability to

efficiently use these resources must be addressed.

One major challenge to the widespread adoption

of renewable energy is the ability to store and

control the wide variety of different energy

resources. Therefore, to enable the widespread

utilization of long term, secure, sustainable, and

environmentally friendly energy, the future

electric distribution grid must address the issues

of storage and complex control [4].

C. Integrating Energy Into The Future

In the current energy market the use of

renewable energy resources is a small but rapidly

growing industry. As of 2014 we were only

generating 10% of consumed power by the U.S.

with renewable energy sources, as can be seen in

Figure 2 [5]. There is still a huge amount of

energy we are generating from fossil fuels, and

the reality of this is that there is only a finite

amount of these resources left. This brings the

question of how long until we run out of these

fuels, and by when should we be reliant

Fig. 2. U.S. Energy Consumption by Energy Source [5]

5

completely on renewable energy resources. As

stated above in Figure 2 [5], at the current

consumption of these fossil fuels we will be

completely out of fossil fuels by the year 2088.

This means that it’s not a matter of if we will

completely convert over to renewable energy

resources, it's a matter of how soon we can and

will be willing to do it. Fortunately there are

many different methods that have been developed

that are useful for producing renewable energy.

Jacobsen predicts a reduction in fossil fuels and a

rise in renewable energy resources shown in

Figure 3 [6]. According to Jacobson, if we reduce

the demand for energy by making energy usage

more efficient and increase the use of renewable

energies we could be using energy completely

from renewable resources in California by 2050.

It shows the most efficient types of renewable

energy that can be used in California and gives a

realistic prediction on how much energy would

come from each source. To get to this point

would require a huge push to renewable

resources, but in time it is completely feasible to

expect the U.S. and eventually the rest of the

world to run on renewable energy.

It’s obvious that using renewable energy is

going to be the way of the future, however there

is many problems in implementing this types of

energy resources into our already massive power

grid in the United States. One huge problem is

that there is going to be an enormous initial cost

to create all these renewable energy

resources. With only such a small percentage of

renewable power being used today, we would

have to greatly increase the production of these

various types of renewable energy sources. One

example of this, which many people are starting

to implement in their own homes is the use of

solar powered energy. There is a growing market

for the use of solar power as an alternative of

buying electricity from the power companies. As

stated there is a large investment, however once

the system can be implemented it eventually pays

for itself in the amount that the homeowner is

Fig. 3. Projected Timeline of Energy Usage in California [6]

6

saving on their electric bill every month.

According to energyinformative.org, the amount

of time it would take for solar panels to pay for

themselves could range from about 6 to 15 years

depending on which state you live in and the cost

of electricity in your area. The initial cost to

retrofit an average size home can range from

about $10,000 to $20,000 depending on how

many watts the system needs to be capable of

handling. These initial costs will decrease as solar

panels become more affordable due to the

increase in production of solar systems. Once

solar use for residential buildings becomes more

affordable it will become a much more prominent

way of providing energy. Once this happens we

will start to see major changes in how we

generate and supply energy.

Once people start using renewable energy

sources like solar to provide energy there will be

less of a demand on the big power companies

such as PG&E and SMUD, however there is a

foreseeable problem for when we make this big

shift to solar. As of now, most residents who use

solar power are still connected to the main power

grid. This allows them to pull energy from the

grid when it cannot be provided by their solar

panels. It also allows them to feed energy back

into the grid to be used by other consumers of

energy. In a way this acts like a large battery for

people who use solar. With a massive shift over

to solar this will become a problem, because more

and more people will be getting their energy from

solar and wind, which is an energy source that

can fluctuate greatly depending on the

environment it’s in. This becomes a problem

because the users of solar power will have no

place to store their energy generated from the

solar panels. Without any place to store energy it

would be likely that they will run out of power

during peak usage hours and at times when there

is no sunlight. This is where technologies such as

Tesla’s Powerwall would come into

use. According to IER [7] “One of the biggest

problems with electricity from solar and wind

power is that these sources of electricity are not

reliable because of their intermittent nature. [. . .

] Tesla claims that they have overcome much of

these problems with its Powerwall battery”.

Technologies such as this would help solve the

huge problem of intermittent energy supply from

this renewable resources. It is likely that in the

future age of renewable resources technology

such as Tesla’s Powerwall would exist in every

home with them all running of renewable energy

such as wind and solar. These technologies would

also have to be introduced in the commercial

application such as large buildings with high

energy needs. With the incorporation of these

energy storing technologies combined with the

use of solar, wind, and geothermal energy the

U.S. would be able to run completely off of

renewable power once there was a big enough

supply to meet the energy demand.

Another huge shift that will likely happen is the

shift from AC to DC power. It would make sense

that if homes are generating their own power

from solar they would convert over to DC power.

The reason behind this is because AC is only

useful for sending long distances, however with

solar it is on top of the roof so it does not have to

travel far. This would be helpful for many things

since DC power is a more useable power. Almost

everything in our homes use DC power so it

would make sense to switch to DC given the

means. This will actually help with savings in a

lot of ways because we can eliminate power lines

traveling from home to home. In combination

with new battery technologies to keep energy

consistent we could use solar to completely

detach houses from the grid. Overall this would

actually save a lot of money in infrastructure

costs, once the initial cost of solar was paid.

D. Servers and Power Efficiency

Knowing that we have a finite amount of fossil

fuels left to produce energy, we need to

immediately reduce our energy reliance on fossil

fuels. In doing this we should also try and create

technologies that do not rely on fossil fuels at all

if possible. As of 2014 the estimated power data

centers consumed was 70 billion kWh, which

represents about 1.8% of total U.S. electricity

consumption. This is the equivalent of the amount

about 6.4 million American homes used in that

same year [8]. That leads to close to a 4 percent

increase in the total energy consumption from

2010 to 2014, while also being significantly

bigger then the five years before which saw

7

power consumption of data centers grow by about

24 percent [9].With the significant advances that

have been made in power efficiency have played

a role in the slowing growth rate of energy

consumption in data centers. Specifically the

current efficiency improvements have saved

about 620 billion kWh between 2010 and 2020 as

shown in Figure 4 [9]. These improvement are

very good and show that we as a society are

trending in the right direction but it doesn’t paint

the whole picture of how all servers are used. On

the other hand there is still a large amount of

inefficient servers out there being run at small

enterprise IT centers and also in third world

countries across the globe. It is important to

provide incentives for these smaller companies or

enterprises to upgrade their servers.

Simultaneously we can help these smaller

enterprises by showing the ability to incorporate

some of the renewable energies we have

discussed earlier in this paper.

III. DESIGN IDEA

Knowing that we have a finite amount of fossil

fuels left to produce energy, we need to

immediately reduce our energy reliance on fossil

fuels. In doing this we should also try and create

technologies that do not rely on fossil fuels at all

if possible. As previously stated above the

estimated power data centers consumed was 70

billion kWh. While this number does not look

particularly damaging, the use of cloud storage

will proliferate the need for data centers which

will raise the percentage of U.S. electricity

consumption felt by data centers. Without any

advance in the energy efficiency of data centers it

will only increase the reliance on fossil fuels. Our

idea of having a batch processing server that runs

completely off of the power grid will show the

ability to lower the fossil fuel consumption felt by

data centers. While it would be rather difficult to

accomplish a real time data center that is powered

completely off grid, our project can show that

relying solely on fossil fuel energy is not

necessary. Some of the technologies we will be

incorporating into this project are: photovoltaic

arrays, a chemical based storage device, a solar

controller that will efficiently charge the storage

device based off the power of the photovoltaic

array and the current charge in the storage device,

multiple microcontrollers and a high core low

power draw processor. No major data centers are

Fig. 4. Past and Projected Growth Rate of Total U.S. Data Center Energy Use [9]

8

running on power created solely by renewable

energies. The current state of renewable energy

technology is just not capable of powering a

major data center but there are many companies

that begun to incorporate renewable energy into

their data centers. For example, in 2009 Emerson

Network Power installed a 7800 square foot solar

array on the roof of its data center in St. Louis.

Even with this large of a solar array at peak

output it will supply only about 16% of the data

center’s power requirements [10]. A big problem

that arises in using renewable energy to power

data centers, specifically solar and wind, is that

you do not receive stable power and need a

device to store excess power that can be used win

the renewable energy is not at peak performance,

for a large data center this is not an easy task. Our

project is different in this aspect as we will be

running solely on renewable energy created by

the photovoltaic array and chemical based storage

device.

A. Resources Needed

The resources that we forecast a need for in this

project will be divided into two categories. One

category outlines the resources needed for the

renewable energy harvesting, monitoring, storage,

and consumption. The second category will

include the hardware and software aspects of the

data center. The renewable energy resources are

comprised of the solar panel(s), the charge

controller circuit, the microcontroller system, the

chemical based storage, and the voltage regulator.

The solar panel portion of this project is projected

to be rated for around 200W as a single panel or

as an array. The charge controller will require

many circuit elements within the system. These

elements include: transistors, capacitors, a buck

converter, inductors, resistors, diodes, fuses, and

wire (high enough gauge to handle ~20A). The

microcontroller will require a serial cable, current

sensors, and voltage sensors. We will be utilizing

a chemical storage in either 12V or 24V bank

system. Lastly, the renewable energy system will

require a 12V regulator circuit comprised of

circuit elements. The data center side of the

project will require server hardware in order to

run the workload. The server will require a small

DC-DC power supply in order to directly power

the motherboard power inputs. A Gigabyte mini-

computer will be required in order to make a USB

to USB connection to the other microcontroller

that will be managing the power devices. A router

will be required in order to facilitate the

connection between the server and the Gigabyte.

B. Feature Set

1) Solar Array:

Series of solar panels capable of outputting

150 to 200 watts of power for charging the

chemical based storage device.

2) Chemical Based Storage Device:

This storage device will be responsible for

keeping the server running during the hours

of the day when there is not enough

sunlight to run the server off the power

coming from the solar arrays.

3) Server Platform:

The server platform will feature a 4+ core

Intel CPU which will consume anywhere

from 55W-105W of power.

4) Batch Processing:

The server will be continuously calculating

prime numbers, which can be benchmarked

over a 24 hour period to gauge the

performance of the server.

5) Monitoring System Power:

The server will be able to monitor power

production, power consumption, and battery

storage level. These metrics will be used to

calculate the server’s consumption level

using a series of microcontrollers.

6) Display Processed Data:

The server will report the amount of prime

numbers that have been calculated, the

power generated by the solar panel/array,

and power consumed by the server. This

data will be displayed using a small display

screen or a webserver on a small

microcontroller.

7) Future Power Prediction:

This feature will allow the server to take

into account the sunrise and sunset times to

predict future power production.

C. Goal

The goal of the project is to create a small scale

model of a renewable energy datacenter. This is

9

something that has been done in other places but

in a different way. Most datacenters will pull a

constant amount of electricity and then source as

much of the power as possible from renewable

sources. The design that we have described takes

it a step further by using the latest technologies in

renewable energy and changing the consumption

of the server based on power availability. This

ensures that when renewable energy is not able to

fully power a datacenter, the datacenter will

reduce load to remove dependence on

nonrenewable resources. The implementation is

mix of hardware and software solutions to create

something that may not have been done before.

There will still be limitations of the system. The

system is purely dependent on solar power and

only has a finite amount of energy storage, there

is a potential that the system will have to be

turned off for periods of time in order to increase

the total amount of computation done in the long

run. This limitation is being mitigated by

focusing on batch processing and scientific

applications that are not time sensitive. This

project will be a challenge to our individual

abilities and will be a good stepping stone to

potential projects in our future careers.

IV. FUNDING

At the beginning of our project we agreed that

our maximum budget would be $1000. With not

having to buy the server processor and hard drive,

because Taylor had access to both, we thought

this was very feasible. As Table I [11] shows we

expecting to come under our maximum budget by

about $100. With help from Professor Tatro we

were able to use two of the schools solar arrays

which significantly helped cut out cost as seen in

Table II [12].

TABLE I

ESTIMATED BUDGET [11]

 Q Price Sub Total

Buck Converter 1 $25.00 $25.00

Current Sensor 3 $10.00 $30.00

Power Converter 1 $50.00 $50.00

Solar Charge Controller 1 $90.00 $90.00

Solar Arrays 4 $100.00 $400.00

Battery 2 $100.00 $200.00

Misc Elements $100.00 $100.00

 Total $895.00

TABLE II

ACTUAL BUDGET [12]

Description of Part(s) Q Price

Sub

Total

DC-DC Buck Step Down Converter 1 $25.80 $25.80

Module Current Sensor 3 $6.99 $20.97

LCD 2004 Display Module for Arduino 1 $12.99 $12.99

picoPSU-160-XT 12V DC-DC Power

Converter 1 $44.50 $44.50

Dc Universal Regulated Switching
Power Supply 1 $19.99 $19.99

MPPT Tracer2210RN Solar Charge

Controller 1 $93.42 $93.42

12 Gauge Spade Connectors 1 $7.99 $7.99

12 Gauge Wire, 50' Blue 1 $10.95 $10.95

12 Gauge Wire, 50' Red 1 $9.95 $9.95

12 Gauge Wire, 50' Black 1 $9.95 $9.95

MCP3008 10-bit 8 channel ADC 1 $8.17 $8.17

75Amp Hour Deep Cycle Battery 1 $81.99 $81.99

IR2011 Mosfet Driver 5 $18.39 $18.39

Uxcell 8-pin DIP Socket 10 $4.81 $4.81

BNTECHGO Solder Wire 3 $9.98 $9.98

30A range Current Sensor ACS712 2 $8.99 $8.99

15SQ045 Schottky Diode 20 $6.99 $6.99

Magnet Wire 16 AWG 16' Length 1 $6.88 $6.88

Uxcell 36mm Torriod Inductor Core 2 $9.48 $9.48

 Total $412.19

Items Previously purchased Q Price

Sub

Total

Arduino Micro 1 $15.00 $15.00

Raspberry Pi 2 Model B 1 $89.99 $89.99

Misc Circuit Elements $40.00 $40.00

 Total $144.99

Actual Total $557.18

V. PROJECT MILESTONES

To best describe the milestones we have hit for

our project we will be breaking it down by each

task and describe the important accomplishments

that have been achieved.

A. Solar Panel and Regulator

The solar panel and regulator task revolves

inevitably around the Maximum Power Point

Tracking (MPPT) with a solar charge controller.

Completion of this task was critical in order to

accomplish efficient power generation for the

system. To do so, a solar charge controller is

required in order to route maximum power from

the solar panel array safely to the battery storage

system.

The maximum power point tracking circuit

(MPPT circuit) contains a microcontroller which

10

delivers a PWM signal to the circuit. The signal is

then amplified by a MOSFET driver and sent to

the gate of a high side MOSFET circuit. By

adjusting the duty cycle of this PWM signal, the

circuit determines how the voltage is regulated at

the output.

The microcontroller also measures voltage and

current at the solar panel array, into the battery,

and into the load. By utilizing these values, the

microcontroller calculates the power generation,

power consumption, and battery level (utilized to

perform gas gauging). The PV solar panel voltage

measurement it also utilized to calculate the

maximum power point from the solar panel array.

Previously, the system used a Perturb and

Observe algorithm in order to find the maximum

power point. However, the method of finding

maximum power was then replace by Constant

Voltage Method. This method assumes the

maximum power point is located when the

voltage is adjusted to 76% of the open circuit

voltage across the solar panel array. This change

provided a more elegant method, less prone to

error.

Once the solar charge controller was built,

some safety aspects needed to be implemented.

On the software side we have implemented

different charging states based on a few aspects

of the system. When the system sees a battery

voltage attached to the charge controller and the

solar panel is at a high enough voltage to charge

the battery the charge controller will enter is bulk

charging state. This is when the charge controller

is in normal operation charging the battery from

the solar array. If there is no battery voltage the

charger enters sleep mode, which sets a digital

pin low to the mosfet driver causing it to activate

the shutdown mode. This allows no current to

flow through the circuit shutting down all mosfet

switching and the output regulation circuit.

One safety aspect on the hardware side is

implementation of fuses on both the input and the

output of the charge controller. This prevents any

chance for excess current to flow through the

charge controller. The last crucial safety feature

that was implemented was the use of a snubber

diode across our inductor. This was a necessary

feature to reduce voltage spikes from the inductor

as the magnetic field begins to collapse. Before

the implementation of this we were seeing a lot of

voltage spikes that was endangering our mosfets

when switching at high voltages. The voltage

spikes were exceeding our gate to source voltage

of our high side switching fet causing it to burn

out. This safety feature will help alleviate this

issue.

Milestone: Solar Charge Controller

B. Battery Storage System

As stated in the solar panel and regulator

section ‘gas gauging’ is also important to do with

the battery. In regard to the battery we needed to

know how much power could the battery pump

out and for how long. At first we didn’t have the

server hooked up to the battery so we used a 2Ω

resistor, supplied to us by Professor Tatro, as a

load for preliminary tests on the battery.

Simultaneously we started to work on a buck

converter that would supply a steady 12V to the

server, or load in this case, as the server needs a

constant 12V supply. The design of the buck

converter was becoming very laborious so with

permission from our advisor we purchased an

after-market unit and implemented in series with

our boost converter. Lastly, as the title of our

project states we needed devices to be powered

from the battery as well and not by the grid. For

this we used linear voltage regulators that could

step down the 12V to the appropriate voltages of

the individual devices.

Milestone: Gas Gauging of Battery

C. Server Running Batch Processing

The most time consuming activity on this task

was by far designing the server load algorithm.

This encompasses having to deal with the

processors kernel directly to manipulate the

availability of the different cores depending on

our needs. In direct conjunction with that activity

was implementing the load modulation. This

activity is how the previous algorithm will be

implemented on the processor. We could not

complete this step until the load algorithm was

finished. Next was the process wait states which

actually reduce the processors utilization and also

be used in case the server needs to shut down in

the event the battery will not be able to supply it

with power for the time needed. Also we needed

11

to connect the server to the load control server so

that both units could communicate specified

information between each other. We needed the

server to send the amount of prime numbers that

have been calculated to the load control server to

eventually be displayed on the web GUI.

Concurrently the server needed to receive a

specified CPU target utilization from the load

control server based on the estimated battery life.

Milestone: Server Algorithm

D. Monitoring and Control System

The monitoring system was the slowest moving

task we had as it required progress from the other

tasks before being able to implement. The first

activity accomplished was interfacing the load

control server with the Arduino Mega which was

established by using a micro USB to USB cable.

Next was the connection between the server and

the load control server, which was done through a

router using an Ethernet cable. For this we had to

setup a UDP network protocol. We did this in

Python on the load control server and through a

JavaScript on the Server. With those complete

and able to receive data we then developed our

database and web GUI. The database we created

using MySQL while the web GUI was

constructed using JavaScript. Lastly was the

algorithm that was used to send the CPU target

utilization to the server based off the estimated

battery life. This was originally made with the

purpose of being fairly conservative before our

field test, but during testing we found that it

worked quite well and decided to leave as is.

Milestone: Server Utilization Algorithm

VI. WORK BREAKDOWN STRUCTURE

Each of our four sub tasks had a team leader

but none were completed by only that person. The

total hours our team has spent on the project over

both semesters is approximately 1300 hours. This

total includes both the documentation and

implementation of our project so far. These

findings along with the hours spent on each task

by the group and by each member individually

can be found in Table III [13].

12

TABLE III

TASK ASSESSMENT AND HOURS [13]

Feature Total Hours Arik Ryan Taylor Zach

Problem Statement 12.5 3.5 2 2 5

Design Idea Contract 32 8 7 9 8

WBS 13 2 4 3 4

Timeline 7 1 1 4 1

Risk Assessment 15 5 5 3 2

Laboratory Prototype Document 40 8 14 9 9

Problem Statement Revision 10 3 4 3

Design Idea/Timeline Revision 4 4

Device Test Plan 10.5 3 2.5 2 3

Market Review Report/Presentation 20.5 6 6.5 4 4

Test Results 22 10 5 2 5

Feature Set Report/Presentation 22 6 8 4 4

Deployable Prototype Document 55 10 30 5 10

Server Load Algorithm 100 5 95

Power System Controller 20 10 10

Battery Storage System 80 30 50

Solar Panel Setup 20 10 10

Build Prototype Server Hardware 20 15 5

Load Modulation 60 60

Measure & Send Data to Pi 25 12 13

Interface With Solar Charge Controller 20 20

Install/Test Purchased MPPT 8 4 4

Process Wait/Save States 28 28

Get Data From Server 40 20 20

Fine Tune Hardware Power Consumption 15 10 5

Send Power Information to Server 30 25 5

Voltage Regulator & Server Protection 40 25 15

Adjust Power State Based on Data 20 5 5 5 5

Build MPPT Hardware 241 101 140

Code MPPT Software 106 56 10 2 38

Adjust Power State Based on Data 36 30 6

Database & Web GUI 35 5 30

Interface With Solar Charge Controller 35 30 5

Gas Gauging 21 21

Build Component Enclosure 75 70 5

Total Hours 1338.5 398.5 254 312 374

VII. RISK ASSESSMENT

Being as this the first group project, of this size

and magnitude, we have been involved with it can

be difficult to assess the risk of our project. While

it may be a difficult task it is something we

realize that is extremely important for a large

group project. When we talk about risk

assessment we want to identify potential hazards

and analyze what could happen if said hazards

occur and how can you mitigate them [14]. To

identify

13

TABLE IV

RISK ASSESSMENT [15]

P
ro

b
a

b
il

it
y

80-

100%

60-

79%

40-

59%

Server Load

Algorithm

Integrate Power

System

Solar Charge

Controller

20-

39%
Server

Hardware
Process wait/save states

Measuring

Power

Solar Array

Overpower

Adjust Server

Utilization

0-19%
AC-DC Server

Power
Setting up Arduino

Solar Array

Reverse Power

Load Control

Server

Tune Hardware Power

Consumption

Power & Voltage

Reporting

Database &

Web GUI
Reporting Calculations

 Level 1 Level 2 Level 3 Level 4 Level 5

 Impact

these risks we went through our Work

Breakdown Structure (WBS) and discussed the

possible risks that could occur for each activity.

Once we had identified all our possible risks we

used a risk assessment chart, Table IV [15],

which shows the level of the risk versus the level

of impact on the project. With this completed we

were able to identify the critical path of the

project. From there we looked at all the risks and

decide how we could best mitigate them if they

do occur. The risks that present themselves in our

project can be divided into two clearly defined

parts: hardware risks and software risks.

Although the software risks may not have as big

of an impact if they occur, they may occur more

frequently and can cause problems in the

progression of the project. The hardware risks do

seem to have a bigger effect on the project if they

occur and must be mitigated accordingly. In

analyzing the activities of the project, our team is

looking for all the potential risks that may occur

so that we can account for and lessen the effects

if/when something goes wrong.

A. Hardware

Many of the hardware risks are similar in the

fact that they are potentially very high impact if

or when they occur. The biggest and most

important risk that has been identified in the

hardware side is safely controlling and utilizing

the magnitude of electrical power that will be

14

output from the solar panels. This will apply to

and from the battery and into the load (server).

1) Solar Array:

Experimenting with solar panel arrays

presents the risk of electrocution to team

members and unsafe electricity to the

other parts of the system. In this project,

there is a risk that the current or voltage is

more than the wire or other electrical

elements are rated for and thus may cause

damage to the system. There are also

concerns of power going back into the

solar panel during non-sunlight areas.

Both of these risks have a relatively

low percentage of occurring. We guess

20% chance of electrical components

being overpowered and a 5% chance of

reverse power to the solar panels if not

mitigated. The impact of either of these

risks will be 4 on the impact scale.

2) Solar Charge Controller:

By building a solar controller from

scratch, many risks are introduced into the

project that would not be present

otherwise. Again we will have to make

sure that the circuit elements in the charge

controller are matched and rated for the

potential high current and voltage that will

be received from the solar panel array.

Next the circuit will have to protect the

solar panel and chemical storage bank

from many faulty conditions such as

overcurrent, overvoltage, and reverse

power. So in effect, the solar charge

controller is a form of risk mitigation for

the rest of the circuit as a secondary

purpose to its charging efficiency.

Because of the complexity of this circuit,

there is a moderate chance (40%) that the

circuit may not work in a timely matter.

The impact of this risk would be a 5 and

would bottleneck the project if not

mitigated.

3) Measuring Power:

To measure the voltage and current of the

solar panel and chemical storage bank

multiple voltage dividers will have to be

added into the circuit. This is because the

microcontroller input that we will be

using can only take inputs voltages

between 0 and 5 volts. We will run the

risk of damaging the microcontroller or

other parts of the circuit if the circuit is

not built safety and accurately. We rate

the probability of this risk as 10% and an

impact score of 3. A secondary risk that

arises from measuring the power of the

hardware is in incorrectly reading the

voltage and current of the solar panel and

chemical storage device. This could

damage the system or affect the efficiency

of the charging. The probability of this

occurring would be 20% if not mitigated

and impact of 3.

4) Setting up Arduino:

The risk that may occur in setting up the

microcontroller is in the coding. This

could cause the microcontroller to either

read or send measurements inaccurately

throughout the system that differ from the

actual measurement. The percentage for

these risks are relatively low (10% for

both) and have an impact of 2.

5) AC-DC Server Power:

This task involves connecting an AC-DC

power supply to the DC-DC server power

supply so that work can be done on the

server before the renewable energy system

is completed. The risk is a hardware risk

involved around either of the power

supplies not functioning. The approximate

chance of this happening is 5-10% with a

1 on impact scale.

6) Prototype Server Hardware:

This task involves the assembly of a

consumer level computer hardware that

will have similar power and performance

characteristics to the server hardware. The

risk of any component in the system not

functioning is approximately 20% with an

impact of 2.

7) Load Control Server:

The load control server will be the

primary device that will be integrated into

the power management controller and the

server. The primary risk is if the hardware

15

in the controller is faulty, which has an

approximate probability of 5% with an

impact of 1. The other risk is if too much

input voltage is put into the controller.

8) Integrate Power System:

This activity will play an integral part of

our project as it combines the separate

activities of the project into a single,

uniform system. The big risk in this

activity is in making sure that electricity

flows in the way that we anticipate

through analysis and calculation. There is

a high possibility that the parts of the

system do not work correctly when

initially connected. The impact of this risk

could potentially damage components of

the system. The probability of this

occurrence is guessed to be around 40%

with an impact of 4.

B. Software

As stated above and reiterated below the risk

for the software task having to spend more time

on the problem. None of the programming we are

doing has the ability to destroy any of our

hardware.

1) Server Load Algorithm:

This is the primary software development

task and its risk is inherently different

from a hardware risk. The risk of

underestimating the completion time is

50% because the estimate is only

approximated and additional risks will be

discovered throughout development. The

impact level is a 3. Software development

is an iterative process of software failure

and debugging. Risk cannot be viewed as

a pass and fail, but rather a fail then after

time a pass.

2) Power & Voltage Reporting:

The risk in this is the Arduino measuring

the current or voltage incorrectly, or

calculating the power incorrectly. Either

of these scenarios would lead to the load

control server receiving incorrect data

which would affect the reporting to the

database and web GUI. The bigger issue

would be that our server utilization level

is based on the output voltage of the

battery at a known state which is very

important to our models self-

sustainability. The risk of failure of

sending incorrect data to the load control

server for web GUI reporting is fairly low,

approximately 10%. The impact is a 4

because if the data is incorrect it would

have a big negative affect on our projects

self-sustainability.

3) Tune Hardware Power Consumption:

This task will be done once the load

algorithm and the hardware is built. The

hardware itself will be adjusted in order to

increase and decrease power consumption.

The processor can be switched out to a

lower power variant and the clock can be

adjusted to reduce power consumption. If

the system crashes after or during the

process of fine tuning the hardware, the

operating system can crash and in turn

lead to the corruption of the operating

system. This is a low likelihood of 5%

with an impact of 2.

4) Process Wait/Save States:

This will allow the software to pause its

state mid-way through calculation so that

the server can reduce power consumption

to its idle power state. The save state is

slightly more risky because there is a risk

of data loss throughout shutdown and

reboot. This task also involved to

connection of a relay to the power

connectors on the motherboard. There is a

potential that either the relay will break or

the motherboard will function, but the risk

of this happening is approximately 20%

with a level 2 impact.

5) Reporting Calculations:

This activity is purely software and as

such its risk is sensitive to time, not

hardware or cost. I approximate that the

activity will be not be completed in the

budgeted amount of time to be 10%. The

impact of not being able to report our

calculations is a 2. It is important and in

our feature set but will be worked on early

in the project which will allow plenty of

time for trouble shooting.

6) Adjust Server Utilization:

16

This activity is part of the critical path

because it involved every measurement

device in our project to be reporting to the

load control server. It also requires the

server’s power consumption to be

properly modulated. The step is purely

dependent on software, but the risk of the

task taking longer than anticipated is

likely because the amount of software that

this step is dependent upon. I rate the

probability of failure 35% with an impact

of 4.

7) Database & Web GUI:

The database and web GUI will be how

we are displaying all pertinent information

for testing and future analysis. This task is

not on our feature set so if proven to be

too difficult we can always scrape it. We

see the probability of to be low at 15%

with an impact of 1.

C. Mitigation

Though we have identified the risks involved in

each part of the project, there are many things we

can do to mitigate or lessen the effects of the risks

to the system. We have taken an engineering

approach to mitigating the risks that arise in the

project by choosing the best course of action to

each risk.

1) Solar Array:

In order to minimize the probability of

overpowering circuit elements in our

system we will have at least 2 people

checking and calculating that connections

made in the system are accurate and that

elements are rated for the current and

voltage that they will potentially

encounter. In this way, we do not lessen

the impact of the risk, but the probability

of the risk occurrence. The second risk,

reverse power to the solar panel array

during non-sunlight hours, will be

mitigated through the use of the solar

panel controller. This will be done using

diodes. Again by doing this, we lessen the

probability of the risk occurring.

2) Solar Charge Controller:

The solar charge controller presents a high

percentage, high impact risk to the project

and also presents itself as a bottleneck.

Because of this, we choose to temporarily

substitute a purchased MPPT charge

controller into the system for the first

semester while we build a MPPT charge

controller from scratch for our deployable

prototype. This will allow us to spend

extra time and care in assembling the rest

of the circuit and significantly lowers the

probability of faults in our electrical

system. In accurately creating a MPPT

charge controller, we take an iterative

approach in building the circuit. First we

will test each part of the circuit

individually to ensure that the elements

are working as specified and to learn

about the characteristics of the elements in

given conditions. We will then test the

assembled circuit with reference voltages

and currents to double check the behavior

of the circuit. Then we will be able to

implement the build MPPT charge

controller into the system with a lower

chance of risk to the rest of the project

components. Lastly, at least two members

of the team will be looking over any

iteration of the circuit to ensure accurate

and safely connected circuitry.

3) Measuring Power:

The mitigation of this risk is approached

in a similar fashion as that of the solar

charge controller above. The wiring of the

voltage divider circuits will be first tested

in a controlled circuit before being

implemented with the solar panel array.

The connections will also be double

checked by Arik and Zach.

4) Setting up Arduino:

Setting up the microcontroller will require

that hardware and software risks be

addressed. The hardware circuitry will be

double checked by Arik and Zach and the

software will be double checked by

Taylor and Ryan. This will ensure that the

hardware connections are accurate and the

analyzation of the measurements are

accurately represented.

5) AC-DC Server Power:

17

The mitigation plan is to immediately

order a new power supply to replace the

broken one and return the broken power

supply. Which would delay this task for 2

days. Temporarily we could also use the

adjustable power supplies on campus.

6) Prototype Server Hardware:

If a component is broken the mitigation

plan is to replace the component. A

broken component in the system is easily

replaceable because of the fact that the

system is based on consumer hardware

and can be replaced the same day for free

because of the high availability of

resources. The other mitigation is to build

the operating system in a virtual machine

where the software can be built, instead of

relying on physical hardware. This

alternate mitigation will be more work

later because the software will have to be

migrated to physical hardware.

7) Load Control Server:

If the hardware is faulty, then two other

identical controllers can be sourced from

the team the same day. The software on

the controller will be saved on an external

device at regular intervals for backup

purposes. This will insure minimal down

time if the load control server was to be

deemed faulty.

8) Integrate Power System:

Integrating the whole system together will

be an iterative process to make sure that

the project works correctly. This will

lessen the probability of risks occurring.

We will do this be connecting only two

parts of the system together at a time to

ensure that they work together correctly.

We will then add one additional part at a

time to the system and test. This will we

lessen the impact of risk to the whole

system by only imposing part of the

system at a time.

9) Server Load Algorithm:

This is a core step to the project and load

modulation cannot be added to a piece of

software that is not built from the ground

up for this purpose. There is no third party

software that can be temporarily used in

place of this activity.

10) Power & Voltage Reporting:

If the power measurement device fails the

mitigation is to order another one, which

would delay progress for 2 days. There is

also a small risk of putting too much

voltage into the controller, approximately

2%. If this happens, the SD card from the

controller can be moved to another

identical controller on hand. The team has

approximately 3 identical controllers at a

cost of $30 apiece.

11) Tune Hardware Power Consumption:

To reduce risk in this process, the storage

of the machine will be duplicated, so that

if the OS crashes throughout the process,

it can be quickly and easily restored to its

previous software state. If the OS is

crashed, the mitigation would only take up

to 2 hours to restore to a known good

state. There is also a very low risk of

breaking the motherboard or processor in

the process, 5%. If this happens, the

mitigation is to get new hardware to

replace the broken hardware. This can be

done in as shortly as the following day.

12) Process Wait/Save States:

The mitigation if the hardware fails is to

retrieve the identical hardware so that the

software state will not have to change.

The other mitigation is to operate within a

virtual machine then we will be able to

simulate every one of the events before

testing on the physical hardware.

13) Reporting Calculations:

If this task falls behind schedule other

individuals with particular knowledge in

networking software can be involved to

give insight into the task and accelerate its

progress. This will be a critical path

because this task needs to be completed

for the product to hit our feature set. This

activity will be watched closely for its

progress.

14) Adjust Server Utilization:

This step of the software development

needed to be watched closely. It was

extremely vital to the project that the load

18

control server receive correct data of the

output battery voltage in order to decide

the target utilization for the server.

15) Database & Web GUI:

Since this step is neither critical to the

project nor apart of the feature set if we

come across to many problems we will

just stop trying to implement it. We do not

for see this to be a problem as Taylor has

extensive knowledge in these two areas.

VIII. DESIGN DOCUMENTATION

To give the proper detail of how we designed

our project we are going to break it up with

sections corresponding to major sub tasks. All

diagrams referenced too can be found in either

the Hardware or Software appendices.

A. PV System

For our Solar Array we needed to choose a

panel that would meet our power needs. The

panel, shown in Figure 6 [16], must be able to

provide enough power to run our server and have

enough extra energy to charge the battery during

the daytime. Since our server uses about 50W

when it is running at full power during the day,

that means we needed an excess of that in order

for our system to function properly. We ended up

choosing a 100W panel with an open circuit

voltage of 22.4V and a short circuit current of 5A.

The panel, even though rated for 100W does

not realistically give us 100W in real scenarios.

We were looking more in the range of about 60W

to 70W depending on the weather. This meant

that we were still able to charge our battery while

running the server even at times when the server

needs to run at full power. This panel was

sufficient to provide power to our server, load

control server, router, and microcontroller while

still being able to charge our battery to a full

charge for the night use.

B. Voltage Regulation

Voltage regulation is an important part of this

project. We have four devices that needed to be

powered by a regulated voltage and not all by the

same amount of voltage. To power the Arduino

we needed to regulate the battery voltage to about

8V. To do this we used a voltage regulating chip

called LM317. This chip allows us to take the

battery voltage and regulate it to a voltage that is

safe for the Arduino to use. It uses a feedback

resistor to adjust the amount of voltage that is

then outputted by the chip. This same chip and

feedback resistor setup is also used to power the

Gigabyte and network router. Once we were able

to provide power to our microcontroller,

Gigabyte, and router, we needed to provide a

steady stable 12V DC for the server to run on. To

do this we used a boost buck circuit. We

originally had planned on using a buck converter

to regulate the voltage from the battery as seen in

Figure 5 [17]. After lab testing we encountered a

problem of losing about one volt across the buck

converter. This meant that there would be no way

to get 12V to the server if the battery was not

outputting at least 13V. To alleviate this problem

Fig. 6. Solar Array [16]

Fig. 5. Buck Experiment [17]

19

we connected a boost converter in series with the

buck, which can be seen in Figure 7 [18]. The

boost converter would boost the incoming voltage

up to 18.5V which we then used the buck

converter to regulate the voltage back down to a

solid 12V.

C. Solar Charge Controller

The solar charge controller was the most

difficult part of the design process on the

hardware side. We needed to create a circuit that

was able to output a regulated voltage for the

battery from a range of about 12V to 13.5V and

also was able to impedance match the solar panel

to achieve maximum power point. The solution

we came up with for this charge controller was

using a DC to DC buck converter to step down

the voltage of the panel to meet the voltage

requirements to charge the battery. We used a

microcontroller to control this buck converter

with a PWM signal into a high side switching

Nfet. This allows us to change the output voltage

by adjusting the duty cycle of our PWM signal.

As the duty cycle increases, the impedance of the

circuit will decrease as well as the output voltage

will increase. This allows us to actively track

maximum power point using our microcontroller

while keeping the charging voltage from the

circuit in a safe range to charge our battery. When

choosing the parts for our buck converter there

were some specific formulas that we followed to

size our inductor and capacitors accordingly.

𝑉𝑖𝑛 = 24𝑉

𝐼𝑜𝑢𝑡 ≈ 6𝐴 ∗ 2 = 12𝐴

𝑆𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝐹𝑟𝑒𝑞 = 50𝑘𝐻𝑧

𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= 50%

𝐷𝐿 ≈ 4.2𝐴

𝐿 = (𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡) ∗ 𝐷 ∗
1

𝐹𝑠
∗

1

𝐷𝐿
= 2.9 ∗ 10−5𝐻

𝐶 =
𝐷𝐿

8(𝐹𝑠 ∗ 20𝑚𝑉)
= 525 ∗ 10−3𝐹

Once we had the right sized inductor and

capacitor we needed to find a diode that would

work for our circuit. We found out that we

needed a fast switching Schottky diode that

would also be able to handle the current we could

potentially put through the diode. We ended up

choosing the 15SQ045 Schottky diodes to meet

these requirements. Through some initial testing

we realized that our inductor capacitor

combination that we chose did not allow our

circuit to have a big enough impedance swing

when adjusting the duty cycle which therefore

meant it was not able to achieve maximum power

point from the solar panel. We had to redesign

our circuit. We ended up going with a much

larger inductor and capacitor combination, the

inductor being 248𝜇H and the capacitor of 880uF.

Once we implemented this change we were then

able to get the voltage swing and impedance

swing we needed to be able to achieve maximum

power point from our panel while being at a safe

output voltage for our battery to charge at.

D. Measurement Controller

The measurement controller we designed was

actually built into our solar charge controller

since most of the measurements could be taken

from the solar charge controller. This

measurement controller consisted of various

voltage and current measurements in order for our

microcontroller to both send data to the load

control server and to regulate the PWM duty

cycle for the solar charge controller. The

measurement controller consists of three voltage

dividers to get the voltage from the panel, the

battery, and the load. We then had three current

sensors measuring current from the panel, into the

Fig. 7. Buck and Boost Circuit [18]

20

battery, and feeding the load. With the

combination of both the current and voltage

measurements the measurement controller is able

to calculate the power provided by the solar array,

and the power used by the load. This allows us to

see that our system is actually achieving

maximum power point. It also allows us to find

the battery life that is left in the battery in order

for the load control server to regulate the server

utilization. This will be discussed more in the

next section. The measurement controller is a

crucial controller in our system because without it

nothing will work correctly. It was a fairly simple

design due to the fact it consists of current

sensors and voltage dividers, but proved to take

more time than first anticipated due to

programming and tuning all of the sensors.

E. Load Control Server

The premise of the project pivots around the

load control server, and is ultimately

implemented in its software. The load control

server is in charge of dictating what the CPU

utilization of the server should be, along with

running a database and web GUI. We use the

database to store pertinent data for future analysis

of the efficiency of the product. The web GUI is

being used as a tool to display real time data of

power production and consumption, calculated

primes numbers, and estimated battery life. The

load control server has four threads that run on its

Linux CentOS; a main thread and three child

processes. The main thread is where we spawn

our three child threads as well as open a UDP

socket for receiving data from the server. A flow

diagram for the load control server can be found

in Appendix C.

The first of the three child processes controls

the updating of the server utilization. When the

thread is created the function updateServer is

called. This function waits for thirty seconds then

calls another function idleServer, which will tell

the server through the UDP connection to idle

down to zero CPU utilization. For estimating our

battery life we decided that best way to

accomplish this was to measure the output

voltage of the battery at a known load. The idea

being that if you are checking the voltage at a

constant load you should get a good estimation of

the battery life. After the load control server has

told the server to idle down it waits three seconds

before calling monitorBattery which takes the

latest battery output voltage measured and

decides, by a series of if/else statements, what the

new server utilization should be. With both the

monitorBattery and idleServer dunctions

complete, updateServer will now send the new

CPU utilization through the UDP connection and

start all over.

The second child process controls the sending

data to the database by calling the function

sendData. This function connects to the MySQL

database and pushes the newest collected data to

it. What we hold in the database is the power

produced by the solar arrays, power consumed by

the server, battery output voltage, CPU target

utilization, and the calculated number of primes.

The function then sends all the same data to the

web GUI, sleeps for ten seconds, and starts all

over again.

The final child process controls the serial

connection with the Arduino microprocessor. The

thread starts and calls the function updateSerial

which proceeds to open the USB serial port and

listen for incoming traffic. We utilize the

imported function readline which is a blocking

call, meaning the rest of the code will not run

until the readline function has received new data.

After receiving the data we save it to our global

variables that are used in other threads.

F. Database and Web GUI

The database and web GUI are modeled after

the primary way that server administrators

monitor their systems. Servers are managed

almost entirely remotely and the system that we

have designed allows this. The load servers gets

the current power data from the power controller

and logs it into the database. The front end of the

web GUI is designed in JavaScript and jQuery to

allow asynchronous database transactions with

the server. Every ten seconds the front end

JavaScript runs a PHP callback script that queries

that database for the latest power data. The power

data is returned as an XML file to the JavaScript

program. The different graphs then index into the

XML file in order to get their appropriate values.

21

 There are a total of four graphs on the web GUI:

power generated, power consumed, battery

voltage, and prime numbers generated. Each of

the four graphs scales automatically so that as the

numbers increase, the graphs can continue to be

scaled relevantly. The JavaScript has been written

in such a way that it can be tuned for graphing

over a much longer period of time if needed.

The database logs the power information and

power targets with timestamps to allow for

further power analysis and optimizations. For

ease of development and compatibility with the

reset of the system Mariadb we utilized.

G. Server

The largest pieces of software exist on the

server. The server is running CentOS 7. This is

important because unlike the other two

controllers, this operating system is preemptive.

This means that if a process is in a wait state, the

operating system can take a hardware thread

away from the process and give it to a higher

demanding process. Every piece of code is

integrated into the same process, either through

the use of sub processes or threads. This is done

so that the entire system can easily be throttled in

order to tune power consumption. There will be a

total of four threads of execution. Flow diagrams

for the four different threads can be found in

Appendix C.

The first thread will handle calling a kernel

module for limiting the processor utilization of a

given PID (Process Identification Number).

Calling the kernel module directly keeps the

operating system from applying a nice value to

the process, this then bypasses the scheduling

algorithm. This is required to fine tune the

utilization of the process. The limiting of CPU

utilization will automatically reduce the voltage

and frequency of the processor through the

utilization of Intel SpeedStep technology. This

technology will reduce the processors TDP any

split second that the processor is not utilized

through the modulation of the onboard VRMs

(Voltage Regulation Module). In order to fully

reduce the voltage and power draw, the frequency

of the processor is reduced. CMOS physics

dictates that a transistor fall and rise time is

dependent on the square root of the voltage. Thus,

by reducing the frequency, we are able to reduce

the voltage exponentially. Thus, reducing the

power draw drastically. The CPU can make these

frequency adjustments as fast as 35ms. Further

work will be done so that the kernel module

creates time splices that are optimized for Intel

SpeedStep Technology.

The second thread of execution on the server is

the most complex. In order to keep the simplicity

across the network APIs, and the controllers, we

used Python. Python is not a very fast language.

In order to get the simplicity of integration of

Python and the speed of C, Cython was used.

Cython allows a programmer to write cross

language bindings from Python to C. The second

thread of execution leveraged Cython to

implement the sieve of Eratosthenes. This

algorithm is one of the fastest in existence for

calculating prime numbers. The worst-case time

complexity of the algorithm is

O(n(logn)(loglogn). This allows the algorithm to

scale very well with large numbers. In the

calculation of billions of digits, memory space is

also important, the algorithm uses only O(logn)

memory space. Designing a good way to

benchmark the system had to be unique. It is not

possible to record every prime number because

over the course of hours, it would make 10s of

terabytes to store. Thus, the simplest way to

prove that the calculations are happening is to

record the number of prime numbers of the total

number of iterated numbers. The fastest known C

implementation of the sieve of Eratosthenes was

imported into the source code using a git module,

to keep on sync with our source code

management system. In order to call this code,

the Python bindings had to be written and is

included in the Appendix C. This allowed us to

focus on power management and integration with

the other controllers. The method that was used is

to calculate the prime numbers in a range, then

reevaluate all other variables and report back to

the master controller. The load algorithm is fairly

simple now that it has been abstracted away from

the sieve of Eratosthenes. This process will take

all available threads of execution from the

processor, taking up to 100% of the CPU

utilization. Every other process that runs on the

22

machine besides this process, is considered

overhead.

The third thread of execution is the thread to

receive data from the load control server. The

thread will be locked until it is triggered by a

network event on the receiving port. The only

thing that the system will receive is the desired

CPU utilization. As stated on the previous block

diagram, the first thread of execution waits for a

receive signal from the master controller. This

thread handles that process.

The fourth and final thread of execution is to

update the load control server with the most

updated prime number information. It will be

locked until the second thread (load algorithm)

sets a flag that it has outputted updated

information. The process will then be sending a

UDP packet to the master controller and wait for

acknowledgement, then return to a locked state.

Returning to a locked state ensures that the CPU

cannot be taken away from the load algorithm,

and less switching allows higher overall

utilization.

By having a separate thread for sending and

receiving it allows the software to be full duplex,

which means to be able to send and receive

simultaneously.

IX. PROTOTYPE STATUS

To best clarify the status of our prototype we

split the product into two sections, hardware and

software. In these sections we will discuss the test

results we received along with the final

implementations we chose based off the testing.

A. Hardware

In the hardware side of the system most of the

work revolved around the solar charge controller

and getting it to correctly regulate the voltage of

the panel using the DC to DC buck converter

configuration. With many redesigns of our system

we were finally able to get the prototype working

in the lab off of a regulated lab power supply. It

correctly will convert the input DC voltage

anywhere from 14 to 22 volts, which is what we

are seeing from our solar array, down to the

regulated voltage for the battery. Unfortunately

we were having a lot of trouble with inductive

voltage spiking. In the current configuration

which can be seen in Figure 10 [19] the large

inductor in the circuit caused large inductive

spiking. This was causing a high voltage to be

seen at the source of our high side switching n

type mosfet. If this spiking exceeded 20V then it

could potentially exceed our gate to source

voltage limit of 20V. This would in turn damage

our mosfet which is what we kept seeing on the

solar panel. At first we suspected overheating

however when we upgraded the heat sync and

tried the circuit again we quickly realized that

heating was not the cause of our problem. After a

lot of trial and error we realized our problem

could be solved by introducing a snubber diode in

the configuration that can be seen in Figure 9

[20]. Through the use of PSpice we simulated

both the first configuration and the configuration

with the snubber diode to see if it would alleviate

our problem. The simulations can be seen below

in Figure 11 [21]. From the first graph you can

see large voltage spikes in excess of 25V. This is

the simulation before the snubber diode was in

place. The following Figure 8 [22] shows the

Fig. 8. Original Charge Controller Circuit [19]

Fig. 9. Snubber Charge Controller Circuit [20]

23

simulation with the snubber diode. The

simulations suggest that the snubber diode both

cleaned up the signal immensely at the source of

our high side switching mosfet and reduced

voltage spiking to under 10V which is well within

the safe region of the IRZ44N mosfets we were

using. Due to lack of time we were unable to

implement this solution into our charge

controller, however through the research and

simulations we have done we are confident that

this would fix the problem with our circuit and

would allow us to implement it into our system.

At this time all other hardware has been

completed and is fully functional. We have

enclosed everything into a 3D printed case that

can be viewed in Figure 12 [23]. With this case

we have implemented two 120mm fans in order

to provide adequate cooling to our mosfets in our

solar charge controller. These fans run off of a

LM317 linear regulator circuit. Also we used an

LM317 to power our router for the load control

server and the load server to be able to

communicate. The circuit layout for those can be

seen in Appendix B. All of the hardware was able

to reside inside of our 3D printed case, including

our two fans, solar charge controller,

measurement controller, and the boost buck

configuration that we used to regulate the load

voltage. This allows us to have an easy system to

set up with quick connects on the case for outputs

to the load server, load control server, router,

battery, and the panel input. The fully assembled

hardware system can be seen in Figure 13 [24].
Overall the hardware is complete with the

exception of the fix to our solar charge

controller. If time had allowed we believe that the

implementation of the snubber diode into the

circuit would have alleviated our voltage spike

issue and allowed the circuit to perform as

expected.

B. Software

The performance characteristics for the sieve of

Eratosthenes on the Intel i7-4790 to find all the

prime numbers in the first billion digits seen in

Table V [25]. When target

Fig. 10. PSPICE Sim Original Charge Controller

[21]

Fig. 13. PSPICE Sim Snubber Charge Controller

[22]

Fig. 11. 3D Model Case for Components [23]

Fig. 12. Actual Component Case [24]

24

TABLE V

LOAD ALGORITHM PERFORMANCE DATA [25]

Target Utilization CPU TDP Time

100% 78W 82s

80% 63W 131s

60% 50W 286s

40% 38W 503s

20% 25W 983s

utilization is 100%, the software will always

perform significantly faster because the operating

system can avoid the cost of context switches and

overhead involved with throttling the CPU.

A big part of what the load control server does

is interface with other units. For this aspect there

isn’t really a test in particular, instead we coded

try and except blocks into our python code

around all connection interfaces. For instance, if

there is an issue with the network connection

between the load control server and the server

then the ‘except’ block will catch this and try to

make the UDP connection again. The main

purpose of the load control server is to base the

server CPU utilization off of the estimated battery

charge level. This algorithm, which is a series of

if/else statements that chose a CPU target based

off output voltage of the battery, is very much

testable. To test this we created a test bench

program, on an Arduino, that creates different

float values and serially sends the data to the

Gigabyte. We then printed the input voltage data

and the corresponding CPU target value. Table

VI [26] shows that our actual CPU target value

matches our expected value.

TABLE VI

LOAD SERVER TEST RESULTS [26]

Vout

CPU Target

Seen Expected

12.31 100 100

12.26 90 90

12.21 90 90

12.16 80 80

12.11 70 70

12.06 60 60

12.01 50 50

11.96 40 40

11.91 30 30

11.86 20 20

11.81 10 10

11.76 0 0

11.71 0 0

X. MARKET FORECAST

While trying to solve a societal problem is a

very noble cause, you will not get very far if you

do not have a clearly defined market. During our

market research there two different clients that we

believe we could successfully market our product

too; green conscience small enterprises and

businesses, schools, or governments of

developing countries. In doing the research we

wanted to find similar projects like one done by a

group at University of California, Berkeley that is

similar but larger in scale. Lastly we looked at the

opportunities in the market currently for

renewable energies, specifically photovoltaic

(PV) and possible challenges in integrating into

existing markets.

While the prototype for our project uses solar

energy as our renewable energy we do not believe

we have to limit ourselves to only using that. Our

true desire is that each potential customer could

tailor the product to work with the renewable

energy that best fits their needs. Moreover we

would like to educate our customers that it is not

just about limiting yourself to a certain renewable

energy source or even just one renewable energy

source. In other words to achieve a truly power

efficient data center you should try to incorporate

25

multiple forms of renewable energy. With this in

mind we have a price point of about $200 per

server, in the customer’s setup that we believe we

can easily achieve. This price point is if the

costumer utilizes a solar array setup like our

prototype.

A. Green Conscience Enterprises

We specify green conscience because in

developed countries power is so easily and

readily available that most small enterprises will

want to go with what is easiest for them, which

would be to plug their servers or computers

straight into the power grid. Another issue in

trying to market to small enterprises is their

desire to limit upfront cost. While we believe our

product will save companies money in the long

run there is an upfront cost that would make it

harder to convince smaller or startup companies

that it is worth the investment. However, with

green conscience companies they will be looking

specifically for ways that will allow them to have

a small carbon footprint like not using power

from the grid. While so far this sounds like

limiting ourselves to a small and to specific

market, we believe that with the publicity of

recent global companies (Apple, Google, and

Amazon) to move toward a more renewable

energy model for their data centers, this will lead

to small or startup companies wanting to begin

with a more green conscience approach to their

energy usage.

B. Developing Countries

The other client we believe that truly fits with

the goal of the senior design project of tackling a

societal problem is businesses, schools, and

government entities in developing countries.

Understanding that catering to this market group

will most likely not bring with it vast financial

gains, we believe our product can help boost

these economies. Stable and reliable power, like

we have in the U.S., is not a fixture in most

developing countries. Consequently there is not

the push back from people saying renewable

energies are not a reliable enough power source

as their current options are not any more stable or

reliable. In some places, like east/north Africa or

west Asia, Sun and wind are in a particularly high

abundance and can benefit from the use of

renewable energies greater then we can here in

the U.S. [27]. In addition countries like Costa

Rica already produce most of their power off of

renewable resources [28]. Tailoring or efforts two

these to markets we believe that we can help

solve our defined societal problem while also

having a profitable business model.

C. Similar Projects

There are many corporations that are now

operating completely on renewable energy. This

is either through the direct acquisition of

renewable energy devices, or through PPAs

(power purchase agreements). A PPA is a

contract with a company that generates electricity

purely off of renewable energy sources. All the

power generated by these sources is allocated to

the company, even though they are not directly

attached. Companies like Apple and Google have

large teams in their datacenters dedicated to

improving the efficiency and environmental

sustainability of their datacenters. There are

currently many research projects that focus on

adapting this large scale model to other

companies. A research group in the Department

of Computer Science at Rutgers University has

developed what they claim as a renewable energy

powered data center. The goal of this research

project was to further explore the potential of

using renewable energy to reduce the carbon

footprint of data centers [29]. They have

developed a solar powered data center called

Parasol. This has been built for research purposes

to study co-location and self-generation. Parasol

is small datacenter housing 2 racks of servers and

network equipment. To power this data center

they are using 16 solar panels which can produce

up to 3.2kW AC. This project is similar to the

Renewable Energy Server Model but one key

component that differs between our renewable

energy model and the Parasol model is that

Parasol are converting the DC power from the

panels to AC to be used by the power supplies on

the servers. In our renewable energy model it is

strictly DC power throughout the whole system.

The server uses a DC to DC power supply so that

it can be powered without the need for

conversions. This allows our system to be more

efficient because there are always losses when

26

converting the power from DC to AC and back to

DC. The way our project handles the power

distribution of the system is unique in a way that

there is no need for AC power in our system.

D. Opportunities

There are many opportunities for the

integration of our product into the global market.

As the price of solar panel installation drops, we

see a continuing trend for PV installation.

Globally, PV capacity is projected to grow in the

coming decades and is expected to be more than

450 GW by 2020 [30]. The USA alone broke

records in quarter three of 2016 for PV

installations. Among U.S. states, California

continues to lead the solar market due to the

abundant solar energy and supportive solar

policies. In it, nearly 57% of new PV installations

in 2015 were in the utility. Extrapolation of this

data shows that there is a growing market in

which our product fits in the U.S. and especially

in the state of California. The timing of our

product will fall during a timeframe in which the

cost of utility-scale solar photovoltaics is falling.

According to [31], by 2020 the goal price of

electricity will be around 6 cents per kWh. This is

down from referenced 21.4 cents per kWh in

2010 as shown in Figure 14 [31]. We placing the

product with favorable timing, we aim to take

advantage of the opportunities of lower projected

PV costs and increase demand of photovoltaics.

Fig. 14. Falling Price of Utility-Scale Solar Photovoltaic Projects [31]

27

E. Integration Challenges

Challenges that this product faces when

entering the market come two-fold. The first

challenge that we face is the reliability of the

system with respect to time. This represents

variable performance when the system is placed

in changing location, events, weather, and/or

seasons. Scenarios such as systems located in

darker latitudes would be challenging and less

effective than ones in sunnier regions. Thus, a

larger system may be required in order to

stabilize the reliability and only to a certain

extent. The reality is there will be times in which

solar will not be sufficient source of power alone

and until technology advances, may only be

supplementary to conventional power.

The second of the two challenges in which our

product will be met is a lack in large-scale (utility

scale) storage. With a varying degree of energy

from photovoltaics, there is a need for more

efficient or at least larger capacity energy storage.

A standalone system will depend more heavily on

energy storage when irradiance is less available.

However, emerging technologies such as Tesla

Powerwall and Powerpack (commercial and

utility) shows promising innovation for the future

of energy storage [32].
F. Final Forecast

There is a very large amount of resources

dedicated towards research in renewable energy

sources every year. The charter of this project is

to adapt workloads that are not typically

adaptable to renewable energy sources. The

project does this through the use of efficient

hardware and software that controls the efficiency

and power consumption of a device that was not

typically controllable. The technologies that we

have begun to develop are a couple of years

ahead of their time, and will become more and

more important, the cheaper that PV electricity

generation becomes.

The target consumer for this project is the

company that does not have teams large enough

to create a renewable energy datacenter on their

own. Developing countries provide greater

opportunity than any other region. In developing

countries, the power grid may not be particularly

mature, and as it develops it can be developed

with renewable energy in mind. PV electricity

generation is economical in these regions because

it is one of the cheapest sources of electricity. The

TAM (total available market) for renewable

energy management technology will be rapidly

growing in the coming decade.

In order to develop a larger MSS (market share

segment) in renewable energy data centers, the

unique properties of this solution must be

demonstrated. Project Parasol has many similar

properties to the project, but the biggest

differentiating factors revolve around the fact that

this project purely uses DC, and the power

consumption on this project’s servers can be

modulated. Broader society's dependence on

renewable energy is rapidly increasing as the

years go by. This project must evolve over the

years to adapt to future technologies that are very

quickly being developed. A large part of

marketing is developing clear use cases of the

product. The pace of innovation with renewable

energy is fast, and we must demonstrate the value

of our product.

There are many challenges to implementing our

product. The current TAM for this product is

limited but it will grow with time as solar panels

become more cost effective and efficient. The

fastest way to grow the MSS in the TAM is by

keeping the ASP (average selling price) down,

and justify the cost of the product by focusing on

the ROI (return on investment) of this product.

XI. CONCLUSION

With a significant portion of the world’s energy

demands still being met by a dwindling and finite

resource of fossil fuels, it is on us as engineers to

be proactive in finding solutions to this issue.

Since there are many things that need power to

run, as a group our senior design team wanted to

narrow the scope from the broad issue into

something we could really tackle. With the influx

of cloud computing and more device having

internet connectivity, the datacenter was a good

area to focus our attention. Large server farms

take up vast amounts of energy and are essential

to the world we live in today. Our first idea was

to supplement the energy consumption of

datacenters with renewable energy. This process

has already been started by major companies

28

around the world like, Apple, Google, Facebook,

and Amazon. Looking farther into the future just

supplementing dome of the energy demands with

renewable energies is not enough. We as a group

needed to think bigger, which lead us to the idea

of a fully self-sustaining renewable energy server

model. Our idea was to have a series of solar

panels in conjunction with a chemical storage

device charge a server running batch processing

for a twenty four hour period. To accomplish this

we wanted to measure power production and

consumption along with estimated battery life.

These measurements were essential for the

feature of self-sustaining. This was done by

automatically changing the CPU utilization of the

server to match the estimated life of the battery.

With the design idea laid out budget realistic for

our project to be able to achieve the features that

we set for our system. We easily came in under

budget because we were allowed to use solar

arrays that belonged to the school. After this we

broke down the workload into different sections

for team members to tackle based on their skill

set. This allowed us to tackle our design in the

most efficient manner utilizing the different

strengths of our team members. Zach and Arik

were responsible for the hardware side consisting

of voltage regulation of all powered components,

proper and safe charging of the battery, and the

measuring of power production & consumption,

and estimated battery life. Taylor and Ryan were

in charge of the software consisting of batch

processing run by the server, CPU utilization

control, and displaying of important data.

The hardware for this project was responsible

for providing power to the server by only using

solar energy from our solar panels. To do this we

had to create a way to efficiently get the

maximum power out of the panels to the server

and a way to efficiently store energy for when the

solar panels are unable to provide energy to the

server. To get the maximum power out of our

solar panels we set out to design a maximum

power point tracking circuit to adjust the voltage

of the panel in order to get the maximum power.

This changing of voltages allows us to manipulate

the current flowing from the panels into the

battery and the connected devices. We then used

an Arduino Nano to measure these voltages and

currents to see what the power in and power out

is over the max power point circuit. This allows

us to see how much power the panels are

providing and how much power the load will

consume. These measurements are vital because

the server needs to know how much power it has

to utilize from the panels in order to correctly

adjust the load it puts on the system. Also to

make this system fully self-contained we needed

to power our Arduino microcontroller and our

Gigabyte off of our energy storage device, which

in our case was a 12V deep cycle battery. To do

this we used the LM317 voltage regulating circuit

to bring the voltage down to an appropriate level

that connected device could handle. Having these

devices all powered by energy collected from the

solar panel allows us to have a fully self-

sustaining hardware system.

The Software part of the system encompasses a

very large portion of our project, and many of the

primary functions of the project are entirely

reliant on it. The software utilizes the C

programming language for all low level items.

The power measurement controller uses C to

collect the data off of it sensors, and convert it to

units of power. The data is then sent to the load

control server over USB using a serial data

connection. The load control server then

interprets this data to determine the desired CPU

utilization of the server. Once the desired

utilization is determined on the load control

server, a UDP network packet is sent to the server

so that the server side script can adjust its CPU

utilization and in turn adjust the power

consumption of the server. The server is using the

Python programming language to handle all

communications and high level interactions. The

Python script creates four separate threads. One

for managing the throttling of the process in the

operating system scheduler. It does through the

interfacing of an exposed kernel module from the

Linux operating system. The throttling of the

process is sufficient for reducing power

consumption because Intel SpeedStep technology

will reduce the frequency of the processor when

the utilization is reduced. The second Python

thread calls a git C repository for the Sieve of

Eratosthenes. The software calls as many worker

threads as possible to work on the sieve to

29

calculate prime numbers. The software is

benchmarked by the number of prime numbers

found over the course of a 24 hours period. Any

other software that is running on the server

besides these worker threads, is considered

overhead. The third and fourth thread provide full

duplex support to the server and the load control

server. The third thread receives data from the

load control server to change the target CPU

utilization. The fourth thread on the server sends

data to the load control server every time 100

million digits are processed, this equates to about

every 10 seconds. The load control server, which

is a Gigabyte with a Linux OS, runs a Python

script which utilizes a main thread and three child

threads. The main thread spawns the three child

threads then waits to receive prime numbers

calculated from the server. The first child thread

creates the serial connection with the power

measurement controller and updates global

variables when it receives. The second thread

uses a thirty second counter then sends a signal to

idle the server down for three seconds. This is

done so that a measurement of the battery voltage

at a known load can be taken and used to decide

the new CPU utilization of the server. The final

child thread sends all important measurements to

a database for future analysis. This thread also

sends power production, power consumption,

battery output voltage, and calculated prime

numbers to a web GUI that graph the

measurements in real time.

After many different iterations of our maximum

power point tracking circuit we still could not get

it to work properly. Our problem in every

iteration we came up with was that our FET’s or

FET drivers would break down. Through much of

our testing we were under the impression that we

were sending to much current in the components.

With this hypothesis we spent a significant

amount of time testing current throughout the

circuit while also trying to add more safety

precautions based around overcurrent. Finally at

the request of our advisor Professor Tatro we ran

simulations of our circuit in PSPICE and notices

that the inductor was producing large amounts of

voltage for very short periods of time that was

breaking down the FET’s and drivers. Professor

Tatro instructed us to research snubber circuits

for the inductor. By this time we had burned out

all our FET drivers and could not get new ones

ordered and delivered in time for further testing

before the due date. We had to scrap our designed

maximum power point tracker circuit and use our

purchased solar charge controller for our project.

While the maximum power point tracker was not

a part of our feature set for the project it was an

option we were very hopeful of accomplishing.

For the software portion of the project we had

more success. We were able to model a batch

processing server with the Sieve of Eratosthenes

calculating prime numbers on the server. Our

power measurement controller was successfully

collecting data from our voltage and current

sensor to find power production and consumption

along with the output voltage on the battery. This

data was then sent to the load control server

would decide the CPU utilization of the server

based on our estimated battery life. The load

control server also housed our web GUI that

allowed us to see real time graphs of our data.

The load control server also housed our database

that will help us do further analysis to help make

our product even more efficient.

In forecasting the marketability of our project

we decided that there was two markets we felt we

could be successful in; green conscience

enterprises and developing countries. We

specified green conscience enterprises because

power in developed countries is so reliable that

we would need someone who cares about their

carbon footprint to want to utilize our product.

For developing countries we believed that

because of their unreliable power sources they

would be more interested in utilizing out system.

We also looked at the future opportunities to

enhance our product like utilizing a storage

device like the Tesla Powerwall for greater

energy storage capacity.

All in all we are very proud of the product that

we put together. While we were not able to

design a successful MPPT circuit ourselves, we

do know the root of our trouble and believe we

can fix this issue in a future iteration of the

system. The proliferation of using renewable

energy sources is extremely important to us and

believe our product shows that self-sustaining

renewable energy ran datacenters do not need to

30

just be a plan for the future but instead a product

for the present.

REFERENCES

[1] S. H. Schneider, "Uncertainty and CLimate

Change Policy: A Survey," Island Press,

Washington D.C., 2002.

[2] "The World Factbook," CIA, [Online].

Available:

https://www.cia.gov/library/publications/the-

world-factbook/geos/xx.html. [Accessed

September 2016].

[3] T. Appenzeller, "The High Cost of Cheap

Coal," National Geographic, March 2006.

[Online]. Available:

http://ngm.nationalgeographic.com/2006/03/

cheap-coal/appenzeller-text.html.

[Accessed September 2016].

[4] A. Q. Huang, M. L. Crow, G. T. Heydt, J. P.

Zheng and S. J. Dale, "The Future

Renewable Electric Energy Delivery and

Management (FREEDM) System: The

Energy Internet," Proceedings of IEEE, vol.

99, no. 1, pp. 133-148, 2011.

[5] "What are the major sources and users of

energy in the United States?," U.S. Energy

Information Administration, 29 December

2015. [Online]. Available:

http://www.eia.gov/energy_in_brief/article/m

ajor_energy_sources_and_users.cfm.

[Accessed September 2016].

[6] M. Z. Jacobson, "A roadmap for repowering

California for all purposes with wind, water,

and sunlight," Energy, vol. 73, pp. 875-889,

2014.

[7] "How Long Does It Take to Pay Off a Tesla

Powerwall?," Institute for Energy Research,

5 January 2016. [Online]. Available:

http://instituteforenergyresearch.org/analysi

s/payback-on-teslas-powerwall-battery/.

[Accessed September 2016].

[8] A. Shehabi, S. J. Smith, D. A. Sartor, R. E.

Brown, M. Herrin, J. G. Koomey, E. R.

Masanet, N. Horner, I. L. Azevedo and W.

Lintner, "United States Data Center Energy

Usage Report," Ernest Orlando Lawerence

Berkeley National Laboratory, Berkeley,

2016.

[9] Y. Sverdlik, Here's How Much Energy All

US Data Centers Consume, Data Center

Knowledge, 2016.

[10] R. Miller, "Emerson Looks to a Solar

Future," Data Center Knowledge, 21 July

2009. [Online]. Available:

http://www.datacenterknowledge.com/archi

ves/2009/07/21/emerson-looks-to-a-solar-

future/. [Accessed October 2016].

[11] R. P. Sherwood, Estimated Budget,

Sacramento, 2016.

[12] R. P. Sherwood, Actual Budget,

Sacramento, 2016.

[13] R. P. Sherwood, Task Assignment and

Hours, Sacramento, 2016.

[14] "Ready," Department of Homeland Securty,

[Online]. Available:

https://www.ready.gov/risk-assessment.

[Accessed 28 October 2016].

[15] Z. Mietz, Risk Assesment Matrix.

[16] Z. Mietz, Solar Array, Sacramento, 2017.

[17] Z. Mietz and A. Cheng, Buck Converter

Experiment.

[18] Z. Mietz and A. Cheng, Buck Boost Circuit.

[19] Z. Mietz, Original Solar Charge Controller

Circuit, Sacramento, 2017.

[20] Z. Mietz, Solar Charge Coltroller with

Snubber Circuit, Sacramento, 2017.

[21] Z. Mietz, PSPICE Simulation of Original

Charge Controller, Sacramento, 2017.

[22] Z. Mietz, PSPICE Simulation of Charge

Controller with Snubber Circuit,

Sacramento, 2017.

[23] A. Cheng, 3D Modeled Component Case,

Sacramento, 2017.

[24] A. Cheng, Complete Component Case,

Sacramento, 2017.

31

[25] T. James, Load Algorithm Performance

Data, Sacramento, 2017.

[26] R. Sherwood, Target CPU Alogorthm Test

Results, Sacramento, 2017.

[27] A. Leach, "Race to renewable: five

developing countries ditching fossil fuels,"

The Guardian, 15 September 2015.

[Online]. Available:

https://www.theguardian.com/global-

development-professionals-

network/2015/sep/15/five-developing-

countries-ditching-fossil-fuels-china-india-

costa-rica-afghanistan-albania. [Accessed

20 February 2017].

[28] L. Morias, "Costa Rica beats own record,"

Renewables Now, 13 August 2015.

[Online]. Available:

https://renewablesnow.com/news/costa-

rica-beats-own-record-relies-solely-on-

renewables-for-94-days-488370/.

[Accessed 20 February 2017].

[29] I. Goiri, W. Katsak, K. Le, T. D. Nguyen and

R. Bianchini, "Rutgers," March 2013.

[Online]. Available:

https://www.cs.rutgers.edu/~ricardob/paper

s/top-picks14.pdf. [Accessed 17 February

2017].

[30] A. Hobson, "In its Largest Quarter Ever,

U.S. Solar Market Saw Nearly 2 MW of PV

Installed Per Hour in Q3 2016," Solar

Energy Industries Association, December

2016. [Online]. Available:

http://www.seia.org/news/its-largest-

quarter-ever-us-solar-market-saw-nearly-2-

mw-pv-installed-hour-q3-2016. [Accessed

15 February 2017].

[31] "Progrss Report: Advancing Solar Energy

Acroos America," U.S. Department of

Energy, 12 February 2014. [Online].

Available:

https://energy.gov/articles/progress-report-

advancing-solar-energy-across-america.

[Accessed 20 February 2017].

[32] "Tesla Energy," Tesla, 2017. [Online].

Available: https://www.tesla.com/energy.

[Accessed February 21 2017].

[33] LM317 Datasheet, January: Semiconductor

Component Industries, 2016.

[34] R. Sherwood, Load Control Server Flow

Diagram, Sacramento, 2017.

[35] T. James, Flow Chart for Load Algorithm,

Sacramento, 2017.

[36] T. James, Flow Chart for the CPU Throttling

Process on the Server, Sacramento, 2017.

[37] T. James, Flow Chart for the Network

Receiving Thread, Sacramento, 2017.

[38] T. James, Flow Chart for the Network

Sending Thread, Sacramento, 2016.

[39] A. Cheng, Back View Component

Enclosure, Sacramento, 2017.

[40] A. Cheng, Front View of Component

Enclosure, Sacramento, 2017.

32

GLOSSARY

MPPT – Maximum Power Point Tracking, optimizes power output of the solar energy source

USB – Universal Serial Bus is an IEEE certified serial interface for connecting peripheral devices to

computers

GUI – Graphical User Interface, is a type of user interface that allows users to interact with electronic

devices through graphical icons and visual indicators

UDP – User Datagram Protocol is an Internet protocol suite used primarily for establishing low-latency and

loss tolerating connections between applications

PID – Process Identification Number is a number used the kernel of an Operating System to uniquely

identify an active process

VRM – Voltage Regulator Module, is a buck converter that provides a microprocessor with its appropriate

supply voltage

CentOS – Is a Linux based Operating System

TAM – Total Available Market, used to reference the revenue opportunity available for a product of service

MSS – Market Share Segment, a company’s share of a particular market segment

ASP – Average Selling Price, average price at which a particular product or commodity is sold across

channels or markets

ROI – Return On Investment, the benefit to an investor resulting from an investment of some resource

A-1

APPENDIX A.

USER MANUAL

1. Start by flipping the switch just on outside of battery enclosure to the ON position.

2. Next turn on server and load control server. Wait approximately a minute for the units to boot up

and connect.

3. Next connect into the router by Ethernet cable with your desired device, i.e. Laptop or Desktop

computer.

4. To access the web GUI, in browser of choice type in the IP address 192.168.0.15 and it will come

up

5. To retrieve the measurements stored in the database, in browser of choice type

192.168.0.15/phpmyadmin. Username root and password is password1. This tool will allow you to

do database queries of all sorts.

B-1

APPENDIX B

HARDWARE

Fig. 15. Voltage Regulator Circuit [33]

Fig. 16. LM317 Schematic Diagram [33]

D-1

APPENDIX C

SOFTWARE

A. Block Diagrams and Flow Charts

Start

Main Thread

Update Server Open socket to server Send Data Update Serial

Receive from server and
update prime number
calculation variables

TrueForever

Monitor Battery
Run updated Vout

through if/else and find
new CPU utilization.
Send new utilization

through UDP.

Idle Server
Send server signal to

idle over UDP.
Sleep 3 seconds

Has it been 30 seconds?

Forever

Send data to database
and web GUI.

Sleep 10 seconds

Forever

Wait for data at serial
port.

Update variables with
new data

Fig. 17. Load Control Server Flow Diagram [34]

D-2

Start
Load current value

and number of
calculated primes

Find number of
primes from current

value to current value
+ increment amount

Set global variables
with new prime

number information

Set flag to upgrade
Load Control Server

with new values

Fig. 18. Flow Chart for Load Algorithm [35]

Start
Wait for receive

from Load Control
Server

Change in desired
utilization?

Kernel module
correctly called?

Kill the
currently called
kernel module

Launch kernel
module with

new
parameters

NO

YES

NO

YES

Fig. 19. Flow Chart for the CPU Throttling Process on the Server [36]

Start
Wait for connection from

Load Control Server
Receive desired CPU

utilization

Set CPU utilization global
variable and unlock the
throttling process (first

thread)

Fig. 20. Flow Chart for the Network Receiving Thread [37]

Start
Wait to be unlocked by

load algorithm

Send updated prime
number information to

Load Control Server

Wait for acknowledgement
from Load Control Server

Return to locked state

Fig. 21. Flow Chart for the Network Sending Thread [38]

B. The Sieve of Erathosthenes
from libc.stdint cimport uint64_t, int64_t

cimport cpp_primesieve

cpdef uint64_t parallel_nth_prime(int64_t n, uint64_t start = 0) except +:

 """Find the nth prime after start using multi-threading"""

 return cpp_primesieve.parallel_nth_prime(n, start)

cpdef uint64_t parallel_count_primes(uint64_t a, uint64_t b = 0) except +:

 """Count prime numbers using multi-threading"""

 if b == 0:

 (a,b) = (0,a)

 return cpp_primesieve.parallel_count_primes(a, b)

D-3

cpdef uint64_t parallel_count_twins(uint64_t a, uint64_t b = 0) except +:

 """Count twin primes using multi-threading"""

 if b == 0:

 (a,b) = (0,a)

 return cpp_primesieve.parallel_count_twins(a, b)

cpdef uint64_t parallel_count_triplets(uint64_t a, uint64_t b = 0) except +:

 """Count prime triplets using multi-threading"""

 if b == 0:

 (a,b) = (0,a)

 return cpp_primesieve.parallel_count_triplets(a, b)

cpdef uint64_t parallel_count_quadruplets(uint64_t a, uint64_t b = 0) except +:

 """Count prime quadruplets using multi-threading"""

 if b == 0:

 (a,b) = (0,a)

 return cpp_primesieve.parallel_count_quadruplets(a, b)

cpdef uint64_t parallel_count_quintuplets(uint64_t a, uint64_t b = 0) except +:

 """Count prime quintuplets using multi-threading"""

 if b == 0:

 (a,b) = (0,a)

 return cpp_primesieve.parallel_count_quintuplets(a, b)

cpdef uint64_t parallel_count_sextuplets(uint64_t a, uint64_t b = 0) except +:

 """Count prime sextuplets using multi-threading"""

 if b == 0:

 (a,b) = (0,a)

 return cpp_primesieve.parallel_count_sextuplets(a, b)

cpdef void print_primes(uint64_t a, uint64_t b = 0) except +:

 """Print prime numbers to stdout"""

 if b == 0:

 (a,b) = (0,a)

 cpp_primesieve.print_primes(a, b)
C. Load Control Server

#Author: Ryan Sherwood and Taylor James

#Load Control Server

#This script has two main goals; base server target utilization on

#measurements received from the microcontroller and sending desired

#information to the database and web GUI.

import serial

import socket

import cPickle as pickle

import threading

from time import sleep, time, strftime

import sys

import os

import MySQLdb

import json

PIN = 0.0

POUT = 0.0

VOUT = 0.0

VOUT_tmp = 0.0

CPU_TARGET = 100

TOTAL_PRIMES = 0

D-4

TOTAL_NUMS = 0

#Create function to shutdown server. Called when battery

#is to low

def shutdownServer():

 try:

 send_dict = {"shutdown":"yes"}

 send_data = pickle.dumps(send_dict,-1)

 sendsocket = socket.socket()

 sendsocket.settimeout(.2)

 sendsocket.connect(('192.168.0.10', 11293))#double check IP

 sendsocket.send(send_data)

 except socket.timeout:

 pass

#Create function to bring server to idle, wait, then

#call monitorBattery which will tell updateServer what

#CPU_TARGET should be based on VOUT

def idleServer():

 try:

 send_dict = {"cpu_throttle":0}

 send_data = pickle.dumps(send_dict,-1)

 sendsocket = socket.socket()

 sendsocket.settimeout(.2)

 sendsocket.connect(('192.168.0.10', 11293))#double check IP

 sendsocket.send(send_data)

 sleep(3)

 monitorBattery()

 except socket.timeout:

 pass

#Function called from monitorBattery which will tell the server

#what the new CPU_TARGET should be

def updateServer():

 global CPU_TARGET

 startTime = time()

 while 1:

 sleep(1)

 if (time()-startTime > 30):

 print("eval")

 startTime = time()

 idleServer();

 try:

 send_dict = {"cpu_throttle":CPU_TARGET}

 send_data = pickle.dumps(send_dict,-1)

 sendsocket = socket.socket()

 sendsocket.settimeout(.2)

D-5

 sendsocket.connect(('192.168.0.10', 11293))#double check IP

 sendsocket.send(send_data)

 except socket.timeout:

 pass

#Function sends measurements to database and web GUI.

def sendData():

 global PIN

 global POUT

 global VOUT

 global CPU_TARGET

 global TOTAL_PRIMES

 try:

 connection = MySQLdb.connect (host = "localhost",

 user = "root",

 passwd = "password1",

 db = "lcs")

 cursor = connection.cursor()

 except MySQLdb.Error, e:

 print(e)

 while 1:

 try:

 cursor.execute ("""INSERT INTO power VALUES (%s,%s,%s,%s,%s,%s)""",

 (strftime('%Y-%m-%d

%H:%M:%S'),PIN,POUT,VOUT,CPU_TARGET,TOTAL_PRIMES))

 connection.commit()

 except MySQLdb.Error, e:

 print(e)

 connection.rollback()

 ajax_dict = {'PIN':PIN, 'POUT':POUT, 'VOUT':VOUT,

'CPU_TARGET':CPU_TARGET, 'TOTAL_PRIMES':TOTAL_PRIMES}

 json.dump(ajax_dict, open('/var/www/html/ajax/data.json', 'wb'))

 sleep(10)

#Function monitors battery voltage and saves the new CPU target

#utilization value to the global variable

def monitorBattery():

 global VOUT

 global CPU_TARGET

 if VOUT >= 12.3:

 #keep server at 100%

 CPU_TARGET = 100

 elif 12.3 > VOUT >= 12.2:

D-6

 #drop server to 90%

 CPU_TARGET = 90

 elif 12.2 > VOUT >= 12.15:

 #drop server to 80%

 CPU_TARGET = 80

 elif 12.15 > VOUT >= 12.1:

 #drop server to 70%

 CPU_TARGET = 70

 elif 12.1 > VOUT >= 12.05:

 #drop server to 60%

 CPU_TARGET = 60

 elif 12.05 > VOUT >= 12.0:

 #drop server to 50%

 CPU_TARGET = 50

 elif 12.0 > VOUT >= 11.95:

 #drop server to 40%

 CPU_TARGET = 40

 elif 11.95 > VOUT >= 11.90:

 #drop server to 30%

 CPU_TARGET = 30

 elif 11.9 > VOUT >= 11.85:

 #drop server to 20%

 CPU_TARGET = 20

 elif 11.85 > VOUT >= 11.8:

 #drop server to 10%

 CPU_TARGET = 10

 elif 11.8 > VOUT:

 #drop server to 0%

 CPU_TARGET = 0

 else:

 #shutdown

 #shutdownServer()

 CPU_TARGET = 0

 pass

#Function reads the serial input from the microcontroller

#and updates the corresponding global variables

def updateSerial():

 global VOUT

 global PIN

 global POUT

 VOUT_tmp = [0 for x in range(10)]

 PIN_tmp = [0 for x in range(10)]

 POUT_tmp = [0 for x in range(10)]

 i = 0

 try:

 ser = serial.Serial('/dev/ttyACM0', 9600)

 while 1:

D-7

 data_in = str(ser.readline())

 print(data_in)

 power_data = data_in.split(',')

 VOUT_tmp[i%10] = float(power_data[0])

 PIN_tmp[i%10] = int(power_data[1])

 POUT_tmp[i%10] = int(power_data[2])

 i=i+1;

 VOUT = sum(VOUT_tmp)/len(VOUT_tmp)

 PIN = sum(PIN_tmp)/len(PIN_tmp)

 POUT = sum(POUT_tmp)/len(POUT_tmp)

 print("VOUT: %0.1f, PIN: %0.1f, POUT %0.1f" % (VOUT,PIN,POUT))

 except serial.SerialException:

 print("Unable to connect to serial")

 sleep(5)

 updateSerial()

#Main function starts the threads for updating the server, sending data

#to the database and web GUI, and receiving updated data from the

#microcontroller. Then sets up the UDP connection to the server and

#receives the updated calculated prime numbers.

if __name__ == '__main__':

 update_server = threading.Thread(target=updateServer)

 update_server.start()

 update_db = threading.Thread(target=sendData)

 update_db.start()

 update_serial = threading.Thread(target=updateSerial)

 update_serial.start()

 s = socket.socket()

 port = 11294

 s.bind(('', port))

 s.listen(1)

 try:

 while True:

 c, addr = s.accept()

 buf = c.recv(1024)

 dict = pickle.loads(buf)

 TOTAL_PRIMES = int(dict["total_primes"])

 TOTAL_NUMS = int(dict["curr_val"])

 c.close()

 except KeyboardInterrupt:

 sys.exit()

 print(e)

D-8

D. Power Measurement Controller

#include <PWM.h>

float panelAMeter = 0;

float loadAMeter =0;

float panelMeter = 0;

float batteryMeter = 0;

float loadMeter = 0;

float currentMath = 5/1024.0;

float arduinoMath = 1;

float currentPOffset = 2.5;

float currentLOffset = 2.5;

float panelAMath = 1;

float batteryAMath = 1;

float loadAMath = 1;

float panelMath = 0.0351;

float batteryMath = 0.0354;

float loadMath = 0.0351;

float panelAmpMath = 15.79455204;

float loadAmpMath = 15.15762;

float panelCurrent = 0;

float batteryCurrent = 0;

float loadCurrent = 0;

float panelVolts = 0;

float batteryVolts = 0;

float loadVolts = 0;

float panelPower = 0;

float loadPower = 0;

float test = 0;

void setup() {

 Serial.begin(9600);

 pinMode(A1, INPUT);

 pinMode(A2, INPUT);

 pinMode(A5, INPUT);

 pinMode(A4, INPUT);

 pinMode(A6, INPUT);

}

void loop(){

 measure();

 print_data();

}

D-9

void measure(){

 test = analogRead(A5);

 panelVolts = analogRead(A4);

 batteryVolts = analogRead(A5);

 loadVolts += analogRead(A6);

 panelCurrent = 0;

 for(int i=0;i<100;i++){

 panelCurrent += analogRead(A1);

 }

 loadCurrent = 0;

 for(int i=0;i<100;i++){

 loadCurrent += analogRead(A2);

 panelVolts = panelVolts/100;

 batteryVolts = batteryVolts/100;

 loadVolts = loadVolts/100;

 panelCurrent = panelCurrent/100;

 loadCurrent = loadCurrent/100;

 panelVolts = (panelVolts * arduinoMath) * panelMath;

 batteryVolts = (batteryVolts * arduinoMath) * batteryMath;

 loadVolts = (loadVolts * arduinoMath) * loadMath;

 panelCurrent = ((panelCurrent * currentMath) - currentPOffset) * panelAmpMath;

 loadCurrent = ((loadCurrent * currentMath) - currentLOffset) * loadAmpMath;

 panelPower = panelVolts * panelCurrent;

 loadPower = loadVolts * loadCurrent;

 }

}

void print_data() {

/*

 int Pin = (int) panelPower;

 int Pout = (int) loadPower;

 Serial.print(batteryVolts);

 Serial.print(",");

 Serial.print(Pin);

 Serial.print(",");

 Serial.println(Pout);

 */

 Serial.print("Panel: ");

 Serial.print(panelVolts);

 Serial.print("\t");

 Serial.print("Battery: ");

D-10

 Serial.print(batteryVolts);

 Serial.print("\t");

 Serial.print("Load: ");

 Serial.print(loadMeter);

 Serial.println("\t");

/*

 Serial.print("Panel: ");

 Serial.print(panelCurrent);

 Serial.print("\t");

 Serial.print("Load: ");

 Serial.print(loadCurrent);

 Serial.println("\t");

*/

}

D-1

APPENDIX D

MECHANICAL

Fig 22. Back View Component Enclosure [39]

Fig. 23. Front View Component Enclosure [40]

E-1

APPENDIX E

VENDOR CONTACTS

We had no outside vendors help us with this project.

F-1

APPENDIX F

RESUMES

Ryan Sherwood
Experience

Intel Corporation (Software Solutions Group) Folsom, CA
 Hardware Modeling & Simulation Intern June 2016-Present

 Modeled both pipelined and sequential iterations of Intel’s GPU Texture Sampler

 Obtained 16x simulation speedup with POSIX generated models of pipelined units
Aerospace Corporation El Segundo, CA
 Metrology Representative November 2008-July 2013

 Performed compliance audits on engineering laboratories each month to insure government standards
were met

 Worked with scientists and technicians to manage inventory of over 100 types of scientific equipment
totaling over 6,000 units

United States Coast Guard San Diego, CA

 Electronics Technician February 2002-February 2006

 Maintained, debugged, and repaired ships radar, navigational, and communication equipment for use in
Drug Interdiction and Search & Rescue

 Specialized in 5 different types of radar and navigational equipment

 Lead a team of 15 colleagues responsible for emergency protocols on ship while in port

Projects
Renewable Energy Self Sustaining Server Model

 Group senior design project where we designed a single server to run for a 24 hour period on power
generated from 2 solar arrays and a battery backup

 Designed and implemented the server load controller with algorithm to control the server utilization
based on the voltage measurements solar array and battery, while sending all data to a database for
monitoring

RISC Pipelined CPU

 Designed, modeled, simulated and verified a 16-bit RISC CPU in Verilog that can decode and execute
instructions in a pipelined datapath

 Design considerations included Hazard Detection, Branching, Register Forwarding, and Exception handling
 Vending Machine Controller

 Designed, modeled and verified the CMOS layout mask on the 0.24 micron process for a Vending Machine
Controller in Cadence Virtuoso

Education
Sacramento State University Sacramento, CA

 Bachelor of Science 3.3 GPA – Deans Honor List Graduating May 2017

 Major: Computer Engineering

Skills
Computer Languages

 C – C++ – Python – Java – x86 Assembly – Ruby
Hardware Descriptive Languages

 Verilog – VHDL
Tools

 Cofluent – Quartus – Synopsys VCS – Synopsys DVE– VIM – BASH– PSpice – Multism – Cadence Virtuoso –
Perforce – Git – MS Visual Studio – MS Office

F-2

ARIK CHENG

SUMMARY OF QUALIFICATIONS:

 Working knowledge of MatLab, PSpice, AutoCAD, Quartus II, VMware, and Advanced Design Systems.
 Strong advanced computer background, including C++ and structured programming knowledge.
 Friendly, approachable and energetic worker with self motivation and positive attitude.
 Initiative to perform multiple tasks and work efficiently under stress and pressure.
 Systematic, flexible, tolerant, organized, detail-oriented, and goal-directed.

EDUCATION AND TRAINING:

Bachelor Degree Program – Electrical Engineering (To Complete May, 2017)

University of California, Sacramento – Sacramento, CA

Associates Degree Program – Mathematics/Physical Sciences (Completed May, 2014)

Associates Degree Program – Mathematics Transfer, Behavioral Sciences (Completed May, 2015)

American River College - Sacramento, CA

National Pharmacy Technician Certification (Completed 2015)

Pharmacy Technician Certification Board - Washington, DC

California Pharmacy Technician License (Completed 2015)

Board of Pharmacy – Sacramento, CA

PROFESSIONAL EXPERIENCE:

Electrical Engineering Student
 Junior level electrical and electronics engineering student with emphasis on power and energy.
 Currently holds officer position for CSUS Power and Energy Society.
 Keep records of events and meetings as well and significantly contribute to club events.
 Theoretical and experimental knowledge of Verilog and transistor level logic design.
 Apply educational knowledge of AC/DC circuit analysis, electromechanical conversion, power system

analysis, microprocessors, signals and systems, and transmission line analysis.
Pharmacy/Medication Technician

 Apply profession knowledge of medication and pharmacy law.
 Administer medication to residents as well as assist with tasks of daily living.
 Specialize in interactions with residents with varying degrees of dementia.
 Frequently recognized for high level of expertise in senior care

environments. Customer Service/ Management Skills
 Greet customers and ascertain personalized customer wants or needs.
 Maintain knowledge of current sales and promotions, policies regarding payment and

exchanges, and security practices.
 Assist management with daily operations.
 Assist in training new staff to ensure that applicants are qualified to perform their delegated tasks.
 Monitor and recognize potential security risks and thefts, and know how to prevent or handle

these situations.

WORK HISTORY:

Certified Pharmacy Technician CVS Pharmacy, Lincoln, CA (06/14-Present)

Medication Technician Atria Senior Living, Carmichael, CA (04/13-06/14), (05/11-01/13)

Medication Technician Somerford Place, Roseville, CA (12/12-04/13)

Customer Service Associate JCPenny’s, Roseville, CA (10/10-07/11)

Manager in Training Little Caesars, Antelope, CA (10/08-10/10)

F-3

TAYLOR JAMES

 WEB DEVELOPER/PROGRAMMER

Profile I'm a web resource professional and a Computer Engineering major at Sacramento

 State. While only 23 years old, I have had my own business designing and managing
 websites for the past 6 years and developing PHP applications for the past 4 years. I

am creative in not only tuning my skills to adapt to the ever demanding
and

 changing field, but also constantly searching out better and more efficient ways to
 get the job done. I am self-taught in the web developing discipline and this passion
 drives me to look for new challenges and push myself past web developing and

 further into the future of my field.

Skills Programming/Languages:
 Python(Qt), Java, PHP (eCommerce, Custom Systems), C (Systems Programming,Visual Studio),
 MySQL, JavaScript (JQuery), AutoIt, Assembly, HTML/CSS,

 Education:
 Algorithms & Data Structures, Network & Internet (LAN, WAN), Signal & Systems, Electronics (Basic),
 Operating System Principals. MS Office, Solidworks

 Hardware Description:
 Verilog (VCS Design Tools), VHDL, Computer Organization & Data Pathing, Advanced Logic Design

 DevOps:
 CentOS/RHEL (Programming/CLI), SELinux, Windows Server (Basic), Vagrant, GIT

Experience Intel Corporation 2015­Current

 Technical Marketing Engineer Intern ­ Channel Desktop i5+

 My job role included verifying hardware problems that exist with intel customers, expanding channel
 customer sales through platform enablement, and technical development of marketing materials.
 Beyond this I learned about Intel architecture and internal systems in depth.

 Tjames Web Design 2008­2014
 Freelance Web Designer and Developer

 This business started very young with my basic web design skills. Over the years I have worked with
 numerous companies and have extended my skillset to include backend web development, Python apps
 and Linux server management. Running this business has consistently been a challenge to best fit my
 client's unique needs and has developed my problem solving ability.

 More information: tjameswebdesign.com

F-4

Zach Mietz

Objective Seeking an internship in the Electrical Engineering field to further enhance my
knowledge of applicable skills in the field

Education In progress: BS in Electrical Engineering, CSU Sacramento, May 2017

Related Courses  Electronics I

 Electronics II*
 Introduction to Feedback

Systems
 Circuit Analysis
 Network Analysis
 Robotics Explorations
 Fundamentals of Engineering
 Computational Methods &

Apps
 Introduction to Logic Design

 Power Systems Analysis
 Introduction to Microprocessors
 Electromechanical Conversions
 Transmission Lines and Fields
 Signal and System Analysis
 Interdisciplinary Topics of Engineering
 Personal Computing
 Algorithm Design/Problem Solving
 Introduction to Computer Science
 Senior Design*
 Modern Communication Systems*

Skills  Programing Language: C, C++, Assembly Language

 Software Tools: Microsoft Visual Studio, Microsoft Office, Autodesk Inventor
 Operating Systems: Windows, Mac OS

Employment

History
Cashier Raley’s Supermarket, Galt, CA 8/14-9/16

 Provide high quality customer service both in person and over the phone
 Deal with customer inquiries and complaints
 Process sales payments
 Assist with product display and pricing
 Restock ordered product
 Take payment in exchange of items sold
 Balance money in cash register with sales data
 Order merchandise for store sales

Courtesy Clerk Raley’s Supermarket, Galt CA 11/11-8/14

 Provide high quality customer service both in person and over the phone
 Greet customers and assist them with item location
 Bag groceries and other items
 Carry packed bags to customers’ vehicles
 Return grocery items left at checkout to their rightful places
 Collect shopping carts and baskets and deliver them to their proper location
 Maintain parking lot cleanliness when required

F-5

