B .
dispen® um

Safety, User Friendly, Medication Adherence

CpE 191/EEE 193B Senior Design

Project DispenSUM

Ben Green, Dana Natov, Nael Numair, Jennifer Ong, Nick Rarick

Table of Contents

Executive Summary

I. Introduction
Il. Societal Problem
[11. Design Idea Contract
IV. Funding Breakdown
V. Project Milestones
VI. Work Breakdown Structure
VII. Risk Assessment
VIIl. Design Overview
IX. Prototype Status
X. Marketability Forecast

XI. Conclusion
XII. References
XIHI. Glossary

College of Engineering and Computer Science - California State University, Sacramento

el NS

List of Figures

Figure 1 Reasons for non-compliance
Figure 2 Concept Art of Final Product
Figure 3 Risk Matrix

Figure 4 Deployable Prototype

College of Engineering and Computer Science - California State University, Sacramento

SU A wN R

List of Tables

Table 1 List of Suppliers
Table 2 Jennifer’s Task Hours
Table 3 Nael’s Task Hours
Table 4 Ben’s Task Hours
Table 5 Nick’s Task Hours
Table 6 Dana’s Task Hours

College of Engineering and Computer Science - California State University, Sacramento

EXECUTIVE SUMMARY

Almost everyone must take medication in their lifetime. Poor medication adherence, or not
adhering to medication treatment plans, takes the lives of 125,000 Americans annually and costs nearly
$300 billion a year in additional use of the medical system. The problem affects all demographics but
people 85 year and older take an average of 13 different medications and those 65 years and older are the
most adversely affected by poor medication adherence. Solutions to the problem are numerous. The
DispenSUM smart medication dispensing device is an easy to use, safe, and a potentially effective
solution that will be unique in the medical devices market.

The DispensSUM platform provides a new method of medication adherence by reducing the
patient’s required effort to organize, store, refill, and remember when as well as how much of each
medication they must take. The uniqueness of the machine is primarily due to the implementation of
cheap to manufacture and reusable medication cartridge. The cartridge arrives at the patient’s door pre-
loaded with their required medication and a dosing schedule stored in onboard memory. The patient
simply taps the cartridge to the side of the machine, which loads the dosing schedule into the machine,
and is instructed to place the cartridge into an available slot. The DispenSUM platform then dispenses the
patient’s medication on the pre-loaded schedule, helping the patient adhere to their medication therapy
while removing the burden of organizing and remembering when to take their pills. This truly unique
aspect also gives rise to a new method of medication delivery, presenting a business opportunity in the
form of the cartridge delivery services. The DispenSUM system has also been designed with caretakers in
mind.

The DispenSUM machine is part of the new generation of, “the internet of things”. By
implementing internet connectivity, the platform provides caretakers and loved ones with the tools to help
keep track of the patient using the machine. It tracks medication adherence and updates anyone that is
programmed into the database. It can also warn caretakers and doctors if a dose is missed and order refills
from the pharmacy when a cartridge is running low. This communication allows for the patient to retain
their independence while helping caretakers and doctors feel confident that medication is being taken on
time and in the right dose.

The DispenSUM platform has been designed with safety in mind. It includes several system
redundancies, data logging, internet connectivity, and user feedback to ensure safe operation by the user
and reduce downtime. By following FDA guidelines concerning electronic medication control devices
more closely than any competitor on the market, the DispenSUM platform may be more capable of
quickly going through regulatory “red tape” on its way to the market. It may also allow more insurance
plans to cover the medical device, helping the platform reach a much larger market.

Though there are existing medication assistive devices on the market, The DispenSUM platform
provides an innovative way to reduce the burden of taking medication while increasing medication
adherence. The programmable and reusable cartridge reduces the user interaction to a level equivalent to
receiving a DVD in the mail and watching it at home. The use of these cartridges also presents the
opportunity to develop a subscriber based service to potentially change how medication arrives in the
homes of the user. The platform adheres to FDA guidelines more than the existing competition and is
designed with safety in mind, allowing it to potentially reach a larger user base more quickly. Ultimately,
the goal of the DispenSUM platform is to help increase medication adherence while delivering
independence and freedom to the end user.

College of Engineering and Computer Science - California State University, Sacramento

DispenSUM - Deployable Prototype
Documentation

A Solution to Medication Non-Adherence

Ben Green, Dana Natov, Nael Numair, Jennifer Ong, Nick Rarick

College of Engineering and Computer Science - California State University, Sacramento

Abstract — Our device, a medication adherence
aid, is designed to properly dispense accurate
medication on a unique timed schedule tailored to
the owner of the device. Named DispenSUM, this
device will help tackle our societal problem of
medication non-adherence by keeping an
individuals medication adherence in check. Our
device, now functioning as a deployable prototype,
has many different elements of organizational,
analytical, logistical, mechanical, electrical and
programming aspects. This document describes
all the aspects regarding the design process and
demonstrates our results.

Keyword Index— DispenSUM, Electronic Pill-box,
Software Testing, Electronic Testing, Mechanical Testing

I. INTRODUCTION

The use of medication is very common,
as almost everyone at one point has or will take
some type of medication. Doctors and
pharmacists prescribe patients with medication
but some do not take their medication as
prescribed because they are taking their
medication incorrectly or are they are not taking
it at all. Over the years, this has become an
increasing concern to health organizations, the
government and even pharmaceutical companies
due the multitude negative consequences that
arise from medication non-adherence. The term
“medication adherence” is commonly used when
discussing medication use as it describes the
extent to which a patient follows medical
instructions [1]. Throughout this report
medication non-adherence and medication non-
compliance are used interchangeably.

After taking a closer look at the impact
of medication non-adherence, our team decided
to develop an effective engineering solution to

address this problem. We designed a automated
pill dispensing device. DispenSUM is the name
of the design and it is an electronic pill organizer
that manages and dispenses medication. With
DispenSUM, users will never forget to take their
medications again or double dose as it provides
timed, accurate, and consistent medication. It is
designed specifically for those who need help
managing their medication such as the elderly
who are prone to forgetting, people who have to
take multiple medications, and those taking
medication without professional supervision.
The goal of DispenSUM is to provide a solution
which will improve quality of life, reduce health
care costs, and help retain people’s
independence as it can used in the comfort of
one’s home.

One of the key philosophies behind our
design was the idea of Safety, Usability and
Medication Adherence (SUM). We use the SUM
philosophy to help guide every single design
decision. This not only gave us a defining
principle that helped guide us through this
process, but it helped us identify clear goals in
which the whole team could work together on.

Throughout our design process one of
our main priorities was to develop a design that
differs from the other pill-boxes currently on the
market. In order to do so, we modified some of
the features that already exist on other pill boxes
while adding several new features. The team
considered several different implementations for
each feature in order to come up with a design
that would improve safety, user friendliness, and
medication adherence. The team developed the
unique idea of the smart pill cartridge based
design. The idea is to collect the dosage and pill
information from the doctor or pharmacy and

5

College of Engineering and Computer Science - California State University, Sacramento

load that information on a pill cartridge. User’s
of DispenSUM simply need to load the cartridge
into the system. They are automatically
reminded when their pills need to be taken.

This project ran over two semesters. At
the end of the first semester we had created a
working laboratory prototype. We followed a
clear design process which included creating a
design idea, work breakdown structure, project
timeline, and risk assessment. In the second
semester the team worked on improving and
implementing additional features to the device in
order to take our device from a laboratory
prototype to a deployable prototype. The
following report documents and describes the
work that was required to develop the team’s
design idea, assemble a laboratory prototype,
perform appropriate testing and market research
in order to create a deployable prototype.

Il. SOCIETAL PROBLEM

Medication adherence has been
identified as a societal problem due to the
overwhelming statistics that highlights the extent
and impact it has on society. Approximately
50% of patients do not take their medication as
prescribed and this results in increased
morbidity and mortality rates, as well as
healthcare spending [2]. Research shows that
poor medication adherence takes the lives of
125,000 Americans annually, and costs the
health system nearly $300 billion a years in
additional doctor visits, emergency department
visits and hospitalizations [3].

Medication non-adherence is most
prevalent among the elderly and people
suffering from a chronic disease. This is due to
the fact that elderly people are more prone to
forgetting to take their medication which is the
number one reasons for medication non-
compliance. As for people with a chronic
disease many have to take medication
consistently which can become fairly costly so
they stop taking it. Statistics for non-compliance
due to certain reasons mentioned previously is
shown below in Figure 1 among with several
other reasons for non-compliance.

Reasons for non-compliance*®

Forgot to take 79%
Ran out of medication 19
Too costly 9
Patient-perceived lack of need 9
Side effects 7,
No improvement seen 3

*Totals more than 100% due to multiple mentions.
Credit: Wilson Health Information and The J. Scott Group, 2006.

Fig. 1 Reasons for non-compliance

Research has shown that the rate of
medication non-adherence is most likely to
continue to increase due to the growing rate of
population ageing and increase in life
expectancy. The reason why an increase in
population ageing and life expectancy affects
rates of medication adherence is because
medication non-adherence mainly affects the 65
years or older age group. Not only does
medication non-adherence effect patients but
also others, for example it can cause financial
and emotional stress on patient’s family and
caregivers. Therefore, it is imperative that this
issue be addressed to mitigate the impact it has
on society.

I1l. DESIGN IDEA CONTRACT

This device is a medication management
system intended for use by the elderly at home.
The device will be able to accurately and timely
dispense medication tailored to the patient's
medication needs. Our whole device centers on a
smart pill cartridge based design, simplifying the
reloading process and medication identification.
The cartridges will hold all the necessary
information on patient dosages and medication
amounts. Also the cartridge will be designed so
that medication can be pre-filled. This ultimately
reduces user effort and helps promote adherence.
Now, all the user has to do is insert the cartridge
and press a single button to get medication. A
quick conceptual sketch of our desired final
product is shown in Figure 2.

College of Engineering and Computer Science - California State University, Sacramento

&

iz /lA

Fig. 2 Concept Art of Final Product

Some guidelines and features were
highlighted and suggested by the FDA,
specifically the Center for Devices and
Radiological Health [4]. We also reviewed the
Code of Federal Regulations to help us identify
our device as Class Il (special controls) [5].
Using these guidelines help us achieve a higher
level of compliance with regulations in an
attempt to prepare for when we want to bring
our device to market. Using what we learned in
the Problem Statement, our SUM ideal and
Federal Regulations, we came up with a feature
list we see as adequate in scope.

A. Features List

Swappable Cartridge(s) - The swappable
cartridge design helps us provide a versatile, yet
easy to use, device. This makes it possible to
change or renew your medication schedule in the
product by simply placing it in the base system.
The cartridge will come pre-programmed with a
medication schedule. The cartridges will
communicate with the base wirelessly with built
in radio frequency identification tags (RFID)
which will program the base with the correct
medication schedule for the cartridge
medication. This will prevent misuse, accidental
overdosing and promote proper adherence. It
also allows for a diverse selection of pill or
capsule medication. This is the cornerstone piece
of our prototype.

Rotary Base Module - The rotary base is
simply a cylindrical base used to rotate the
cartridges over a dispense cup. This module
provides versatility, allows us to use multiple
cartridges in one system and helps us comply
with several FDA regulations. A drawing of the
rotary base module can be found in Appendix D
Part 111.

Two Button Design - The two button design is
simply a two button panel for the user to
interact with the device. This design was heavily
influenced by our SUM principal. It is used to
simplify the experience of the user. One button
will be to dispense medication and the other
button allows the user call for help if needed.

Raspberry Pi (RPi) Touchscreen - Similar to
our three button design, the RPi touchscreen is
another feature implemented for the user to
interact with the device. The “touch”
functionality of the screen is simply to provide
more capability to the end user if needed and
give caretakers or technicians the ability to
configure the device. The large screen will allow
us to give the patient feedback on what
medication they are about to take.

Light and Sound Notifications - The light and
sound notifications alerts users that their
medication is ready to dispense. The notification
will turn off when the dispense button is pushed
otherwise it will continue for a specified number
of minutes until turning off. If the dispense
button is not pushed within the specified time
then an email notification will be sent to the
users caretaker email.

Redundant Systems - In order to comply with
FDA regulations we decided to introduce many
sensors that allow for us to very accurately
identify when a pill has or has not been
dispensed. A load cell will be used to accurately
count the amount of pills in the dispense cup. In
addition, we are also integrating a close-
proximity infrared sensor that detect if a pill has
been dispensed through the pill shoot. Many
software redundancies will also be utilized to
ensure accurate dispense amounts. These
systems are critically important for the function
of our device. This is also heavily influenced by

7

College of Engineering and Computer Science - California State University, Sacramento

our SUM philosophy and our compliance with
FDA guidelines.

Interaction Unit GUI Program - The
Interaction Unit features the three button panel
and RPi touch screen. This unit will be
integrated on the front end of the physical
device. A GUI program will be created for the
RPi touch screen so users can easily interact
with the device. The GUI program will display
what medication the user is taking, the current
remaining pill count, and all possible warnings
you will see on a standard pill bottle.

Pharmacist GUI Program - For the cartridge
system the overall idea is that the pill cartridges
will be programmable by implementing RFID
technology. To keep things simple a graphical
user interface (GUI) program will be created for
a medical professional (e.g. pharmacist) to enter
in the medication information. The program will
provide the user with a form for them to fill-in,
which then is converted into a text file and
transferred to the interaction unit (raspberry pi).
This form would have fields for the following,
medication name, emergency contact,
medication quantity and dose, medication times,
and any other medication notes.

Email Notifications - A notification will be sent
to the emergency contact via email when
medication is not taken within a certain
timeframe. The Raspberry Pi will be used to
implement this feature by connecting the
Raspberry Pi to Wi-Fi. Then a python script will
be created which will monitor the sensor that
detects whether the medication has been taken
from the pill-dispensing box. The python script
will have code that enables an email notification
to be sent using the programmed emergency
contact information if the medication has not
been taken. Also, an email notification will be
sent when medication is running low so
medication refill can be arranged.

RFID System - The RFID system is used as the
medium memory between the pharmacist GUI
and the Interaction GUI. This consists of a two
part system. The first part consists of writing to
the tag. This process takes the information from
the pharmacist GUI using Mifare read-writer

which is connected to an Arduino uno and sends
the information over. The second half to this
system is associated with the Raspberry Pi 3.
Using a python equivalent version of the code,
the information is then transferred from the
RFID tag into the Pi in the form of a text file.
From there a python script takes the information
and converts it from decimal to ASCII.

IV. FUNDING BREAKDOWN

Project DispenSUM was a non-
sponsored project. Each group member has
contributed money to buy the necessary items in
order to complete the project. The SUM design
philosophy does not specify or require the need
for the system to be low cost. However, it has
been a goal to make the project as affordable as
possible. Total cost to date is $1375.22 which
includes everything that we have bought since
day one of this project. Total does not include
items we had already owned. The total cost of
the project does not reflect that actual cost to
make because not all items bought were used in
this final iteration of the project.

Cost Supplier

$26.00 Ace Hardware
$808.92 Amazon

$50.14 Fry’s Electronics
$18.08 Home Depot
$313.10 McMaster-Carr
$158.98 Others

Table 1 - List of Suppliers

The table above shows a list of suppliers
that we went to for parts. Others consist of IEEE
student branch at Sacramento state, Rockler
Woodworking and Hardware, DFRobot.com,
Blick Art Supply, Smoothon.com, WireCare and
FRC Team 1678 these groups listed in other
were contacted for either one time purchase or
use.

College of Engineering and Computer Science - California State University, Sacramento

V. PROJECT MILESTONE

Originally, project DispenSUM has six
key components. These included the module, the
cartridge, light and sound notification, redundant
systems, LCD Screen, and the pill crusher. Due
to time limitations, the pill crusher was not
included in the laboratory or deployable
prototype. The design components that were
kept were verified in the laboratory prototype
and included in the deployable prototype. Major
product redesigns were executed in the second
semester development cycle. This included
redesigns of all of our project components. Most
of these features are independent of each other
until the end when each needed to be integrated
into the final product.

During the development of both the
laboratory and deployable prototype, the
completion of each key component represented a
project milestone. Integration of all the
components into the full design represented a
milestone, followed by the final development
step of testing and finalizing each prototype.
This final step was the last project milestone in
both of the product development cycles. There
were a total of eight project milestones each
semester, or development cycle.

VI. WORK BREAKDOWN STRUCTURE

Project DispenSUM is a large project
with many interconnected pieces. In order to
break the DispenSUM project down into more
manageable pieces, a work breakdown structure
was developed. The work breakdown structure
(WBS), allows the project members to schedule
individual work packages, determine the order
they must be completed in, and assign group
members to work on them. The tables included
in this section outlines the tasks each group
member worked on and how much time was
spent on each task.

Table 2 Jennifer’s Task Hours

Hours | Task
4 Setup Raspberry Pi

15 Programming push-button, LED,
and motors

10 Communication between
microcontrollers

25 Read time program

20 Laboratory prototype full system
integration and debug

50 Pharmacist GUI

35 User/Interaction GUI

25 Deployable prototype full system
integration and debug

100 Documentation

284 Total Time
Table 3 Nael’s Task HourS

Hours | Task

80 Documentation

18 Microcontroller Setup

10 Communication between
microcontrollers

25 Full system integration and debug
Laboratory Prototype

40 Full system integration and debug
Deployable Prototype

30 RFID System

35 Function Code

238 Total Time

College of Engineering and Computer Science - California State University, Sacramento

Table 4 Ben’s Task Hours

Hours Task

97 CAD Design

38 Fabricate

39 Debugging/Integration

89 Documentation and paperwork

263 Total Time

Table 5 Nick’s Task Hours

Hours Task

70 CAD Design

22 Audio Circuit

8 Cartridge Design

39 Debugging

41 Documentation

13 Linkage System

38 Arduino System Logic

241 Total Time

Table 6 Dana’s Task Hours

Hours Task

60 CAD Design

18 Testing system integration and

feedback sensors

19 Machining

38 3D Printing

11 Wiring

60 Documentation

15 Har_dware Implementation and
testing

10 Programming

230 Total Time

VII. RISK ASSESSMENT

The risk mitigation plans utilized in the
prototype phase of project DispenSUM include
deploying parallel critical paths, executing
redesigns early in the design process, and
utilizing feedback systems to ensure proper
functionality of the device. The parallel critical
paths are used to ensure as many tasks are being
completed early in the design process by all
group members. The major required redesign
involved the cartridge and it was executed early
in the process.

A quick overview of our risk assessment
for our prototype produced a risk matrix we used
to identify the riskiest sections of our design. We
used this matrix to identify what needed
sufficient mitigation plans. The risk matrix is
shown in Figure 3 below.

PCB Design
A
! Light .and S.Dund Feedback Systems
R Notifications
i
s RPI Touchscreen Linkage System
k

Impact ----- =

Fig. 3 Risk Matrix

The risk matrix allowed us to focus on
getting the critical parts in our project done first,
such as the cartridge design, GUI, and Rotary
Module. Focusing on the high impact, high risk
parts gave us enough time to pivot to a new
design if a design failed. Using this strategy we
were able to complete the project in the allowed
time.

VIIl. DESIGN OVERVIEW

10

College of Engineering and Computer Science - California State University, Sacramento

Our design philosophy has always
followed our principle of SUM, which is safety,
user friendly, and medication adherence. The
project has been designed from the ground up
with these goals in mind. The device is meant to
be used in the home to keep track of the user’s
medication schedules and to help them take their
medicine correctly. For a device to achieve this
it has to be very easy to use and to be
autonomous needing little to no maintenance
from the user.

To meet these requirements we created a
cartridge that is designed to store a specific type
of medication. These cartridges are delivered to
the user’s house from a secondary service. The
cartridges come delivered with medication
inside as well as the dosing schedule for that
medication stored onto an RFID tag attached to
the cartridge. The cartridge system was designed
so all the patient has to do is receive the
cartridge and insert it into the device. Once
inserted the device will read the RFID tag and
then be able to alert the user when they need to
take their medication. Once alerted all the user
has to do is press the dispense button and the
machine will dispense all their necessary
medication for that time slot.

This functionality meets the design
requirements since the user has very little
interaction with the machine which makes it
very easy to use. This allows the user to get their
medication safely and easily. The purpose is to
alleviate the chore and safety issues associated
with a patient trying to manage many different
times of medication and their corresponding
schedules. The machine achieves this since the
user doesn’t have to manage their medication at
all, the system does it for them.

IX. PROTOTYPE STATUS

The prototype is in functioning order
and is ready to demonstrate. Appendix D Part |

shows the whole system drawing and the
sections of our device. A smaller version of our
deployable prototype can be found in Figure 4.

Fig. 4 Deployable Prototype

The deployable prototype satisfies all
the conditions we laid out in our design contact
above. It scans and collects cartridge
information, dispenses accurate amounts of
medication on a timer, uses light and sound
notifications to warn the user, integrates a two-
button design with an easy to use GUI and
provides the necessary feedback mechanisms to
ensure errors in the dispense cycle do not
happen.

X. MARKETABILITY FORECAST

A market review was performed to
determine the market size and current market
status for our product. The major factors that
drive the medication management market need
include growth in population, health care
expenditures and their related adverse effects of

11

College of Engineering and Computer Science - California State University, Sacramento

medication non-adherence [6]. We found that
many large and small companies are currently
vying to fill the niche that the DispenSUM
design fills [7], a medication control device used
to help solve the problem of medication
adherence. It has been determined that we are
following market trends with our current design,
but we will need to modify several aspects to
compete directly with other products. It should
be noted that we closely followed the Code of
federal Regulation [8] and the Guidance for
Industry and FDA Staff: Class Il Special
Controls Guidance Document: Remote
Medication Management System, FDA [9] to
increase our market viability. Following these
guidelines and regulations allows our product to
pass through FDA review and approval faster
and make it more attractive to potential
customers. However, we will need significantly
more documentation in order to satisfy the FDA
approval process. This is based on Dana Natov’s
work experience with Gold Standard
Diagnostics and engineering for the medical
field. We would also require significantly more
testing of the design to prove that it can safely
dispense medication. Testing and documentation
are not the only necessary changes to help
compete in the market.

Significant software changes are
required to improve functionality as well as
assist in scalability. Most of the code
functionality implemented in our software,
including the C and Python code, utilize
functions from pre-existing libraries. In order to
ensure full ownership, improve processing
speed, and ensure cheap scalability, we must
write our own libraries and functions. Doing so
would improve code processing speed by
reducing unnecessary functions and only
processing the code we need. Proprietary code
will also ensure no outside entity could claim
ownership to any part of our project. Lastly, lean
and original code will ensure maximum

scalability by reducing any costs, which would
be paid to license third party code, to zero.

The hardware changes that would
improve market viability are similar to those that
are necessary for the software. We are currently
using three different microcontrollers in the
DispenSUM design. We can reduce the number
of microcontrollers by utilizing a multi-core
microprocessor capable of supporting a full
operating system such as Linux. Doing so will
allow us to control the various design
components, host a full graphical user interface
as well as reduce the cost in terms of scalability.
The ARM microcontroller family is currently
the most viable candidate to replace our three
different microcontrollers. They are low power,
support operating system functionality, have
multiple cores, and their speed is more than
required to operate our hardware and software
simultaneously [10]. Reducing our
microcontrollers from three to one would reduce
production costs and speed up development
time. We can also reduce cost by not using the
proprietary Raspberry Pi touch screen, replacing
it with a lower cost touch screen and generic
LCD driver. The aluminium extrusion utilized
for framing should also be reduced or replaced
with cheaper materials such as plastic. This will
reduce unit production cost and allow for more
competitive market pricing or a greater net profit
per unit.

The findings from our Market Review
Report indicate that we are on track with the
current development trends [7]. We also found
that the current return on investment for
products similar to the DispenSUM design is
low [6]. Implementing the changes discussed
here will reduce the production cost per unit and
drive the price down in terms of large scale
production. It will also encourage faster
development times with the reduction from three
microcontrollers to one. Further testing and

12

College of Engineering and Computer Science - California State University, Sacramento

documentation will expedite the regulatory
validation requirements the design must pass
through. Collectively, the changes can either
reduce the cost to the end user or increase the
rate of return on investment for the design.
Either outcome will increase the DispenSUM
design’s ability to compete in the medication
control and distribution market.

X. CONCLUSION

Medication non-adherence is a prevalent
issue in our society. We decided to tackle this
societal problem implementing an engineering
solution. With a few changes in our product
DispenSUM, we believe that it has the potential
to make an impact on the problem of medication
non-adherence. We also believe that our product
has significant aspects that differentiate from
other products on the market. Our design
process consisted of meticulous research,
constant iteration and principal guidelines. We
believe our design would suffer substantially if
these guidelines did not exist. We deem
DispenSUM to be successful in demonstrating
our ability as future engineers and a genuine
product that is marketable beyond the scope of
this course.

REFERENCES

[1] R. Scott Leslie (2013, July, 19).
Pharmaceutical Programming. [Online],
Available:
http://www.wuss.org/proceedings08/08WU
SS%20Proceedings/papers/anl/anl09.pdf
[2] W. H. Organization, E. Sabate, W. H. O.
Staff, and Sabate Eduardo, Adherence to
long-term therapies: Evidence for action.
Geneva: World Health Organization, 2003.
[3] Medication Adherence - “Taking Your
Meds as Directed.” American Heart
Association.

o as

[4] Code of Federal Regulations 72 FR
59177, Oct. 19, 2007
[5] Guidance for Industry and FDA Staff:

Class Il Special Controls Guidance
Document: Remote Medication
Management System, FDA

[6] Transparency Market Research,

“Medication Management Market - Global
Industry Analysis, Size, Share, Growth,
Tends and Forecas, 2016-2024,” 2016.
[Online]. Available:
http://www.transparencymarketresearch.co
m/medication-management-market.html

[7] Benjamin Green, et al. "Market Analysis
and Review," California State University,
Sacramento, 2017

[8] Code of Federal Regulations 72 FR
59177, Oct. 19, 2007

[9] Guidance for Industry and FDA Staff:
Class Il Special Controls Guidance
Document: Remote Medication
Management System, FDA

[10] ARM Ltd., "www.arm.com,"
ARM Ltd., 1995 - 2017. [Online].
Available:
https://www.arm.com/products/processors.
[Accessed 1 May 2017].

GLOSSARY

CAD - Acronym for Computer Aided
Design
Cartridge - One of the main parts of our
design. The cartridge is a separate entity
from the main unit that will hold all
medication. The cartridge is designed to be
swappable and will come with pre-
programmed medical instructions.
DispenSUM - The project name for Group
four’s senior design project
FDA - U.S. Food and Drug Administration
GUI - Graphical User Interface
Medication Adherence - Adherence to, or
compliance with, a medication regimen is
generally defined as the extent to which a
person takes medications as prescribed by
their healthcare providers.
RFID - Radio-Frequency IDentification
13

College of Engineering and Computer Science - California State University, Sacramento

http://www.transparencymarketresearch.com/medication-management-market.html
http://www.transparencymarketresearch.com/medication-management-market.html

8.

9.

Rotary Carousel - The rotating portion of 10. SUM - Safety, User Friendly, and
the dispense module Medication Adherence

Slip Ring - A rotating brushed contact 11. WBS - Work Breakdown Structure
design that enables a circuit to maintain

contact through continuous 360 degree

rotation

College of Engineering and Computer Science - California State University, Sacramento

14

Pharmacist User Manual

Step one open application:

dispen¥® Um

Patient Medication Form
PATIENT INFORMATION
Name:
Emnail Address: |
Emergency Contact Name: |
Emergency Contact Email Address: |

MEDICATION INFORMATION

Name/Strength:

Quantity:

Dose (number of pills taken each time): l

Frequency (number of times taken per day):

Medication Instructions:

Is this an AS NEEDED medication? & Yes No

Medication Times: [~ o700 [~ 08:00 ™ 09:00 ™ 10:00 ™ 11:00 ™ 12:00 ™ 13:00
400 [T 1%00 [1&00 1700 [1800 I 1200 [20:00

Submit | Cancel |

Figure 1 Patient Medication Form

Step two load information:

- Fill in all name and contact information accordingly. (no more then 28 characters allowed
including spaces)

- Quantity, Dose, and Frequency only numerical value allowed

- Must select yes or no to “As Needed” field

- Then number of time stamps check need to match frequency number

Step three transfer data:

A-1

Figure 2 Bottom of cartridge and memory sticker Figure 3 Medication Cartridge

- Make sure that the cartridge has an RFID Tag or Memory Sticker at the bottom of it

Figure 4 Data Transfer Box Figure 5 Cartridge and DTB

- Place cartridge onto the data transfer box(DTB) like shown in Figure 5
- Then select the Submit button on screen

100 [1&00 [17:00

Submitl Cancel |

Figure 6 Fill Forum Submit Buttom

A-2

Home User Manual

Loading The Medication:

Step 1: Power on device

Step 2: Select the load button on screen

=

dispen TjM

Safety, User Friendly, Medication Adherence

01:29-

Wednesday, April 26, 2017

O o

LOAD Medication

Figure 7 Main Menu

A-3

Step 3: Insert Cartridge into the holder upside down with the opening side closest to you.

Figure 8 Cartridge Holder

Step 4: Check to see if medication is loading by pressing the Medication button

If you don’t see you medication on the list either try again or press the help button and your
caregiver will be notified

Medication List
Panadol Pill Count | DISPENSE
Nexium Pill Count
Abilify Pill Count
Lipitor Pill Count
Hydrocodone Pill Count
Aspirin Pill Count = DISPENSE
Plavix Pill Count
Amoxicillin Pill Count
Back

Figure 9 Medication List

Taking Your Medication:

Now comes the easy part all you have to do is wait for the notification sound to go off and then press the
dispense button

Figure 10 Help and Dispense Button

A-5

Appendix B - Hardware

. Micrcontroller

The microcontroller is the one of main
components of the DispenSUM design, as it is
responsible for performing all the functions and
commands of pill-dispensing. We decided early
on that our design would require two
microcontrollers, the Arduino Uno and the
Raspberry Pi. A third microcontroller was
implemented to offload the processing demands
of the load cell scale. The Adafruit Trinket,
shown in Figure 1, was chosen for its small
footprint, fast processing power, and the desired
number of input and output pins it has.

Figure 1 - The Adafruit Trinket Microcontroller — image
provided by Adafruit

The addition of the Trinket microcontroller is
necessary due to the processing demands of both
the load cell scale and stepper motors. The two
required fast code execution times.

Our design required the Arduino Uno and
Raspberry Pi. pictured in Figure 2 and 3, to be
able to interact with one another, therefore the
USB port was used for communication between
Arduino and the Raspberry Pi.

B1

Figure 2 - The Arduino Uno Microcontroller — image
provided by Arduino

The third microcontroller that was used
was the Raspberry Pi 3. For the device we have
the Raspberry Pi connected to the internet via
Wifi, and it sends signals to the Arduino via the
serial console through the USB communication
port. Having the Raspberry Pi automatically
connect to the internet is a key feature because it
provides our device with an accurate clock which
is need as medication is dispensed on a time
schedule.

Figure 3 - The Raspberry Pi 3 Model B System on a Chip -
image provided by Raspberry Pi Foundation

1. User Interface

The Raspberry Pi hosts a custom
graphical user interface, utilizing a touch screen
for user interface. Two large tactile push buttons
are also implemented for easy user interaction.
Figure 5 shows the touch screen and the two
tactile pushbuttons.

—_—

. — =

Figure 4 - The DispenSUM design with the touchscreen
mounted on the top and the help and dispense button
located on the bottom left of the design

The Raspberry Pi touch screen is the proprietary
touch screen offered directly from the Raspberry
Pi foundation. Figure 6 is the touch screen,
unmounted.

LAPACITIVE: Taaticm u,
oM ADarRGe

Figure 5 - The Unmounted Raspberry Pi touch screen —
image provided by Raspberry Pi Foundation

Il. Mechanical Drive Hardware

The hardware utilized for the drive
system of the DispenSUM design include two 12
V 500 mA per phase NEMA 17 stepper motors,
two Pololu DRV8825 stepper motor drivers, a
single 7.2 V 180-degree non-continuous Servo,
and a single buck converter. Figure 6 is an image
of the NEMA 17 stepper motor mounted in the
design.

B2

Figure 6 - The NEMA 17 stepper motor mounted in the
DispenSUM design, driving the rotary carousel

The NEMA 17 motors require driver circuits to
function. We chose the Pololu DRV8825 motor
drivers, shown in Figure 7.

see’snu e

i
| AAAAKARANARARNAR ~
‘FEERE R R R AR
O ﬂVbU“H”uqunw” B

=

=

@ wom voon sen [

)
Figure 7- The Pololu DRV8825 stepper motor driver —

image provided by Pololu Corporation

Figure 8 is an image of the servo mounted in the
DispenSUM design.

Figure 8 - The servo mounted in the design

The servo requires 7.2 V to operate so we utilized
a buck converter to step the 12 V supply voltage
to 7.2 V. Figure 9 is an image of the DROK buck
converter implemented in our project.

Figure 9 - The DROK buck converter

IV. Feedback Systems

There are multiple sensors and a RFID
communication device utilized for feedback
systems in the DispenSUM design. These sensors
include a Uxcel load cell and SMAKN HX711
weighing sensor AD module for the load cell, a
modified QTI sensor, and the MIFARE RFID
reader. Figure 10 is the load cell.

B3

Figure 10 - The load cell mounted under the QTI chute and
weigh plate

Figure 11 is an image of the HX711 weighing
sensor mounted in the design.

Figure 11 - The SMAKN HX711 weighing sensor

Figure 12 is an image of the modified QTI
sensor mounted on the pill chute.

Figure 12 - The modified QTI sensor mounted onto the pill
chute

Figure 13 is an image of the MIFARE RFID
reader implemented in the design.

Figure 13 - The MIFARE RFID reader — Image provided
by Gear Best

B4

Appendix C. Software

. Software System Overview

The software for this project is broken down into several parts which is shown below in Figure 1. By splitting
the software into several parts we were able to work on different parts simultaneously and it made the testing
process more efficient. There is four main software parts and they all depend on one another for correct functioning.
The pharmacist GUI was the first program that was created and this was integrated with the RFID code which is a

Device Software
System

Al User/Interaction

GU

Load Cartridge

Raspberry Pi

Medication
Schedule/Dispense

crucial part of the overall software system as connects the
pharmacist GUI to the codes on the Raspberry Pi.
Figure 1. Software Block Diagram

Il. Pharmacist GUI
The purpose of the pharmacist GUI program is to obtain
medication information for our device. Below in figure 2. is a
flowchart showing how the program functions. Included in the
flowchart is the RFID code which will be covered in more detail in
the RFID section on this appendix.

A. Code

The pharmacist GUI program was written in python
language using the Tkinter package and the code is shown
below.

#!/usr/bin/python

from Tkinter import *
from PIL import ImageTk, Image

#if user presses the tab key the cursor
moves to the next text widget
def focus next window(event):
event.widget.tk focusNext () .focus()
return ("break")

Flowchart

Start
Pharmacist GUI

Enter patient information (Name, Email Address,
' Emergency Contact Name, Emergency Contact Email
Address) and medication information (Name/Strength,
Quantity, Dose, Frequency, Medication Instructions)

"As Needed"
Medication

Select medication
times

Error
message

Does the number of
selected medication
equal the entered
medication dose?

Error NG Is user input
message entry valid?

Run RFID
code

Figure 2. Pharmacist GUI

#check if number of medication times entered and selected match

C-1

def count () :
button count = checkVarO.get() + checkVarl.get() + checkVar2.get()
checkVar3.get () + checkVard.get () + checkVarb5.get() + checkVar6.get () +
checkVar7.get () + checkVar8.get () + checkVar9.get() + checkVarlO.get () +
checkVarll.get () + checkVarl2.get () + checkVarl3.get ()

print
freq s
freq i

button count
tring = frequency.get("1.0", 'end-1c')
nt = int(freq string)

if button count > freq int:

match entere

change medic

tl = Toplevel (root)
tl.configure (bg='white')
tl.geometry ("600x100")

w = 600

h = 100

get screen width and height
ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()
x = (ws/2) - (w/2)

y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed
tl.geometry ('%dxsd+3d+sd' % (w, h, x, v))

#tl.grab_set () #had to comment out on RPi
tl.attributes ("-topmost", True)

Label (tl, text="'Number of selected medication times does not
d medication frequency') .pack(padx=10, pady=5)

Label (tl, text='Please deselect one of the medication time or
ation frequency to continue') .pack (padx=10)

#tl.grab_release()
bl = Button(tl, text="0k", bg='white',

command=tl.destroy) .pack (pady=10)

#enables
def enabl
check0
checkl
check?2
check3
checkd
check5
checko6
check?
check8
check9
checkl
checkl
checkl
checkl

#disables
def disab
checkO
checkl
check?2
check3
check4
check5

medication time checkboxes
e():

.config(state=NORMAL)
.config(state=NORMAL)
.config(state=NORMAL)
.config(state=NORMAL)
.config(state=NORMAL)
.config(state=NORMAL)
.config(state=NORMAL)
.config(state=NORMAL)
.config(state=NORMAL)
.config(state=NORMAL)
0.config(state=NORMAL)
l.config(state=NORMAL)
2.config(state=NORMAL)
3.config(state=NORMAL)

medication time checkboxes
le():

.config
.config
.config
.config
.config
.config

state=DISABLED)
state=DISABLED)
state=DISABLED)
state=DISABLED)
state=DISABLED)
state=DISABLED)

o~~~ o~ o~ —~

+

C-2

check6.config(state=DISABLED
check7.config(state=DISABLED
check8.config(state=DISABLED
check9.config(state=DISABLED

)
)
)
)
checkl0.config(state=DISABLED
checkll.config(state=DISABLED
checkl2.config(state=DISABLED
checkl3.config(state=DISABLED

)
)
)
)

def getDatal():
#check if text widgets are empty
if name.compare ("end-1c", "==", "1.0"):

bg='white')

bg='white"')

tl = Toplevel (root)
tl.configure (bg='white')
tl.geometry ("400x100")

w = 400

h = 100

get screen width and height
ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()
x = (ws/2) - (w/2)

y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed
tl.geometry ('%dx%sd+%d+%d' % (w, h, x, vy))

tl.grab_set()

tl.attributes ("-topmost", True)

Label (tl, text='Patient Name entry invalid',

.pack (padx=10, pady=5)

Label (tl, text='Please complete this field to continue’',

.pack (padx=10)

#tl.grab release()
bl = Button(tl, text="Ok", bg='white',

command=tl.destroy) .pack (pady=5)

return

if name addr.compare ("end-1lc", "==", "1.0"):

bg="white"')

bg='white')

t2 = Toplevel (root)
t2.configure (bg='white')
t2.geometry ("400x100")

w = 400

h = 100

get screen width and height
ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()
x = (ws/2) - (w/2)

y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed
t2.geometry ('%dxsd+%d+%d' & (w, h, x, vy))

t2.grab_set()

t2.attributes ("-topmost", True)

Label (t2, text='Patient Name Email Address entry invalid',

.pack (padx=10, pady=5)

Label (t2, text='Please complete this field to continue',

.pack (padx=10)

#tl.grab release()

C-3

bl = Button(t2, text="0k", bg='white',

command=t2.destroy) .pack (pady=5)

if emergency name.compare ("end-1lc",

bg='white"')

bg='white')

.pack (padx=10,

return

"==", "1.0"):

t3 = Toplevel (root)

t3.configure (bg='white')

t3.geometry ("400x100")

w = 400

h = 100

get screen width and height

ws = root.winfo screenwidth ()

hs = root.winfo screenheight ()

x = (ws/2) - (w/2)

y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed
t3.geometry ('%dxsd+3d+sd' % (w, h, x, v))
t3.grab_set()

t3.attributes ("-topmost", True)

Label (t3, text='Emergency Contact Name entry invalid',
pady=5)

Label (t3, text='Please complete this field to continue',

.pack (padx=10)

#tl.grab release ()

bl = Button(t3, text="0k", bg='white',

command=t3.destroy) .pack (pady=5)

if emergency addr.compare ("end-1lc",

bg='white')

bg="white"')

.pack (padx=10,

return

"==", "1.0"):

t4= Toplevel (root)

td4.configure (bg='white"')

t4.geometry ("400x100")

w = 400

h = 100

get screen width and height

ws = root.winfo screenwidth ()

hs = root.winfo screenheight ()

X (ws/2) = (w/2)

Yy (hs/2) - (h/2)

set the dimensions of the screen and where it is placed
td.geometry ('%dxsd+3d+sd' % (w, h, x, v))

td.grab_set()

td4.attributes ("-topmost", True)

Label (t4, text='Emergency Contact Email Address entry invalid’,
pady=5)

text="'Please complete this field to continue’',

Label (t4,

.pack (padx=10)

#tl.grab release()

bl = Button(t4, text="0k", bg='white',

command=t4.destroy) .pack (pady=5)

if med name.compare ("end-1c",

return

u::u, "1.0") .

t5 = Toplevel (root)
t5.configure (bg='white')

C-4

bg='white')

bg='white')

t5.geometry ("400x100")

w = 400

h = 100

get screen width and height
ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()
x = (ws/2) - (w/2)

y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed
t5.geometry ('%dx%d+%d+%d' $ (w, h, x, Vy))

t5.grab_set()

t5.attributes ("-topmost", True)

Label (t5, text='Medication Name entry invalid',

.pack (padx=10, pady=5)

Label (t5, text='Please complete this field to continue’',

.pack (padx=10)

#tl.grab_release()
bl = Button(t5, text="O0k", bg='white',

command=t5.destroy) .pack (pady=5)

return

if gquantity.compare ("end-1c", "==", "1.0"):

bg='white')

bg='white"')

t6 = Toplevel (root)
t6.configure (bg="'white"')
t6.geometry ("400x100")

w = 400

h = 100

get screen width and height
ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()
X = (ws/2) - (w/2)

y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed
t6.geometry ('%dxsd+3d+sd' % (w, h, x, v))

t6.grab _set()

t6.attributes ("-topmost", True)

Label (t6, text='Medication Quantity entry invalid',

.pack (padx=10, pady=5)

Label (t6, text='Please complete this field to continue',

.pack (padx=10)

#tl.grab release()
bl = Button(t6, text="0k", bg='white',

command=t6.destroy) .pack (pady=5)

else:

return

try:
quantity string = quantity.get("1.0", 'end-1lc')
quantity int = int(quantity string)
print 'true'
except:
print 'false'
t7 = Toplevel (root)
t7.configure (bg='white')
t7.geometry ("400x100")
w = 400

C-5

bg="'white')

continue',

command=t7.

h = 100
get screen width and height

ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()
x = (ws/2) - (w/2)
y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed

t7.geometry ('%dxsd+%d+sd' % (w, h, x, v))

t7.grab_set()

t7.attributes ("-topmost", True)

Label (t7, text='Medication Quantity entry invalid',
.pack (padx=10, pady=5)

Label (t7, text='Please enter in a valid number to
bg='white') .pack (padx=10)

#tl.grab_release ()

bl = Button(t7, text="0k", bg='white',
destroy) .pack (pady=5)

return

if dose.compare ("end-1lc", "==", "1.0"):

bg='white"')

bg='white')

command=t8.

else:

t8 = Toplevel (root)
t8.geometry ("400x100")
t8.configure (bg="'white') »

w = 400

h = 100

get screen width and height
ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()
x = (ws/2) - (w/2)

y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed
t8.geometry ('%dxsd+%d+%d' & (w, h, x, Vy))

t8.grab_set ()

t8.attributes ("-topmost", True)

Label (t8, text='Medication Dose entry invalid',

.pack (padx=10, pady=5)

Label (t8, text='Please complete this field to continue',
.pack (padx=10)

#tl.grab release()
bl = Button(t8, text="0k", bg='white',
destroy) .pack (pady=5)

return

try:
dose string = dose.get ("1.0", 'end-1lc')
dose_int = int(dose string)
print 'true'

except:

print 'false'

t9 = Toplevel (root)
t9.configure (bg='white')
t9.geometry ("400x100")

w = 400

h = 100

get screen width and height

C-6

ws = root.winfo screenwidth ()

hs = root.winfo screenheight ()
x = (ws/2) - (w/2)
y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed

t9.geometry ('%dxsd+%d+%d' & (w, h, x, Vy))

t9.grab_set ()

t9.attributes ("-topmost", True)

Label (t9, text='Medication Dose entry invalid',
bg='white') .pack (padx=10, pady=5)

Label (t9, text='Please enter in a valid number to
continue', bg='white') .pack (padx=10)

#tl.grab release()

bl = Button(t9, text="0k", bg='white',
command=t9.destroy) .pack (pady=5)

return

if frequency.compare ("end-1lc", "==", "1.0"):
t10 = Toplevel (root)
tl10.configure (bg="'white"')
£t10.geometry ("400x100™)

w = 400

h = 100

get screen width and height
ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()
x = (ws/2) - (w/2)

y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed

tl10.geometry ('%dx%sd+%d+%d' $ (w, h, x, y))

tl0.grab set()

tl0.attributes ("-topmost", True)

Label (t10, text='Medication Frequency entry invalid',
bg='white') .pack (padx=10, pady=5)

Label (t10, text='Please complete this field to continue',
bg='white') .pack (padx=10)

#tl.grab release()
bl = Button(tl0, text="0k", bg='white',
command=t1l0.destroy) .pack (pady=5)
return
else:

try:
f string = frequency.get("1.0", 'end-lc')
f int = int(f string)
print 'true'

except:
print 'false'
tll = Toplevel (root)
tll.geometry ("400x100™)

w = 400
h = 100
get screen width and height
ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()

x = (ws/2) - (w/2)

y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed

tll.geometry ('%dxsd+%d+sd' % (w, h, x, v))

tll.grab set()

tll.attributes ("-topmost", True)

Label (tl1ll, text='Medication Quantity entry invalid',
bg='white') .pack (padx=10, pady=5)

Label (tll, text='Please enter in a valid number to
continue', bg='white') .pack (padx=10)

#tl.grab_release ()

bl = Button(tll, text="0k", bg='white',
command=tll.destroy) .pack (pady=5)

return

if var _ans.get() == 0:
tl2 = Toplevel (root)
tl2.configure (bg='white"')
tl2.geometry ("400x100"™)

w = 400

h = 100

get screen width and height
ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()
x = (ws/2) - (w/2)

y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed

tl2.geometry ('%dxsd+%d+sd' % (w, h, x, v))

tl2.grab_set()

tl2.attributes ("-topmost", True)

Label (tl2, text='Is this an AS NEEDED medication?',
bg='white') .pack (padx=10, pady=5)

Label (tl2, text='Please provide an answer on the medication
form', bg='white') .pack(padx=10)

#tl.grab release()

bl = Button(tl2, text="0k", bg='white',
command=t12.destroy) .pack (pady=5)

return

button count = checkVar0O.get() + checkVarl.get() + checkVar2.get() +
checkVar3.get () + checkVard.get () + checkVarb5.get() + checkVar6.get () +
checkVar7.get () + checkVar8.get () + checkVar9.get() + checkVarlO.get () +
checkVarll.get () + checkVarl2.get() + checkVarl3.get()

print button count

freq string = frequency.get("1.0", 'end-1lc')

freq int = int(freq string)

print freqg int

if var ans.get() == 2 and button count != freq int:
t13 = Toplevel (root)
tl3.configure (bg='white"')
tl13.geometry ("600x100"™)

w = 600
h = 100
get screen width and height
ws = root.winfo screenwidth ()

C-8

match entered medication frequency',

frequency to continue',

command=t13.

else:

> checkbox state

hs

root.winfo screenheight ()

X = (ws/2) (w/2)

y = (hs/2) (h/2)

set the dimensions of the screen and where it is placed

tl13.geometry ('%dx%d+%d+%d' $ (w, h, x, y))
tl3.grab_set()
tl3.attributes ("-topmost", True)

Label (t13, text='Number of selected medication times does not
bg='white') .pack (padx=10, pady=5)
text='Please change medication time or medication

bg='white') .pack (padx=10)

Label (tl13,

#tl.grab release()

bl = Button(tl3, text="0k", bg='white',
destroy) .pack (pady=10)

return

filel = open("Data.txt", "w+")

na = ("%s#" % name.get("1.0", 'end-1c'))

addr = ("%$s#" % name_addr.get("1.0", 'end-1lc'))
ename = ("%s#" % emergency name.get ("1.0", 'end-1lc'))
eaddr= ("%s#" % emergency addr.get("1.0", 'end-lc'))
mname = ("%s#" % med name.get ("1.0", 'end-lc'))
quant = ("$s#" $ quantity.get("1.0", 'end-1lc'))
f = ("$s#" % frequency.get("1.0", 'end-1c'))

d = ("%$s#" % dose.get("1.0", 'end-1lc'))

nt = ("%$s#" % notes.get("1.0", 'end-1lc'))
filel.write("%$s\n" % na)

filel.write("%$s\n" % addr)

filel.write("%$s\n" % ename)

filel.write("%$s\n" % eaddr)

filel.write("%$s\n" % mname)

filel.write ("%$s\n" % quant)

filel.write("%$s\n" % f)

filel.write("%$s\n" % d)

filel.write("%s\n" % nt)

if var _ans.get() ==
filel.write ("As needed#\n")
if var_ans.get()

filel.write ("Schedule#\n")

#checkbox selected --> checkbox state checkbox unselected --

0

1;

if checkVarO.get () ==
filel.write ("7#\n")
if checkVarl.get () == 1:
filel.write ("8#\n")
if checkVar2.get () ==
filel.write ("94#\n")
if checkVar3.get () ==
filel.write ("10#\n")
if checkVard.get () ==
filel.write("11#\n")
if checkVar5.get () ==

C-9

filel.write ("12#\n")
if checkVar6.get () ==

filel.write ("13#\n")
if checkVar7.get () ==

filel.write ("14#\n")
if checkVar8.get () ==

filel.write ("15#\n")
if checkVar9.get () ==

filel.write ("16#\n")
if checkVarlO.get () == 1:
filel.write ("17#\n")
if checkVarll.get () == 1:
filel.write ("18#\n")
if checkVarl2.get() == 1:
filel.write ("19#\n")
if checkVarl3.get () == 1:
filel.write ("20#\n")
filel.write("!")
filel.close()
root.destroy ()
root = Tk{()
root.configure (bg='white')
root.geometry ("700x680")
w = 700
h = 680
get screen width and height
ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()
X = (ws/2) - (w/2)
y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed

root.geometry ('%dx%sd+%d+%d' % (w, h, x, vy))
root.title ('DispenSUM Medication Form')

framel = Frame(root, bg='white')
heading = Label (framel, text="Patient Medication Form ",

font="None 18", bg='white')
heading.grid(row=0, column=0, sticky=S)

temp = Image.open ("image.jpg")

temp = temp.save ("image.ppm", "ppm")

image = PhotoImage (file = "image.ppm")

imagepanel = Label (framel, image=image, bg='white')

imagepanel.grid(row=0, column=1l, sticky=E)

framel.grid columnconfigure (0, weight=1)
framel.grid columnconfigure (1, weight=1)

frame2 = Frame (root, bg='SteelBlue3', width=85)
subheadingl = Label (frame2, text="PATIENT INFORMATION", font="None 12

bold", bg='SteelBlue3', fg='white')
subheadingl.pack()

C-10

frame3 = Frame (root, bg='white')

Label (frame3, text="Name:", width=35, anchor=W, bg='white').grid(row=0,
column=0, sticky=E)

name = Text (frame3, bd=3, width=50, height=1, relief=SUNKEN, bg='white')

name.grid (row=0, column=1, sticky=W)

name.bind ("<Tab>", focus next window)

Label (frame3, text="Email Address:", width=35, anchor=Ww,
bg='white') .grid(row=1, column=0, sticky=E, pady=10)

name addr = Text (frame3, bd=3, width=50, height=1l, relief=SUNKEN,
bg="'white')

name addr.grid(row=1, column=1, sticky=W)

name addr.bind("<Tab>", focus next window)

Label (frame3, text="Emergency Contact Name:", width=35, anchor=W,
bg='white') .grid(row=2, column=0, sticky=E)

emergency name = Text (frame3, bd=3, width=50, height=1, relief=SUNKEN,
bg='white')

emergency name.grid(row=2, column=1l, sticky=W)

emergency name.bind("<Tab>", focus next window)

Label (frame3, text="Emergency Contact Email Address:", width=35, anchor=W,
bg='white') .grid(row=3, column=0, sticky=E, pady=10)

emergency addr = Text (frame3, bd=3, width=50, height=1, relief=SUNKEN,
bg='white"')

emergency addr.grid(row=3, column=1l, sticky=W)

emergency addr.bind("<Tab>", focus next window)

frame3.grid columnconfigure (0, weight=1)
frame3.grid columnconfigure(l, weight=1)

framed4 = Frame (root, bg='SteelBlue3')

subheading2 = Label (frame4, text="MEDICATION INFORMATION", font="None, 12
bold", bg='SteelBlue3', fg='white')
subheading2.pack ()

frame5 = Frame (root, bg='white')

Label (frameb, text="Name/Strength:", width=35, anchor=Ww,
bg='white') .grid(row=0, column=0, sticky=E)

med name = Text (frame5, bd=3, width=50, height=1, relief=SUNKEN,
bg='white')

med name.grid(row=0, column=1l, sticky=W)

med name.bind("<Tab>", focus next window)

Label (frame5, text="Quantity:", width=35, anchor=W,
bg='white') .grid(row=1, column=0, sticky=E, pady=10)

quantity = Text (frameb, bd=3, width=50, height=1, relief=SUNKEN,
bg='white')

quantity.grid(row=1, column=1, sticky=W)

quantity.bind ("<Tab>", focus next window)

Label (frameb5, text="Dose (number of pills taken each time):", width=35,
anchor=W, bg='white') .grid(row=2, column=0, sticky=E)
dose = Text (frameb5, bd=3, width=50, height=1l, relief=SUNKEN, bg='white')

C-11

dose.grid

(row=2, column=1, sticky=W)

width=35,

dose.bind ("<Tab>", focus next window)

Label (frameb, text="Frequency (number of times taken per day):",
anchor=W, bg='white').grid(row=3, column=0, sticky=E, pady=10)

frequency = Text (frameb5, bd=3, width=50, height=1, relief=SUNKEN,
bg="'white')

frequency.grid(row=3, column=1, sticky=W)

frequency.bind ("<Tab>", focus next window)

Label (frame5, text="Medication Instructions:", width=35, anchor=W,
bg='white') .grid(row=4, column=0, sticky=E)

notes = T
notes.gri
notes.bin

frameb5.gr
frameb5.gr

frame6 =

ext (frameb5, bd=3, width=50, height=4, relief=SUNKEN, bg='white')

d(row=4, column=1, sticky=W)
d("<Tab>", focus next window)

id columnconfigure (0, weight=1)
id columnconfigure(l, weight=1)

Frame (root, bg='white')

Label (frame6, text="Is this an AS NEEDED medication?", anchor=W,

bg='white') .grid(row=0, column=0, columnspan=2, sticky=W, pady=10)

var_ans = IntVar ()

Radiobutton (frame6, text="Yes", variable=var ans, value=1l, bg='white',
highlightbackground='white', command=disable).grid(row=0, column=2, padx=10,
sticky=W)

Radiobutton (frame6, text="No", variable=var ans, value=2, bg='white',
highlightbackground='white', command=enable).grid(row=0, column=3, sticky=W)

Label (frame6, text="Medication Times:", anchor=W, width=20,
bg='white') .grid(row=1, column=0, sticky=E)

checkVar0 = IntVar ()

checkO = Checkbutton (frame6, text="07:00", variable=checkVar0, bg='white',
highlightbackground='white', command=count)

checkO.grid(row=1, column=1, sticky=W)

checkVarl = IntVar ()

checkl = Checkbutton (frame6, text="08:00", variable=checkVarl, bg='white',
highlightbackground='white', command=count)

checkl.grid(row=1, column=2, padx=9, sticky=W)

checkVar2 = IntVar ()

check2 = Checkbutton (frame6, text="09:00", variable=checkVar2, bg='white',
highlightbackground='white', command=count)

check2.grid(row=1, column=3, sticky=W)

checkVar3 = IntVar()

check3 = Checkbutton (frame6, text="10:00", variable=checkVar3, bg='white',
highlightbackground='white', command=count)

check3.grid(row=1, column=4, padx=9, sticky=W)

checkVar4 = IntVar ()

check4 = Checkbutton (frame6, text="11:00", variable=checkVar4, bg='white',
highlightbackground='white', command=count)

check4d.grid(row=1, column=5, sticky=W)

checkVar5 = IntVar ()

check5 = Checkbutton (frame6, text="12:00", variable=checkVar5, bg='white',
highlightbackground='white', command=count)

check5.grid(row=1, column=6, padx=9, sticky=W)

C-12

checkVar6 = IntVar ()

check6 = Checkbutton (frame6, text="13:00", variable=checkVare,

highlightbackground='white', command=count)
check6.grid (row=1, column=7, sticky=W)
checkVar7 = IntVar ()

check7 = Checkbutton (frame6, text="14:00", variable=checkVar7,

highlightbackground='white', command=count)
check7.grid (row=2, column=1, sticky=W)
checkVar8 = IntVar ()

check8 = Checkbutton (frame6, text="15:00", variable=checkVars,

highlightbackground='white', command=count)
check8.grid(row=2, column=2, padx=9, sticky=W)
checkVar9 = IntVar ()

check9 = Checkbutton (frame6, text="16:00", variable=checkVar9,

highlightbackground='white', command=count)
check9.grid (row=2, column=3, sticky=W)
checkVarl0 = IntVar()

checkl0 = Checkbutton (frame6, text="17:00", variable=checkVarloO,

bg='white', highlightbackground='white', command=count)
checkl0.grid(row=2, column=4, padx=9, sticky=W)
checkVarll = IntVar()

checkll = Checkbutton (frame6, text="18:00", variable=checkVarll,

bg='white', highlightbackground='white', command=count)
checkll.grid(row=2, column=5, sticky=W)
checkVarl2 = IntVar()

checkl?2 = Checkbutton (frame6, text="19:00", variable=checkVarl2,

bg='white',highlightbackground='white', command=count)
checkl2.grid(row=2, column=6, padx=9, sticky=W)
checkVarl3 = IntVar()

checkl3 = Checkbutton (frame6, text="20:00", variable=checkVarl3,

bg='white', highlightbackground='white', command=count)
checkl3.grid(row=2, column=7, sticky=W)

frame6.grid columnconfigure (0, weight=1)
frame6.grid columnconfigure(l, weight=1)
frame6.grid columnconfigure (2, weight=1)
frame6.grid columnconfigure (3, weight=1)
frame6.grid columnconfigure (4, weight=1)
frame6.grid columnconfigure (5, weight=1)
frame6.grid columnconfigure (6, weight=1)
frame6.grid columnconfigure (7, weight=1)
frame7 = Frame (root, bg='white')

bl = Button(frame7, text="Submit", command=getData, bg='white')

b2
bl.pack (side=LEFT,padx=10, pady=10)
b2.pack (side=LEFT,padx=10, pady=10)

framel.pack()

frame2.pack (pady=2, £i11=BOTH)
frame3.pack (padx=5)
frame4d.pack (pady=2, £ill1=BOTH)
frameb5.pack (padx=5)
frame6.pack (pady=5, padx=5)
frame7.pack ()

Button (frame7, text="Cancel", command=root.destroy,

bg='white')

bg='white',
bg='white',
bg='white',

bg='white',

C-13

root.mainloop ()

Figure 2. Pharmacist GUI Code

B. Testing

The GUI features multiple entry fields, checkboxes, and buttons. Since the purpose of the GUI is to
create a text file containing all the data entered, every component was tested for correct functionality. When
testing each text field everything worked as expected. All the dummy text entered into the text field appeared in
the text file that was created (refer to Figure 1 and Figure 2).

0 e

DispenSUM Medication Form

Patient Medication Form

Name:
Email Address:
Emergency Contact Name:

Emergency Contact Email Address:

dispen® Um

Safety, User Friendly, Medication Adherence

PATIENT INFORMATION

IJohn Smith

Ijohnsmith@gmail.com

IJane Smith

Ijanesmith@gmail.com

MEDICATION INFORMATION

Name/Strength: IHydrocodone 10mg
Quantity: ISO

Dose (number of pills taken each time): |2

Frequency (number of times taken per day): |3

Take with food
Medication Instructions:

s this an AS NEEDED medication?) Yes @ No
Medication Times: |]07:00 | 08:00 09:00 [110:00 11:00 12:00 [|13:00
"]14:00 1500 [16:00 | |17:00 18:00 | 19:00 | 20:00
Submit Cancel

Figure 1 - DispenSUM Medication Form GUI

C-14

[] ® Data.txt

John Smith#
johnsmith@gmail.com#
Jane Smith#
janesmith@gmail. com#
Hydrocodone 10mg#
50#

3%

2#

Take with food#
Schedule#

o#

12#

18#
I

Figure 2 - ASCII Text File generated from DispenSUM Medication Form GUI

In this process the button for submit was verified to be working correctly as this button is used to start
the function that creates a text file and writes to it. Also testing was run on empty text fields and the result was
that if there was a empty text field and the user pressed the submit button it would not create a text file and
write data to it. Instead a window would pop up notifying the user that they need to complete the empty text
field. Testing was completed on the checkboxes by adding a line of code which would print the state value of
the checkbox on the command line of terminal. With the GUI program running all the checkboxes were selected
and deselected one at a time. Each time a checkbox was checked a ‘1’ was printed on the command line and
when the checkbox was unchecked a ‘0’ was printed in the command line (refer to Fig 3 and Fig 4). This result
verified that the checkboxes function correctly as the state of the checkbox is 1 for checked and 0 for
unchecked.

checkVard.get() | BON | I Desktop — -bash — 72x17

cherk‘u‘arl,get(] Jennifers-MacBook-Pro-2:Desktop jenniferong$ python pharmacist.py a|
checkVar2.get()
checkVar3.get()
checkVard.get()
checkvar5.get()

checkVaré.get()
checkVar7.get()
checkVarB.get()
checkVar9.get()
checkVarld.get() |
checkVarll.get()

checkvarl2.get()]

cher:kvarla.get(] Jennifers-MacBook-Pro-2:Desktop jenniferong$ |

PRI

Figure 3 - DispenSUM Medication Form ' Figure 4 - DispenSUM Medication Form GUI command line output

GUI code for testing checkboxes

Initially the GUI program was tested on a computer running on a Mac OS however when the RFID code
was added it was tested on a Linux OS because the RFID code that is being used can only function on a Linux
OS. When running the GUI program on a Linux OS The appearance of this graphical user interface varies
slightly when run on different operating systems.

RFID
For memory connection between the pharmacist GUI and User GUI we used an RFID system. We used two

Mifare rc522 RFID read writeres. The first one was attached to an arduino uno. This system used used a modified
version of the demo code to write. Changed that were made allowed us to access all 64 sections. Couple of
limitations with this system is that we are required to have a termination character while the information is being
sent through because of this that special character can not be used for any other purposes, this can be seen in figure 2

C-15

The second thing is that there is a character limit of 28 characters for each line that can be sent though. Using a
python equivalent version of the code was used to then transfer the information from the RFID tag to the RPI.

A. Code
UNO CODE:

#include <SPI.h>

#include <MFRC522.h>

#define RST_PIN 9 /I Configurable, see typical pin layout above

#define SS_PIN 10 /I Configurable, see typical pin layout above

MFRC522 mfrc522(SS_PIN, RST_PIN); // Create MFRC522 instance

void setup() {
Serial.begin(9600); /I Initialize serial communications with the PC
SP1.begin(); /I Init SPI bus

mfrc522.PCD_Init(); /I Init MFRC522 card

Serial.printin(F("Write personal data on a MIFARE PICC "));

void loop() {

llintk =9;

/I Prepare key - all keys are set to FFFFFFFFFFFFh at chip delivery from the factory.

MFRC522::MIFARE_Key key;

for (byte i = 0; i < 6; i++) key.keyByte[i] = OxFF;

/I Look for new cards
if (! mfrc522.PICC_IsNewCardPresent()) {

return;

C-16

/I Select one of the cards

if (! mfrc522.PICC_ReadCardSerial()) return;

Serial.print(F("Card UID:")); //Dump UID

for (byte i = 0; i < mfrc522.uid.size; i++) {
Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " ");
Serial.print(mfrc522.uid.uidByte[i], HEX);

}

Serial.print(F(" PICC type: ")); // Dump PICC type

MFRC522::PICC_Type piccType = mfrc522.PICC_GetType(mfrc522.uid.sak);

Serial.printin(mfrc522.PICC_GetTypeName(piccType));

byte buffer[34];

byte block;

MFRC522::StatusCode status;

byte len;

int chip[] =
{1,2,4,5,6,8,9,10,12,13,14,16,17,18,20,21,22,24,25,26,28,29,30,32,33,34,36,37,38,40,41,42,44,45,46,48,49,50,52,53
,54,56,57,58,59,60,61,62};

int j;

for(j = 0;j <48; j++)

{

Serial.setTimeout(2000000L) ; // wait until 20 seconds for input from serial

/I Ask personal data: Family name

/[Serial.printin(j);

Serial.printin(F("Type Family name, ending with #"));
len=Serial.readBytesUntil(‘#', (char *) buffer, 30) ; // read family name from serial

for (byte i = len; i < 30; i++) buffer[i]=""; // pad with spaces

C-17

/[Serial.printIn(j);

Ff(G==3[j==71j==11]j==15[j == 19 |j == 23 [j == 27 |lj == 31 [} == 35 [j == 39 [[j == 43 [|j == 47 |j
==51j == 55||j == 59)

{
Serial.printin("Entered IF");
j++,
/Serial.printin("New J:" j);
bl

block = chipl[j];
/[Serial.printin(j);
/[Serial.printin(F(" Authenticating using key A..."));

status = mfrc522.PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A, block, &key,
&(mfrc522.uid));

if (status != MFRC522::STATUS_OK) {
Serial.print(F("PCD_Authenticate() failed:));
Serial.printin(mfrc522.GetStatusCodeName(status));
return;

}

else Serial.printin(F("PCD_Authenticate() success: "));

/I Write block

status = mfrc522.MIFARE_Write(block, buffer, 16);

if (status = MFRC522::STATUS_OK) {
Serial.print(F("MIFARE_Write() failed: "));
Serial.printin(mfrc522.GetStatusCodeName(status));

return;

}

else Serial.printin(F("MIFARE_Write() success: "));

Serial.printin(j);

jt;

C-18

Serial.printIn(j);
block = chip[j];
/ISerial.printin(F(" Authenticating using key A..."));

status = mfrc522.PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A, block, &key,
&(mfrc522.uid));

if (status I= MFRC522::STATUS_OK) {
Serial.print(F("PCD_Authenticate() failed: "));
Serial.printIn(mfrc522.GetStatusCodeName(status));

return;

/I Write block
status = mfrc522.MIFARE_Write(block, &buffer[16], 16);
if (status != MFRC522::STATUS_OK) {
Serial.print(F("MIFARE_Write() failed: "));
Serial.printin(mfrc522.GetStatusCodeName(status));
return;

¥
else Serial.printin(F("MIFARE_Write() success: "));
}
Serial.printin(" ");
mfrc522.PICC_HaltA(); // Halt PICC

mfrc522.PCD_StopCryptol(); // Stop encryption on PCD

Raspberry Pi RFID System

! /usr/bin/env python
—-*- coding: utf8 -*-

import RPi.GPIO as GPIO
import MFRC522

import signal

C-19

import sys
import time
import os

#Create File for Cartridge
orig stdout = sys.stdout

i =0

while os.path.exists ("Transfered%s.txt" %i):
i +=1

file = open("Transfered$%s.txt" %i,"w")

sys.stdout = file
continue reading = True

Capture SIGINT for cleanup when the script is aborted
def end read(signal, frame) :

global continue reading

#print "Ctrl+C captured, ending read."

fwrite to file

#file.write ("Ctrl+C captured, ending read.")

continue reading = False

GPIO.cleanup ()

Hook the SIGINT
signal.signal (signal.SIGINT, end read)

Create an object of the class MFRC522
MIFAREReader = MFRC522.MFRC522 ()

This loop keeps checking for chips. If one is near it will get the UID
and authenticate
while continue reading:

Scan for cards
(status, TagType) =
MIFAREReader .MFRC522 Request (MIFAREReader.PICC REQIDL)

If a card is found

if status == MIFAREReader.MI OK:
#print "Card detected"
#Another Write
#ffile.write ("Card detected")

Get the UID of the card
(status,uid) = MIFAREReader.MFRC522 Anticoll()

If we have the UID, continue
if status == MIFAREReader.MI OK:

Print UID

print str(uid[0])+str(uid([1l])+str(uid[2])+str (uid[3])

Write UID

#file.write "Card read UID:
"+str(uid[0])+", "+str (uid[1])+", "+str (uid[2])+", "+str (uid[3])

C-20

This is the default key for authentication
key = [0xFF,OxFF, OxFF,O0xFF, OXFF, OXFF]

Select the scanned tag
MIFAREReader .MFRC522 SelectTag (uid)

Dump the data
MIFAREReader .MFRC522 DumpClassiclK (key, uid)

Stop
MIFAREReader .MFRC522 StopCryptol ()

time.sleep(2)
file.close ()
sys.exit ()

B. Testing
Results yield a success when a tag isn’t bricked.

IV. User/Interaction GUI

The user/interaction GUI runs on the Raspberry Pi and is displayed on the attached touch screen. Below in
Figure 5 is a flowchart showing the different functions that the program executes and how the functions are
connected to one another. The RFID part of the user/interaction GUI is discussed in detail in the RFID section of
this appendix.

User/Interaction
GUI

Low Pill Notification

Load Button Display date/time Medication Button

(sends email)

RFID (transfer data
from RFID tag to
Raspberry Pi)

List patient's

S Pill Count Buttons Dispense Buttons
medication/s

Displays pill count
for the selected
medication

Dispenses the
Converts RFID text selected medication
file (decimal format)

to an ASCI| text file

Figure 5 User/Interaction GUI Flowchart

A. Code
The user/interaction GUI program was written in python language using the Tkinter package and the code

is shown below.

Note: One additional feature that it yet to be added into the program is a window that displays the name of the
medication that is being dispensed.

C-21

from Tkinter import *

from PIL import ImageTk, Image
import time

import smtplib

import RPi.GPIO as GPIO

import MFRC522

import signal

import os

import serial

#Status2Reg = 0x08

#SET UPS FOR GPIO PINS
GPIO.setmode (GPIO.BOARD)
GPIO.setup(11,GPIO.IN)
input = GPIO.input (11)

#Set Up for Time

localtime = time.localtime ()
hour = localtime.tm hour
minute = localtime.tm min
TimerVal = None

TimeValTrig = None

#Here we will be listing all variables needed for the system

#UID# is the UID
#T# is the Time Stamp

#P# will be the pill count is the system
#D# how many times the pill will be dispensed
#Feg# is how many to allow a dispense in a time window.

#LDS: this will allow us to keep track if a cartridge is loading into the

system or not

#TimerST this will let us know if we have a time going

email = None
TimerST = False

LDS1 = False
LDS2 False
LDS3 = False
LDS4 = False
LDS5 = False
LDS6 = False
LDS7 = False
LDS8 = False

UID1 = None
UID2 = None
UID3 = None
UID4 = None
UID5 = None
UID6 = None
UID7 = None
UID8 = None

C-22

Pl =

P3
P4
P5
P6 =
P7
P8 =

Feql
Feqg?2
Feqg3
Feqg4
Fegb
Fegb6
Feq7
Feqg8

D1 =
D2

D4
D5
D6
D7 =
D8 =

T2 =
T3
T4

T6
T7
T8 =

DEFI
def

time

#

need

None
None
None
None
None
None
None
None

= None
= None
= None
= None
= None
= None
= None
= None

None
None
None
None
None
None
None
None

= None

None
None
None
None
None
None
None

NI T TONS ~ e~ e e #
time () :

global timel, datel

get the current local time from the PC

time2 = time.strftime('%$I:%M')
pm_txt = "%s" % (time.strftime('3p'))
date txt = "%s, %s %s, %s" % (time.strftime('%A'),
.strftime('%$B'"), time.strftime('%d'), time.strftime('%Y'))
if time string has changed, update it
if time2 != timel:
timel = time2

clock.config(text=time2)
pm.config (text=pm txt)
date.config (text=date txt)

calls itself every 200 milliseconds to update the time display as

ed
clock.after (200, tick)

C-23

def make loadbutton () :
b = Button(frame4, compound=TOP, width=75, height=100,
font="helvetica', 12", bg='white', command=load state)
image = ImageTk.PhotoImage (file="settings.jpg")
b.config (image=image)
b.image = image
b.pack (side=LEFT, padx=5)

def make medbutton() :
b = Button (frame4, compound=TOP, width=75, height=100,

text="LOAD",

text="Medication", font="helvetica, 12", bg='white', command=med window)

image = ImageTk.PhotoImage (file="medication.jpg")
b.config(image=image)
b.image = image

b.pack (side=RIGHT, padx=5)

def As Needl():
usbCOM = serial.Serial ('/dev/ttyACMO', 9600)
usbCOM.close ()
usbCOM. open ()
usbCOM.write ('01")
usbCOM.close ()
file = open("./countl.txt"™, "r")
pill num = file.readline()
file.close()
Pl = int(pill num)
P1L = P1 -1
writeto = open("./countl.txt", "w+")

o)

writeto.write ('%d' % P1)

def As Need2():
usbCOM = serial.Serial('/dev/ttyACMO', 9600)
usbCOM.close ()
usbCOM. open ()
usbCOM.write ('02")
usbCOM.close ()
file = open("./count2.txt", "r")
pill num = file.readline()
file.close()
P2 = int(pill num)
P2 = P2 -1
writeto = open("./count2.txt", "w+")
writeto.write ('%d' % P2)

def As Need3():
usbCOM = serial.Serial('/dev/ttyACMO', 9600)
usbCOM.close ()
usbCOM. open ()
usbCOM.write ('03")
usbCOM.close ()
file = open("./count3.txt", "r")
pill num = file.readline ()
file.close()
P3 = int(pill num)
P3 = P3 -1
writeto = open("./count3.txt", "w+")
writeto.write ('%d' % P3)

C-24

def As Need4 () :

usbCOM = serial.Serial ('/dev/ttyACMO',
usbCOM.close ()

usbCOM. open ()

usbCOM.write ('04")

usbCOM.close ()

file = open("./countd.txt"™, "r")
pill num = file.readline()
file.close()

P4 = int(pill num)

P4 = P4 1

writeto = open("./countd.txt", "w+")

writeto.write ('%d' % P4)

def
usbCOM

usbCOM.
usbCOM.

usbCOM

file =

pill num =

As Need5 () :

= serial.Serial('/dev/ttyACMO',
close ()
open ()

.write('05")
usbCOM.

close ()
open ("./count5.txt",
file.readline ()

"r")

file.close()

P5 =
P5 =

int (pill num)
P5
writeto

1

= open("./count5.txt", "w+")

writeto.write('%d"' % P5)

def
usbCOM

usbCOM.
usbCOM.
usbCOM.
usbCOM.

file =

pill num =

As Need6 () :

= serial.Serial('/dev/ttyACMO',
close ()

open ()

write('06")

close ()

open ("./count6.txt",
file.readline ()

"r")

file.close()

P6 =
P6 =

int (pill num)
P6
writeto

1

= open("./count6.txt", "w+")

writeto.write('%d' % P6)

def As Need7():

usbCOM = serial.Serial('/dev/ttyACMO',
usbCOM.close ()

usbCOM. open ()

usbCOM.write ('07")

usbCOM.close ()

file = open("./count7.txt", "r")
pill num = file.readline ()
file.close()

P7 = int(pill num)

P7 = P7 -1

writeto = open("./count7.txt", "w+")

writeto.write ('%d' % P7)

9600)

9600)

9600)

9600)

C-25

def As Need8():
usbCOM = serial.Serial ('/dev/ttyACMO', 9600)
usbCOM.close ()
usbCOM. open ()
usbCOM.write ('08")
usbCOM.close ()
file = open("./count8.txt", "r")
pill num = file.readline()
file.close()
P8 = int(pill num)
P8 = P8 -1
writeto = open("./count8.txt", "w+")
writeto.write('%d' % P8)

def pill countl():
t = Toplevel (root)
t.configure (bg="'white')
t.geometry ("800x480")
t.overrideredirect (True)
w = 800
h = 480
get screen width and height
ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()
x = (ws/2) - (w/2)
y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed
t.geometry ('%dx%d+%d+%d' % (w, h, x, y))
#t.grab _set ()

file = open("./countl.txt", "r")

pill num = file.readline()

file.close ()

msg = ("Pill Count: " + str(pill num))

Label (t, text=msg, font="helvetica 22", bg='white') .pack (pady=200)
bl = Button(t, text="Back", bg='white', font="helvetica 12",

command=t.destroy) .pack ()

def pill count2():

t = Toplevel (root)
t.configure (bg='white')
t.geometry ("800x480")
t.overrideredirect (True)

w = 800

h = 480

get screen width and height
ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()
X = (ws/2) - (w/2)

y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed
t.geometry ('%dx%d+3d+3d' $ (w, h, x, vy))
#t.grab set()

file = open("./count2.txt", "r")

C-26

pill num = file.readline()
file.close()

msg = ("Pill Count: " + str(pill num))
Label (t, text=msg, font="helvetica 22", bg='white') .pack (pady=200)
bl = Button(t, text="Back", bg='white', font="helvetica 12",

command=t.destroy) .pack ()

def pill count3():

t = Toplevel (root)
t.configure (bg='white')
t.geometry ("800x480")
t.overrideredirect (True)

w = 800

h = 480

get screen width and height
ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()
x = (ws/2) - (w/2)

y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed
t.geometry ('%dx%d+%d+%d' % (w, h, x, y))
#t.grab _set ()

file = open("./count3.txt", "r")

pill num = file.readline()

file.close()

msg = ("Pill Count: " + str(pill num))

Label (t, text=msg, font="helvetica 22", bg='white') .pack (pady=200)
bl = Button(t, text="Back", bg='white', font="helvetica 12",

command=t.destroy) .pack ()

def pill count4():

t = Toplevel (root)
t.configure (bg='white')
t.geometry ("800x480")
t.overrideredirect (True)

w = 800

h = 480

get screen width and height
ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()
x = (ws/2) - (w/2)

y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed
t.geometry ('%dx%d+3d+3d"' $ (w, h, x, vy))
#t.grab set()

file = open("./countd.txt", "r")
pill num = file.readline()

file.close()

msg = ("Pill Count: " + str(pill num))

C-27

Label (t, text=msg, font="helvetica 22", bg='white') .pack (pady=200)
bl = Button(t, text="Back", bg='white', font="helvetica 12",
command=t.destroy) .pack ()

def pill count5():

t = Toplevel (root)
t.configure (bg='white')
t.geometry ("800x480")
t.overrideredirect (True)

w = 800

h = 480

get screen width and height
ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()
x = (ws/2) - (w/2)

y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed
t.geometry ('%dx%d+%d+%d' % (w, h, x, y))
#t.grab _set()

file = open("./count5.txt", "r")

pill num = file.readline()

file.close()

msg = ("Pill Count: " + str(pill num))

Label (t, text=msg, font="helvetica 22", bg='white') .pack (pady=200)
bl = Button(t, text="Back", bg='white', font="helvetica 12",

command=t.destroy) .pack ()

def pill counté6():

t = Toplevel (root)
t.configure (bg='white')
t.geometry ("800x480")
t.overrideredirect (True)

w = 800

h = 480

get screen width and height
ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()
x = (ws/2) - (w/2)

y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed
t.geometry ('%dx%d+%d+%d' % (w, h, x, y))
#t.grab set ()

file = open("./count6.txt", "r")

pill num = file.readline()
file.close()

msg = ("Pill Count: " + str(pill num))

Label (t, text=msg, font="helvetica 22", bg='white') .pack (pady=200)

bl = Button(t, text="Back", bg='white', font="helvetica 12",
command=t.destroy) .pack ()

def pill count7():

C-28

t = Toplevel (root)
t.configure (bg='white')
t.geometry ("800x480")
t.overrideredirect (True)
4

h

#

= 800

= 480

get screen width and height
ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()
x = (ws/2) - (w/2)
y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed
t.geometry ('%dx%d+%sd+%d' % (w, h, x, vy))
#t.grab set()

file = open("./count7.txt", "r")

pill num = file.readline()

file.close()

msg = ("Pill Count: " + str(pill num))

Label (t, text=msg, font="helvetica 22", bg='white') .pack (pady=200)
bl = Button(t, text="Back", bg='white', font="helvetica 12",

command=t.destroy) .pack ()

def pill count8():

t = Toplevel (root)
t.configure (bg='white')
t.geometry ("800x480")
t.overrideredirect (True)

w = 800

h = 480

get screen width and height
ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()
X = (ws/2) - (w/2)

y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed
t.geometry ('%dx%d+%d+%d' % (w, h, x, y))
#t.grab set()

file = open("./count8.txt", "r")
pill num = file.readline()
file.close()

msg = ("Pill Count: " + str(pill num))

Label (t, text=msg, font="helvetica 22", bg='white') .pack (pady=200)
bl = Button(t, text="Back", bg='white', font="helvetica 12",
command=t.destroy) .pack ()

def med window () :

= Toplevel (root)
.configure (bg="'white")
.geometry ("800x480")
.overrideredirect (True)
= 800

s ot oof of o

C-29

h = 480
get screen width and height

ws = root.winfo screenwidth ()

hs = root.winfo screenheight ()

X (ws/2) - (w/2)

y = (hs/2) - (h/2)

set the dimensions of the screen and where it is placed
t.geometry ('%dx%d+%sd+%d' % (w, h, x, vy))

heading = Label (t, text="Medication List", font="helvetica 30 bold",
bg='white')

heading.pack (pady=20)

i=0

if os.path.isfile("./Convertl.txt"):

file = open("Convertl.txt", "r")

file.readline () #id tag
file.readline () #name
file.readline () #email
file.readline () #contact name
file.readline () #contact email
read medname = file.readline() #med name
alter read medname = read medname.replace("\n", '')

file.readline

() #med quantity
file.readline (
(
(

) #med dose
) #med freq
) #med notes

file.readline
file.readline

needed schedule = file.readline() #as needed/schedule
frame = Frame(t, bg='white')

Label (frame, text=alter read medname, font="helvetica 14",
bg='white', width=35, anchor=W, pady=5).grid(row=i, column=0, sticky=W,
pady=5)

Button (frame, text="Pill Count", font="helvetica 12", bg='white',
command=pill countl, pady=5).grid(row=i, column=1, pady=5)

button = Button (frame, text="DISPENSE", font="helvetica 18",
bg='white', pady=5)

button.grid(row=i, column=2, pady=5, padx=5)

if needed schedule == "Schedule\n":

button.config(state=DISABLED)

frame.pack ()

file.close()
1 = i+1

if os.path.isfile("./Convert2.txt"):

file = open("Convert2.txt", "r")
file.readline() #id tag
file.readline #name
file.readline

#contact name
#contact email
file.readline () #med name

)
) #email
)
)

file.readline

(
(
file.readline (
(
read medname =

C-30

alter read medname = read medname.replace("\n", '")

file.readline () #med quantity
file.readline () #med dose
file.readline () #med freqg
file.readline () #med notes

needed schedule = file.readline() #as needed/schedule
frame = Frame (t, bg='white')

Label (frame, text=alter read medname, font="helvetica 14",
bg='white', width=35, anchor=W, pady=5).grid(row=i, column=0, sticky=W,
pady=5)

Button (frame, text="Pill Count", font="helvetica 12", bg='white',
command=pill count2, pady=5).grid(row=i, column=1, pady=5)

button = Button (frame, text="DISPENSE", font="helvetica 18",
bg='white', pady=5)

button.grid(row=i, column=2, pady=5, padx=5)

if needed schedule == "Schedule\n":

button.config(state=DISABLED)

frame.pack ()

file.close()
i = i+1

if os.path.isfile("./Convert3.txt"):
file = open("Convert3.txt", "r")
file.readline () #id tag
file.readline () #name
file.readline () #email
file.readline () #contact name
file.readline () #contact email
read medname = file.readline() #med name
alter read medname = read medname.replace("\n", '')
file.readline() fmed quantity
file.readline () #med dose
file.readline() #fmed freqg
file.readline () #med notes

(
(
(
(

needed schedule = file.readline() #as needed/schedule
frame = Frame(t, bg='white')

Label (frame, text=alter read medname, font="helvetica 14",
bg='white', width=35, anchor=W, pady=5).grid(row=i, column=0, sticky=W,
pady=5)

Button (frame, text="Pill Count", font="helvetica 12", bg='white',
command=pill count3, pady=5).grid(row=i, column=1, pady=5)

button = Button (frame, text="DISPENSE", font="helvetica 18",
bg='white', pady=5)

button.grid(row=i, column=2, pady=5, padx=5)

if needed schedule == "Schedule\n":

button.config(state=DISARBRLED)

frame.pack ()

file.close()

C-31

i=1i+1

if os.path.isfile("./Convertd.txt"):

file = open("Convertd.txt", "r")
file.readline () #id tag
file.readline #name
file.readline

)

) #email

) #contact name
file.readline () #contact email
read medname file.readline () #med name

altez_read_medname = read medname.replace("\n", '")

(
(
file.readline (
(

file.readline
file.readline

() #med quantity

() #med dose

() #med freq
file.readline ()

le

file.readline
#med notes
needed_ schedu = file.readline () #as needed/schedule

frame = Frame (t, bg='white')

Label (frame, text=alter read medname, font="helvetica 14",
bg='white', width=35, anchor=W, pady=5) .grid(row=i, column=0, sticky=W,
pady=5)

Button (frame, text="Pill Count", font="helvetica 12", bg='white',
command=pill count4, pady=5).grid(row=i, column=1l, pady=5)

button = Button (frame, text="DISPENSE", font="helvetica 18",
bg='white', pady=5)

button.grid(row=i, column=2, pady=5, padx=5)

if needed schedule == "Schedule\n":

button.config(state=DISABLED)

frame.pack ()

file.close()
i = i+1

if os.path.isfile("./Convert5.txt"):

file = open ("Convert5.txt", "r")
file.readline () #id tag
file.readline #name
file.readline #email

#contact name
#contact email

file.readline
file.readline

)
)
)
)

(
(
(
(
alte;_read_med
(
(

read medname file.readline () #med name

name = read medname.replace("\n", '")
file.readline() #fmed quantity
file.readline () #med dose
file.readline () #med freqg

)

file.readline (#med notes
needed schedule = file.readline() #as needed/schedule

frame = Frame(t, bg='white')
Label (frame, text=alter read medname, font="helvetica 14",

bg='white', width=35, anchor=W, pady=5).grid(row=i, column=0, sticky=W,
pady=5)

C-32

Button (frame, text="Pill Count", font="helvetica 12", bg='white',
command=pill countb5, pady=5).grid(row=i, column=1, pady=5)

button = Button (frame, text="DISPENSE", font="helvetica 18",
bg='white', pady=5)

button.grid(row=i, column=2, pady=5, padx=5)

if needed schedule == "Schedule\n":

button.config(state=DISARBRLED)
frame.pack ()

file.close()
1 = i+l

if os.path.isfile("./Convert6.txt"):

file = open("Convert6.txt", "r")

file.readline () #id tag
file.readline () #name
file.readline () #email
file.readline () #contact name
file.readline () #contact email
read medname = file.readline () #med name
alter read medname = read medname.replace("\n", '')
file.readline () #med quantity
file.readline () #med dose
file.readline () #med freq
file.readline () #med notes
needed schedule = file.readline() #as needed/schedule

frame = Frame (t, bg='white')

Label (frame, text=alter read medname, font="helvetica 14",
bg='white', width=35, anchor=W, pady=5).grid(row=i, column=0, sticky=W,
pady=5)

Button (frame, text="Pill Count", font="helvetica 12", bg='white',
command=pill count6, pady=5).grid(row=i, column=1l, pady=5)

button = Button (frame, text="DISPENSE", font="helvetica 18",
bg='white', pady=5)

button.grid(row=1i, column=2, pady=5, padx=5)

if needed schedule == "Schedule\n":

button.config(state=DISABLED)

frame.pack ()

file.close()
i = i+1

if os.path.isfile("./Convert7.txt"):

file = open ("Convert7.txt", "r")

file.readline () #id tag
file.readline() #name
file.readline () femail
file.readline () #contact name
file.readline () #contact email
read medname = file.readline() #med name
alter read medname = read medname.replace("\n", '')
file.readline() #fmed quantity
file.readline () #med dose

C-33

file.readline () #med freqg

file.readline () #med notes
needed schedule = file.readline() #as needed/schedule
frame = Frame (t, bg='white')

Label (frame, text=alter read medname, font="helvetica 14",
bg='white', width=35, anchor=W, pady=5).grid(row=i, column=0, sticky=W,
pady=5)

Button (frame, text="Pill Count", font="helvetica 12", bg='white',
command=pill count7, pady=5).grid(row=i, column=1, pady=5)

button = Button (frame, text="DISPENSE", font="helvetica 18",
bg='white', pady=5)

button.grid(row=i, column=2, pady=5, padx=5)

if needed schedule == "Schedule\n":

button.config(state=DISARBRLED)

frame.pack ()

file.close()
i = i+1

if os.path.isfile("./Convert8.txt"):

file = open("Convert8.txt", "r")
file.readline () #id tag
file.readline #name
file.readline

#contact name
#contact email

file.readline

)
) #email
)

file.readline ()

(
(
(
(
altez_read_med
(
(

read medname file.readline () #med name

name = read medname.replace("\n", ''")
file.readline() fmed quantity
file.readline () #med dose
file.readline () #med freqg

)

file.readline(#med notes
needed schedule = file.readline() #as needed/schedule

frame = Frame (t, bg='white')

Label (frame, text=alter read medname, font="helvetica 14",
bg='white', width=35, anchor=W, pady=5).grid(row=i, column=0, sticky=W,
pady=5)

Button (frame, text="Pill Count", font="helvetica 12", bg='white',
command=pill count8, pady=5).grid(row=i, column=1, pady=5)

button = Button (frame, text="DISPENSE", font="helvetica 18",
bg='white', pady=5)

button.grid(row=i, column=2, pady=5, padx=5)

if needed schedule == "Schedule\n":

button.config(state=DISARBRLED)

frame.pack()

file.close()
1 = i+1

frame2 = Frame (t, bg='white')

C-34

b ok = Button(frame2, text="Back", font="helvetica 12", bg='white',
command=t .destroy)
b ok.pack()

frame2.pack (pady=5)
#LOW PILL COUNT NOTIFICATION

def low pill():
if (GPIO.input(11l)):

to = 'nnumair@ieee.org'
gmail user = 'team4dispensum@gmail.com'
gmail pwd = 'LetsDispens'

smtpserver = smtplib.SMTP_ SSL("smtp.gmail.com",465)

smtpserver.ehlo ()

smtpserver.login(gmail user, gmail pwd)

header = 'To: ' + to + '\n' + 'From: ' + gmail user + '\n' +
'Subject: Dispensum Alert! \n'

print header

msg = header + 'The pill count in one of the cartdridges is low
refill needed soon. \n\n'

smtpserver.sendmail (gmail user, to, msg)

print 'Help Sent'

smtpserver.close ()

def help me():
if (GPIO.input(11l)):

to = 'nnumair@ieee.org’
gmail user = 'teamd4dispensum@gmail.com'
gmail pwd = 'LetsDispens'

smtpserver = smtplib.SMTP_ SSL("smtp.gmail.com",465)

smtpserver.ehlo ()

smtpserver.login(gmail user, gmail pwd)

header = 'To: ' + to + '\n' + 'From: ' + gmail user + '\n' +
'Subject: Dispensum Alert! \n'

print header

msg = header + 'Your Family Member needs help. \n\n'

smtpserver.sendmail (gmail user, to, msg)

print 'Help Sent'

smtpserver.close ()

root.after (100, help me)

Capture SIGINT for cleanup when the script is aborted
def end read(signal, frame) :

global continue reading

continue reading = False

GPIO.cleanup()

def MFRC522 StopCryptol (self):
self.ClearBitMask(self.Status2Reg, 0x08)

#LOAD STATE FOR RFID

def load state():
global LDS1
global LDS2
global LDS3
global LDS4
global LDS5

C-35

global LDS6
global LDS7
global LDSS8

while True:
if LDS1
usbCOM

usbCOM.

usbCOM.

usbCOM.

False:

serial.Serial ('/dev/ttyACMO',
close()

open ()

write('11")

time.sleep (5)

LDS1
break
if LDS2
usbCOM
usbCOM.
usbCOM.
usbCOM.

True

False:

serial.Serial ('/dev/ttyACMO',
close ()

open ()

write('12"'")

time.sleep (1)
load state

LDS2
break
if LDS3
usbCOM
usbCOM.
usbCOM.
usbCOM.

True

False:

serial.Serial ('/dev/ttyACMO',
close ()

open ()

write ('13"'")

time.sleep (1)
load state

LDS3
break
if LDS
usbCOM
usbCOM.
usbCOM.
usbCOM.
time.sl
load st
LDS4
break
if LDS
usbCOM
usbCOM.
usbCOM.
usbCOM.
time.sl
load st
LDS5
break
if LDS6
usbCOM
usbCOM.
usbCOM.
usbCOM.

True

False:

serial.Serial ('/dev/ttyACMO',
close ()

open ()

write('14")

eep (1)

ate

True

False:
serial.Serial('/dev/ttyACMO',
close ()

open ()

write('15")

eep (1)

ate

True

False:

serial.Serial ('/dev/ttyACMO',
close ()

open ()

write('1l6"'")

time.sleep (1)
load state
LDS6 True

9600)

9600)

9600)

9600)

9600)

9600)

C-36

break
if LDS7 == False:

usbCOM = serial.Serial('/dev/ttyACMO', 9600)

usbCOM.close ()
usbCOM. open ()

usbCOM.write ('17")

time.sleep (1)

load state
LDS1 = True
break

if LDS8 == False:

usbCOM = serial.Serial ('/dev/ttyACMO', 9600)

usbCOM.close ()
usbCOM. open ()

usbCOM.write ('18")

time.sleep (1)
load state
LDS8 = True
break
time.sleep (1)

#Create File for Cartridge
orig stdout = sys.stdout

i=1
if 1 == 9:
i=1
while os.path.exists ("Transferred%s.txt" %i):
i +=1
file = open("Transferred$s.txt" %$i,"w+")

sys.stdout = file

continue reading = True

Hook the SIGINT

signal.signal (signal.SIGINT, end read)

Create an object of the class MFRC522

MIFAREReader = MFRC522.

This loop keeps checking for chips.

UID and authenticate
while continue reading:

Scan for cards
(status, TagType) =

MFRC522 ()

MIFAREReader .MFRC522 Request (MIFAREReader.PICC REQIDL)

If a card is found
if status == MIFAREReader.MI OK:
#print "Card detected”

#Another Write

#file.write ("Card detected")

Get the UID of the card

(status,uid) =

MIFAREReader .MFRC522 Anticoll ()

If we have the UID, continue

If one is near it will get the

C-37

if status == MIFAREReader.MI OK:

Print UID
print str(uid[0])+str(uid[1l])+str(uid[2])+str(uid[3])
Write UID
#file.write "Card read UID:
"+str(uid[0])+", "+str(uid[1])+", "+str (uid[2])+", "+str (uid[3])

This is the default key for authentication
key = [0OxFF,O0xFF, OxFF, OxFF, OxFF, OXFF]

Select the scanned tag
MIFAREReader.MFRC522 SelectTag (uid)

Dump the data
MIFAREReader.MFRC522 DumpClassiclK(key, uid)

Stop
MIFAREReader.MFRC522 StopCryptol ()

time.sleep (2)
file.close()

break
Fronnmmnmmnn v v v v CONVERT
FILE~~~~~~rvrvmv~v~v~vv v v v v N N #
while os.path.isfile("Transferred%s.txt" %i):
filel = open("Transferred$s.txt" %i, "r")
file2 = open("Convert%s.txt" %i, "w+")
break

id tag = filel.readline()
alter id tag = id tag.replace("\n", ''")

[

file2.write("%$s \n" % alter id tag)

filel.readline () #sector O

line = filel.readline () #sector 1
alterl linel = line.replace("[", ''")

alter2 linel = alterl linel.replace("]", ',")

alter3 linel = alter2 linel.replace("\n", '')

line = filel.readline () #sector 2
alterl line2 = line.replace("[", ' ")

alter2 line2 = alterl line2.replace("]", '")

alter3 line2 = alter2 lineZ.replace(", 75, 189", '')
alter4 line2 = alter3 line2.replace("\n", '')
combine = eval('[' + alter3 linel + alterd4 line2 + ']'")
Convert = ''.join(chr (i) for i in combine)

Q

file2.write("%s \n" % Convert)

stop = "[0O, 0O, O, O, O, O, O, O, O, O, O, O, O, O, O, OI"™ + "\n"
while line and line != stop:
line = filel.readline () #sector 3

C-38

line = filel.readline () #sector 4

if line == stop:
break
alterl linel = line.replace("[10,", '')

alter2 linel
alter3 linel

alterl linel.replace("]", ',")
alter2 linel.replace("\n", ''")

line = filel.readline() #sector 5

alterl line2 = line.replace("[", ' ")

alter2 line2 = alterl line2.replace("]", '")

alter3 line2 = alter2 line2.replace(", 75, 189", ''")
alter4 line2 = alter3 line2.replace("\n", '")

combine = eval('[' + alter3 linel + alterd4 line2 + ']'")
Convert = ''.join(chr(i) for i in combine)

[

file2.write("%s \n" % Convert)

line = filel.readline () #sector 6
if line == stop:

break
alterl linel = line.replace("[10,", '")
alter2 linel = alterl linel.replace("]", ',")

alter3 linel alter2_linel.replace("\n", '

line = filel.readline() #sector 7

line = filel.readline() #sector 8

alterl line2 = line.replace("[", ' ")

alter2 line2 = alterl lineZ.replace("]", '")

alter3 line2 = alter2 line2.replace(", 75, 189", ''")
alter4 line2 = alter3 line2.replace("\n", '')

combine = eval('[' + alter3 linel + alter4 line2 + ']'")
Convert = ''.join(chr(i) for i in combine)

Q

file2.write("%s \n" % Convert)

line = filel.readline() #sector 9
if line == stop:

break
alterl linel = line.replace("[10,", '")
alter2 linel = alterl linel.replace("]", ',")

alter3 linel alter2 linel.replace("\n", '")

line = filel.readline() #sector 10

alterl line2 = line.replace("[", ' ")

alter2 line2 = alterl lineZ.replace("]", ''")

alter3 line2 = alter2 lineZ.replace(", 75, 189", '')
alter4 line2 = alter3 line2.replace("\n", '")

combine = eval('[' + alter3 linel + alter4 line2 + ']"')
Convert = '"'.join(chr(i) for i in combine)

Q

file2.write("%s \n" % Convert)

filel.close ()
file2.close()

root = Tk{()

root.geometry ("800x480")

root.overrideredirect (True)
root.configure (bg='white')

w = 800

h = 480

get screen width and height
ws = root.winfo screenwidth ()
hs = root.winfo screenheight ()
x = (ws/2) - (w/2)

y = (hs/2) - (h/2)

screen size of RPi

set the dimensions of the screen and where it is placed

Q

root.geometry ('%dxsd+%d+sd' % (w, h, x, vy))

framel = Frame (root,

bg="'white')

temp = Image.open ("user image.jpg")

temp

temp.save ("user image.ppm", "ppm")

image = PhotoImage(file = "user image.ppm")

imagepanel = Label (framel, image=image, height=175,
imagepanel.grid(row=0, column=0, sticky=N)

frame2 = Frame (root,

timel = "'
clock

bg='white"')

clock.grid(row=0, column=0, sticky=E, padx=5)

pm = Label (frame2, font=('times', 35), bg='white')
pm.grid(row=0, column=1, sticky=W, padx=5)

frame3 = Frame (root,

date = Label (frame3,
date.pack ()

time ()
framed4 = Frame (root,
make loadbutton ()

make medbutton ()

framel.pack
frame2.pack
frame3.pack
framed.pack

time.sleep(0.5)

root.mainloop ()

B. Testing

bg='white')

font=('times', 25), bg='white',

bg='white"')

111=BOTH, pady=10)

Figure 6. User/Interaction GUI Program Code

bg='white"')

Label (frame2, font=('times', 85, 'bold'), bg='white')

pady=5)

C-40

The user/interaction GUI program consists of several functions so each was testing separately before
integrating with other functions. Since this GUI program uses that text file from the RFID transfer we ran the
RFID code for transferring a file to the raspberry pi multiple times to check for consistent data transfer. Next the
convert code was tested multiple times with different RFID transfer text files to verify if it converts format of
the text file from decimal to ASCII. All the other functions Testing the program was fairly simple because it
was easy to check if the program was not functioning correctly. Since the code for dispense medication is
similar to the one in the medication schedule/dispense program no further testing was needed for that function.
All the other functions of the program were tested by running the GUI program and checking if all the widgets
(e.g. buttons, labels) appeared correctly on the Raspberry Pi screen with the correct data.

When testing the main screen of the user/interaction GUI program some of the widgets were either not
displaying properly or not aligned. The code was modified and then tested several of times before the main
screen displayed correctly with the project logo, current time, date, and two buttons. The final iteration of main
screen is shown below in Figure 7.

dispen¥ UM

Safety, User Friendly, Medication Adherence

01:29-

Wednesday, April 26, 2017

Q o

LOAD Medication

Figure 7. User/Interaction GUI Main Window

When the “Medication” button on the main screen is clicked a new window (Medication List) appears as
expected (refer to Figure 8). When testing the medication list window some of the medications did not appear
on the screen when trying to display all eight medications. However, when the font size was reduced all eight
medications displayed correctly as shown below in Figure 8. For the medication that is taken on a schedule
when the corresponding dispense button on the medication list window is clicked nothing happens because that
button is deactivated. Only the medication that is taken as needed has their dispense button enabled (refer to
Figure 8) which verifies correct functionality.

C-141

Panadol
Nexium
Abilify

Lipitor
Hydrocodone
Aspirin

Plavix

Amoxicillin

Medication List

Back

Pill Count

Pill Count

Pill Count

Pill Count

Pill Count

Pill Count

Pill Count

Pill Count

Figure 8. Medication List Window

DISPENSE

DISPENSE

The “Pill Count” button when tested functions as expected as it reads the correct pill count text file generated by
the medication schedule/dispense program (refer to the following section of this appendix) and displays the pill
count. Currently the “Dispense” button has not been fully test as the dispense medication code has yet to be
implemented to the button. However, as mentioned earlier the dispense code has been tested in the medication
schedule/dispense program so we do not expect to have any issues getting the medication to dispense when the
“Dispense” button is clicked. The “Load” button on the main window works correctly as when pressed it
executes the convert code which reads the RFID text file and converts the data from decimal to ASCII format
and stores it into a new text file as shown below.

V. Medication Schedule/Dispense Program

e Discuss pill count text file

While the user GUI shows all the foreground information for the end user the main mind of what makes

DispenSUM work all works in the background code. This code will open the information from the converted
transferred file and store the information into the system..After all the formation is stored we wait for a match in the
times. Once then we enter a dispensing cycle. This is where the user is then notified that is time to take their
medication with a sound notification. From there the system will send a signal to the motors to rotate to the
appropriate location. From here we decrement the pill count and update the file that founds the pill count between
the two systems. If the pill count is less than 5 an email is send out saying there is a low pill count. If the pill count is
zero then it removes all related info regarding that pill. Once everything is done we loop back to wait state for time

trigger.

C-42

& Reply & Replyall —>Forward T Archive [il] Delete D Setflag =»»

o team4dispensum@gmail.com ﬁ'

AF272017 11:47 AM

To: nnumair@ieee.org

Subject: Dispensum Alert!
The pill count in one of the cartdridges is low refill needed soon.

Figure 9: low pill count email

Is pill count

Background code less then O

Load Data

send email

Is there
another
convert file

Is pill count

Wait For
low?

Time Trigger

Lower pill
count

Send Signal Play Sound

Figure 10: Dispensing flow chart

A. Code
import time

C-43

import smtplib

import RPi.GPIO as GP1O
import MFRC522

import signal

import os

import serial

GPI10.setmode(GPIO.BOARD)

GPIO.setup(11,GPIO.IN)

input = GPIO.input(11)

LDS1 = False

LDS2 = False

LDS3 = False

LDS4 = False

LDS5 = False

LDS6 = False

LDS7 = False

LDS8 = False

C-44

TimerST = False

UID1 = None
UID2 = None
UID3 = None
UID4 = None
UID5 = None
UID6 = None
UID7 = None

UID8 = None

P1 = None
P2 = None
P3 = None
P4 = None
P5 = None
P6 = None
P7 = None

P8 = None

Feql = None
Feg2 = None
Feq3 = None
Feg4 = None
Feg5 = None
Feq6 = None
Feq7 = None

Feq8 = None

D1 = None

D2 = None

C-45

D3 = None
D4 = None
D5 = None
D6 = None
D7 = None

D8 = None

T1=None
T2 = None
T3 =None
T4 = None
T5=None
T6 = None
T7 = None

T8 = None

def low_pill():

to = email

gmail_user = 'team4dispensum@gmail.com'

gmail_pwd = 'LetsDispens’

smtpserver = smtplib.SMTP_SSL ("smtp.gmail.com”,465)

smtpserver.ehlo()

smtpserver.login(gmail_user, gmail_pwd)

header = 'To: '+ to + '\n' + 'From: ' + gmail_user + "\n' + 'Subject: Dispensum Alert! \n'
print header
msg = header + The pill count in one of the cartdridges is low refill needed soon. \n\n'
smtpserver.sendmail(gmail_user, to, msg)
print 'Help Sent'
smtpserver.close()

time.sleep(0.05)

C-46

Cartridge Population

while True:
#hour = localtime.tm_hour
#minute = localtime.tm_min
#Populate Cartridge one and Email
if LDS1 == False:
if os.path.isfile("./Convertl.txt"):
print "pop 1"
popl = open("Convertl.txt")
LDS1 = True

UID1 =popl.readline() #loads ID into File

popl.readline() #Skip line Name Line
popl.readline() #Skip line Email line
popl.readline() #Skip line Help name line

email = popl.readline() #Loads email
popl.readline() #Skip line Med name line
P1 =popl.readline() #How many pills we have

Feql = popl.readline() #How many Times a day

D1 =popl.readline() #How many signles to dispense per time stamp

popl.readline() #SKkip notes line
popl.readline() #Skip Type line

T1=popl.readline() #Load first time stamp

#Populate Cartridge two and no email
if os.path.isfile("./Convert2.txt"):
if LDS2 == False:
#print "pop 2"

pop2 = open("Convert2.txt")

C-47

LDS2 = True

UID2 = pop2.readline() #loads ID into File

pop2.readline() #Skip line Name Line
pop2.readline() #Skip line Email line
pop2.readline() #Skip line Help name line
pop2.readline() #Skip Loads email
pop2.readline() #Skip line Med name line

P2 = pop2.readline() #How many pills we have

Feg2 = pop2.readline() #How many Times a day

D2 =pop2.readline() #How many signles to dispense per time stamp
pop2.readline() #Skip notes line

pop2.readline() #Skip Type line

T2 = pop2.readline() #Load first time stamp

#Populate Cartridge Three and no email
if os.path.isfile("./Convert3.txt"):
if LDS2 == False:
#print "pop 3"
pop3 = open("Convert3.txt")
LDS3 = True

UID3 = pop3.readline() #loads ID into File

pop3.readline() #Skip line Name Line
pop3.readline() #Skip line Email line
pop3.readline() #SKip line Help name line
pop3.readline() #Skip Loads email
pop3.readline() #Skip line Med name line

P3 = pop3.readline() #How many pills we have
Feq3 = pop3.readline() #How many Times a day

D3 =pop3.readline() #How many signles to dispense per time stamp

C-48

pop3.readline() #Skip notes line
pop3.readline() #Skip Type line

T3 =pop3.readline() #Load first time stamp

#Populate Cartridge two and no email
if os.path.isfile("./Convert4.txt"):
if LDS3 == False:
#print "pop 4"
pop4 = open("Convert4.txt")
LDS4 = True

UID4 = pop4.readline() #loads ID into File

pop4.readline() #Skip line Name Line
pop4.readline() #Skip line Email line
pop4.readline() #Skip line Help name line
pop4.readline() #Skip Loads email
pop4.readline() #Skip line Med name line

P4 = pop4.readline() #How many pills we have

Feg4 = pop4.readline() #How many Times a day

D4 =pop4d.readline() #How many signles to dispense per time stamp
pop4.readline() #SKkip notes line

pop4.readline() #Skip Type line

T4 =pop4.readline() #Load first time stamp

#Populate Cartridge Five and no email
if os.path.isfile("./Convert5.txt"):
if LDS5 == False:
#print "pop 5"

pop5 = open("Convert5.txt")

C-49

LDS5 = True

UID5 = pop5.readline() #loads ID into File

pop5.readline() #Skip line Name Line
pop5.readline() #Skip line Email line
pop5.readline() #SKip line Help name line
pop5.readline() #Skip Loads email
pop5.readline() #Skip line Med name line

P5 = pop5.readline() #How many pills we have

Feg5 = pop5.readline() #How many Times a day

D5 =pop5.readline() ~ #How many signles to dispense per time stamp
pop5.readline() #Skip notes line

pop5.readline() #Skip Type line

T5 = pop5.readline() #Load first time stamp

#Populate Cartridge Six and no email
if os.path.isfile("./Convert6.txt"):
if LDS6 == False:
#print "pop 6"
pop6 = open("Convert6.txt")
LDS6 = True

UID6 = pop6.readline() #loads ID into File

pop6.readline() #Skip line Name Line
pop6.readline() #Skip line Email line
pop6.readline() #SKip line Help name line
pop6.readline() #Skip Loads email
pop6.readline() #Skip line Med name line

P6 = pop6.readline() #How many pills we have
Feq6 = pop6.readline() #How many Times a day

D6 = pop6.readline() #How many signles to dispense per time stamp

C-50

pop6.readline() #Skip notes line
pop6.readline() #Skip Type line

T6 = pop6.readline() #Load first time stamp

#Populate Cartridge Seven and no email
if os.path.isfile("./Convert7.txt"):
if LDS7 == False:
#print "pop 7"
pop7 = open(*"Convert6.txt")
LDS7 = True

UID7 = pop7.readline() #loads ID into File

pop7.readline() #Skip line Name Line
pop7.readline() #Skip line Email line
pop7.readline() #Skip line Help name line
pop7.readline() #Skip Loads email
pop7.readline() #Skip line Med name line

P7 = pop7.readline() #How many pills we have

Feq7 = pop7.readline() #How many Times a day

D7 =pop7.readline() #How many signles to dispense per time stamp
pop7.readline() #SKkip notes line

pop7.readline() #Skip Type line

T7 =pop7.readline() #Load first time stamp

#Populate Cartridge Eight and no email
if os.path.isfile("./Convert8.txt"):
if LDS8 == False:
#print "pop 8"

pop8 = open("Convert8.txt")

C-51

LDS8 = True

UID8 = pop8.readline() #loads ID into File

pop8.readline() #Skip line Name Line
pop8.readline() #Skip line Email line
pop8.readline() #SKip line Help name line
pop8.readline() #Skip Loads email
pop8.readline() #Skip line Med name line

P8 = pop8.readline() #How many pills we have

Feg8 = pop8.readline() #How many Times a day

D8 =pop8.readline() #How many signles to dispense per time stamp

pop8.readline() #Skip notes line
pop8.readline() #Skip Type line

T8 = pop8.readline() #Load first time stamp

DISPENSING SCHUDULE

localtime = time.localtime()
hour = localtime.tm_hour
minute = localtime.tm_min

#Type Cast to int

if LDS1 == True:
D1 =int(D1)
P1 =int(P1)
T1=int(T1)

writeto = open("./countl.txt", "w+")
writeto.write('%d' % P1)
writeto.close

if LDS2 == True:

D2 = int(D2)

C-52

P2 = int(P2)

T2 =int(T2)

writeto = open("./count2.txt", "w+")
writeto.write('%d' % P2)

writeto.close

if LDS3 == True:
D3 = int(D3)
P3 = int(P3)
T3 =int(T3)

writeto = open("./count3.txt", "w+")
writeto.write("%d' % P3)

writeto.close

if LDS4 == True:
D4 = int(D4)
P4 = int(P4)
T4 = int(T4)

writeto = open(™./count4.txt", "w+")
writeto.write('%d' % P4)

writeto.close

if LDS5 == True:
D5 = int(D5)
P5 = int(P5)
T5 = int(T5)

writeto = open(™./count5.txt", "w+")
writeto.write('%d' % P5)

writeto.close

if LDS6 == True:
D6 = int(D6)
P6 = int(P6)
T6 = int(T6)

C-53

writeto = open("./count6.txt", "w+")
writeto.write('%d' % P6)

writeto.close

if LDS7 == True:
D7 = int(D7)
P7 = int(P7)
T7=int(T7)

writeto = open("./count?.txt", "w+")
writeto.write("%d’ % P7)

writeto.close

if LDS8 == True:
D8 = int(D8)
P8 = int(P8)
T8 = int(T8)

writeto = open("./count8.txt", "w+")
writeto.write("%d’ % P8)
writeto.close
TimerST = False
#For Cartridge 1
if LDS1 == True:
if hour == T1 and minute == 00:
0s.system('mpg321 Dispensum.mp3 &)
usbCOM = serial.Serial('/dev/ttyACMO', 9600)
usbCOM.close()
ushCOM .open()
for k in range (0,D1):
time.sleep(5)
usbCOM.write('01")
usbCOM .close()

usbCOM .open()

C-54

usbCOM.close()
P1=P1-D1
writeto = open("./countl.txt", "w+")
writeto.write('%d' % P1)
writeto.close
if P1<5:
low_pill()
time.sleep(0.05)
if PL<=0:
UID1 = None
P1 = None
Feqgl = None
D1 = None
T1 = None
os.remove("./Convertl.txt")
os.remove("./Transferredl.txt")
LDS1 = False
break
time.sleep(10)
if TimerST == False:
TimerST = True

TimerVal = minute

#For Cartridge 2
if LDS2 == True:
if hour == hour and minute == minute:
0s.system('mpg321 Dispensum.mp3 &)
usbCOM = serial.Serial('/dev/ttyACMO', 9600)
ushCOM.close()

ushCOM.open()

C-55

for k in range (0,D2):
time.sleep(5)
usbCOM.write('02")
usbCOM.close()
usbCOM.open()
usbhCOM.close()
P2=P2-D2
writeto = open("./count2.txt", "w+")
writeto.write('%d' % P2)
writeto.close
if P2 <5:
low_pill
ifP2<=0:
UID2 = None
P2 = None
Feg2 = None
D2 = None
T2 = None
#LDS2 = False
os.remove("./Convert2.txt")
os.remove("./Transferred2.txt")
time.sleep(60)
if TimerST == False:
TimerST = True

TimerVal = minute

#For Cartridge 3
if LDS3 == True:
if hour == T3 and minute == 00:

0s.system('mpg321 Dispensum.mp3 &)

C-56

usbCOM = serial.Serial('/dev/tty ACMO', 9600)
ushCOM.close()
usbCOM .open()
for k in range (0,D3):
time.sleep(5)
usbCOM.write('03")
usbCOM .close()
usbCOM .open()
usbCOM.close()
P3=P3-D3
writeto = open("./count3.txt", "w+")
writeto.write('%d’ % P3)
writeto.close
if P3<5:
low_pill
if P3<=0:
UID3 = None
P3 = None
Feg3 = None
D3 = None
T3 = None
#LDS3 = False
os.remove("./Convert3.txt™)
os.remove("./Transferred3.txt")
time.sleep(60)
if TimerST == False:
TimerST = True

TimerVal = time.localtime()

#For Cartridge 4

C-57

if LDS4 == True:
if hour == T4 and minute == 00:
0s.system('mpg321 Dispensum.mp3 &)
ushCOM = serial.Serial('/dev/tty ACMO', 9600)
ushCOM.close()
usbCOM .open()
for k in range (0,D2):
usbCOM.write('04")
usbCOM.close()
usbCOM .open()
usbhCOM.close()
P4 =P4 - D4
writeto = open("./count4.txt", "w+")
writeto.write('%d’ % P4)
writeto.close
if P4 <5:
low_pill
if P4 <=0:
UID4 = None
P4 = None
Feg4 = None
D4 = None
T4 = None
#LDS4 = False
os.remove("./Convert4.txt")
os.remove("./Transferred4.txt")
#time.sleep(60)
if TimerST == False:
TimerST = True

TimerVal = time.localtime()

C-58

#For Cartridge 5
if LDS5 == True:
if hour == T5 and minute == 00:
o0s.system('mpg321 Dispensum.mp3 &)
ushCOM = serial.Serial('/dev/tty ACMO', 9600)
ushCOM.close()
usbCOM .open()
for D5 in range (1,D5):
time.sleep(5)
usbCOM.write('05")
usbCOM.close()
usbCOM .open()
usbCOM.close()
P5=P5-D5
writeto = open(™./count5.txt", "w+")
writeto.write('%d' % P5)
writeto.close
if P5<5:
low_pill
if P5<=0:
UID5 = None
P5 = None
Feg5 = None
D5 = None
T5 = None
#LDS5 = False
os.remove("./Convert5.txt")
os.remove("./Transferred5.txt")

time.sleep(60)

C-59

if TimerST == False:
TimerST = True

TimerVal = time.localtime()

#For Cartridge 6
if LDS6 == True:
if hour == T6 and minute == 00:
0s.system('mpg321 Dispensum.mp3 &)
usbCOM = serial.Serial('/dev/ttyACMO', 9600)
usbhCOM.close()
usbhCOM .open()
for D6 in range (1,D6):
usbCOM.write('06")
usbCOM.close()
usbCOM .open()
usbCOM.close()
P6 =P6 - D6
writeto = open("./count6.txt", "w+")
writeto.write('%d' % P6)
writeto.close
if P6 <5:
low_pill
if P6 <=0:
UID6 = None
P6 = None
Feq6 = None
D6 = None
T6 = None
#LDS6 = False

os.remove("./Convert6.txt")

C-60

os.remove("./Transferred6.txt")
time.sleep(60)
if TimerST == False:

TimerST = True

TimerVal = time.localtime()

#For Cartridge 7
if LDS7 == True:
if hour == T7 and minute == 00:
0s.system('mpg321 Dispensum.mp3 &)
ushCOM = serial.Serial('/dev/ttyACMO', 9600)
usbCOM.close()
usbhCOM .open()
for D7 in range (1,D7):
usbCOM.write('07")
usbCOM.close()
usbCOM.open()
ushCOM.close()
P7=P7-D7
writeto = open("./count7.txt", "w+")
writeto.write('%d' % P7)
writeto.close
if P7 <5:
low_pill
if P7 <=0:
UID7 = None
P7 = None
Feq7 = None
D7 = None

T7 =None

C-61

#L.DS7 = False
os.remove("./Convert7.txt")
os.remove("./Transferred7.txt")
time.sleep(60)
if TimerST == False:
TimerST = True

TimerVal = time.localtime()

#For Cartridge 8
if LDS8 == True:
if hour == T8 and minute == 00:
o0s.system('mpg321 Dispensum.mp3 &)
ushCOM = serial.Serial('/dev/tty ACMO', 9600)
usbCOM.close()
usbhCOM .open()
for D8 in range (1,D8):
usbCOM.write('08")
usbCOM .close()
usbCOM.open()
ushCOM.close()
P8 =P8 - D8
writeto = open("./count8.txt", "w+")
writeto.write('%d' % P8)
writeto.close
if P8 <5:
low_pill
if P8 <=0:
UID8 = None
P8 = None

Feq8 = None

C-62

D8 = None
T8 = None
#LDS8 = False
os.remove("./Convert8.txt")
os.remove("./Transferred8.txt")
time.sleep(60)
if TimerST == False:
TimerST = True

TimerVal = time.localtime()

#FOR REHOMING INTO POSITION
if TimerST == True:
while True:
localtime = time.localtime()
hour = localtime.tm_hour
minute = localtime.tm_min
TimerValTrig = localtime.tm_min
print TimerVal
print TimerValTrig
if TimerVal+15 <= TimerValTrig:
TimerST = False
usbCOM = serial.Serial(‘/dev/ttyACMO', 9600)
usbCOM.close()
usbCOM.open()
usbCOM.write('09")
time.sleep(1)
usbCOM .close()
usbCOM.open()
usbCOM.write('19")

usbCOM .close()

C-63

break

#Email function

if (GPIO.input(11)):
to = email
gmail_user = 'team4dispensum@gmail.com'
gmail_pwd = 'LetsDispens’
smtpserver = smtplib.SMTP_SSL ("smtp.gmail.com",465)
smtpserver.ehlo()
smtpserver.login(gmail_user, gmail_pwd)
header = 'To: '+ to + '\n" + 'From: ' + gmail_user + "\n' + 'Subject: Dispensum Alert! \n'
print header
msg = header + "Your Family Member needs help. \n\n'
smtpserver.sendmail(gmail_user, to, msg)
print 'Help Sent’
smtpserver.close()

time.sleep(0.05)

C-64

VI. Arduino Control Code

#include <digitalWriteFast.h>
#include <AccelStepper.h>

#include <Arduino.h>

#include <Servo.h>

Servo myservo;

AccelStepper Linkage_stepper(1,9,8):
AccelStepper Rotary stepper(1,3,2):

O CURN S B o

~l oy n

[ne]

int x=0;

int homeval=0;

int previousMillis=0;
int currentMillis=0;
int y=0;

int set=0;

oW

T = el i
[R O O gy

int usbRead=0;

int usbReadl=0;

) int interval= 15000;
int input=0;

int buttconstate=0;
int pill=0;

int dispensed=0;

int LED interval=500;
int LEDSTATE=0;

int gtiRead=1;

int z=0;

int incomingByte=0;
int incomingBytel=0;

[e
0 -1 oy

W N O W

~] oy wn

[T S T O T U T N R N T S T O T N O B S
W

(93]
o W

#define Rotary DIR 2
#define Rotary Step 3
#define Rotary Reset 4
#define m0 5

#define ml 6

$define m2 7

W oW W oWw W
[0 B S UL R S R

int cartPes[] = {0, 0, 1250, 2500, 3750, 5000, 6250, 7500, 8750};

C-65

$¢define Linkage DIR 8
#define Linkage_Step 9
#define Linkage_Reset 10
#define Limit Switch 11

0 #define Dispense_Butten 12

#define Servo_ Signal 13
#define Load_Cell A0
#define Button LED Al
#define Extend 0
#define Retract 70
#define QTI A3

9 void setup() {

M M Oy M O Y
[Y SN U S T Y e T e T SRS 'S, S B SN SR)

o

Serial.begin(9600);

Rotary_ stepper.setMaxSpeed(40000);
Rotary_ stepper.sethAcceleration(4000);
Linkage_stepper.sstMaxSpeed(1250);
Linkage_stepper.setAcceleration(4000);
myserveo.attach(Servo_Signal);

pinMaode (Rotary Reset, OUTPUT):
pinMode (m0, OUTFUT);

pinMode (m1, OUTPUT);

pinMode (m2, OUTPUT);

pinMode (Linkage_Reset, OUTFUT);
pinModeFast (Limit_Switch, INPUT);
rinMode (Dispense_Button, INFUTI);
pinModeFast (Load_Cell, INFUT):
pinMode (Button LED, OUTEUT):

C-66

-
A}

ad

- O W o

w N

o

-
O W W Wwiwo wwwwwwomo oo oo oo <]
DO W - 0 N &= W NP O W M

digitalWrite (Rotary Reset,HIGH);
digitalWrite (Linkage_Reset, HIGH):;
digitalWrice (m0,LCW);
digitalWrite (ml,HIGH);//high
digitalWrite (m2, LOW);
myservo.write (70);

void loop() {
Rotary stepper.run();//Have to call for stepper to work
Linkage stepper.run();// Have to call for stepper to work

if (set==0){ // initialize home position
homePosition();
}
if (set==1){
digitalWrite (Linkage_ Reset,LOW);
digitalWrite (Button LED, HIGH);
if(Serial.available()){
digitalWrite (Button_LED,LOW):
incomingByte = Serial.read()-'0';
delay(50);
incomingBytel = Serial.read()-'0";
usbRead=incomingByte*10+incomingBytel;
Serial.println(usbRead);
if (usbRead > 0){// If read is greater than one, move tc next state
set=2;
Serial.println(usbRead);
digitalWrite (Button LED, HIGH);
digitalWrite (Rotary Reset,HIGH); // Turn motors HIGH to get ready to move
digitalWrite(Linkage_Reset, HIGH):
if (usbRead==9){
set=0;
y=0;
}

C-67

105 if (usbRead==19) {

10¢ digitalWrite (Rotary Reset,LOW);
107 usbRead=0;

108 set=1;

109 buttonstate=0;

110 }

111 }

112 }

113 }

114 1if (set==2){

115 if (usbRead>0 s& usbRead <9){

116 Dispense(); // calls Dispense Function with usbRead from PI
117 }

118 if (usbRead>10 && usbRead <19){

119 Rotate();

120 }

12 }

122 1}

12

124

125

126 void homePosition (){

127 | if (y=0){

128 digitalWrite (Rotary Reset,HIGH);

129 Rotary stepper.move (40000) ;7

130 homeval=digitalRead (Limit_Switch); // Checks Limit switch for plate
131 }

132 if (homeval==(HIGH)){

133 Rotary stepper.stop():;

134 Rotary stepper.setCurrentPosition(0):;// Sets home position te cartridge 0
135 set=1; // Sets Pi Read State

136 }

137 1}

138

C-68

[
-1

0 o0 0O 0O (O C0 0 0 (0 Co -

[
wd
O w0 -

T el e e i =

e S
w0 o
H O w3, 0 = W

[y
v e]
8]

if (x==0){ // In an if statement so it only runs once per dispense cycle
digitalWrite (Rotary_Reset, HIGH);
Rotary stepper.moveTc(cartPos[usbRead]):;//Sets move locatiocn to cartridge sent by PI
X++7
}
if (Rotary stepper.distanceToGo ()==0){// Once Rotary is in position do rest
if (z==0){
digitalWrite (Linkage_ Reset,HIGH);
if (digitalRead(Dispense_Button)==HIGH)ﬂ
buttonstate=1;
if (buttonstate==1){
Linkage_stepper.moveTlo (40000);
myservo.write(5);
Z++;
}
}
gtiRead=digitalReadFast (QTI);
pill=digitalReadFast (Load_Cell):
if (pill==1 || gtiRead==0){
Linkage_stepper.stop():
Linkage_stepper.setCurrentPosition(0);
digitalWrite (Linkage_Reset,LOW);// Turn off linkage if pill is detected

Serial.println("Pill Dispensed”):;
pill=0;
gtiRead=1;
dispensed++;
myservo.write (70);
usbRead=0;
x=0;
y=0;
input=0;
set=1;
z=0;
if (dispensed==3){
set=0;
dispensed=0;

}
vold Rotate(){

Rotary_stepper.movelo (cartPos[usbRead-10]);

//set=3;
if (Rotary_stepper.distanceToGo()==0) {
set=1;
Serial.println("rotating finished");
}

C-69

Appendix D. Mechanical

I Device Drawing
The device drawing consists of an isometric view of our overall CAD file. It gives a small glimpse into the
mechanical aspects of the project, a short list of a bill of materials and labeling for each individual portion.

ITEM NO. PART NUMBER QrY.
1 14in T-Slotted 8
Aluminum
2 Corner Bracket 8
3 16in T-Slotted 4
Aluminum
4 Corner Bracket 4
5 Rotary Bearing 1
Flate
& Rotary Plate 1
7 150 Tooth Ring 1
Gear
8 (Cartridge Bracket 8
(Cartidge for Larger
7 Ipils 4
(Cartridge for
10 [Medium Pills 4
11 Homing Plate 1
12 RPI Touch-Screen 1
Display
13 RPI Frame 1
14 Button Mount 1
Rotary Motor
15 Mount !
16 Load Cell Mount 1
17 Weigh Plate 1
18 Pill Chute 1
19 Nema 17 Motor 2
20 Nema 17 Bracket 2
UNLES OTHERWISE SPECIFED: wave | ouE
DMEEIOHE AEHNCHE | DRAWN
e crecan TINE:
SR MK 95 | oug appe,
THEFACEDECMAL T | uroAPPE
WIEEPIE GEOVERE as
TOAFANCIG Pet o
] SIZE [DWG. NO. REV
e B DispenSUM
DO HOT SEALE DRA NG SCALE 111 WEIGHT: SHEET 1 OF 1

D-1

Il. Cartridge Drawing

The cartridge drawing gives a couple views of the cornerstone of the device, the cartridge. It identifies some of the

key components of the cartridge based design.

Top View
(Mo Cap)

PROFEETART AND CONFDENTIAL
THE IRFORARTION CORTAMED M TS
DI NG 5 THE SOLE PROPENTY OF
SIHEER COMFART FAME HERE:. AN
IEROLUCTION 1 PART O A% A WHOLE
WITHEN THE WTTEN PERUSSION OF
AIEERT COMMFANT PAE HEREY 5
PROMSTED,

EXT ASSY LSED O

APFUCATIOH

2

UMLESS OTHERWIEE SPECIRED:

DIMERECHE APE I HCHE
TOLERAMCES:
FRACTIOHALE

ARBLAR: MACH* BEMD=*

T PLACE DECIMAL 2
THREE PLACE DECMMAL 1

T EET CECMETIAC
BOMERANCING PR
(0T

Fnch

D0 MOT SCALE DRAWRS

ITEM MO, PART NUMBER QTY.
1 Rotary Hopper 1
2 Cartridge Cap 1
3 Cartndge Cup 1
4 Miter Gear 1
S CATE
DRaWN
CHECHED TITLE:
EM G AFPE -
ey Cartridge Type A
QA
COOAPAENTL

SIZE |DWG. MO.

A DispenSUM

SHEET 1 OF 1

SCALE: 1:2 WEIGHT:

|

A

I11. Rotary Carousel Drawing

This drawing demonstrates a key part of our design, the rotary carousel. It shows some of the key components of

that subassembly.

THE INFORMATICN CONMIARED M 15

CRMMING [THE SOLE FROPERTY OF

SINSERT CEMAFANY FAME HEREY. ANY

FEPRODUCTION 1 FRRT O A3 A WHOLE .

WITHCL THE WETIEN PEISMSSCN COF EXT AS5Y LEED O
STHEERT CEAMFARY FAME HEREY

PROHBTED. APFICATON

2

UMLESS OTHERWISE SFECIRED:

DMEREIONE ARE H NCHE
TOLERAMCES:

FRACTIORALE

AHBLAR: MACH: BEND =
TWOPLACE DECIMAL &
THREE PLACE DECMAL t

IR CEOWMETIAC
BOLERANCING FE
wafisaal

FangH

DO MICH SCALE DRAWIRG

ITEM NO. PART MUMBER QTY.

1 Rotary Bearing Flate 1
2 Rotary Plate 1
3 130 Tooth Ring Gear 1
4 Carindge Bracket &
5 Homing Plate 1
A DATE

DRAWH

CHECKED TITLE:

BNG AFPR

o Rofary Carousel

[<F N

COAMMENTS

SZE DWG. NO.

A DispenSUM

SHEET 1 OF 1

SCALE: 1:2 WEIGHT:

|

D-2

A

Appendix F. Resumes

Nicholas Rarick
Neuspeed928 8@ vahoo. com
OBJECTIVE
Lookine for a career position in elecmical engineering.
EDUCATION
In progress: B 5. Electrical Engineering, Control systems, California State University, Sacramento
Related Courses
Electromic I & I Systems and Sizpals Hetwork Analysis
Electromec hamical Comversion Introduction to Microprocessors. Imito to Logic Desien
Introduction to Feedback Systems Applied Electromagnetics. Modem Commumnication Systems
Bobotics CMOS5 & VLSI* Drigital Control Systems®
Machine Vision®
* In prograss as qf Spring 2017
SETLLS
Programming:
Experienced in microcontroller and logic systems use - C / Arduino / Verilog / PIC1E / FPGA / XB6 Assembly
Saftware:

Analop (digital circwit design, sinmlation, and hardware experience - Multisim / Orcad PSPICE / Agilent ADS / Matlab / Visual
Studio’ Solidworks

Compuier Skalls:
Very sirong Windows computers skills and networking with experience in a variety of software - Microsoft Excel / Microsoft Word
[Vizio | Powerpoint

Tools:

Mamy howrs of experience in a laboratory environment working with the necessary tools - Oscilloscopes / Function Generators
Logic Analyzer

Commumicamon:

5Strong commmmication skills, able to work well in teams to easily commmumicate complex information

PROJECTS
Semior Design - Medication Adherence Aid
Deesigning and prototyping a8 unique medication adherence aid with many elecromechanical systems. Device uses a mmultitnde of
sEms0Ts programmed for maxinrmm device redumdancy conirolled with microcontrellers. Currently in progress.

Temperature and Humidie Room Control System
Developed a temperature and omidity control system using an Arduing microcontroller. Uses a vaniety of sensor inputs with
complex control logic to conirol a relay system fo keep the room stable.

Auronomons Robor
Created an sutomomons robotic car that uiilizes PID control systems to do a vanety of tasks. Utilized many sensors to do such tasks
a5 navipate 3 maze follow a moving target at a specific distance, and navigating a bridge while not falling off while stopping for
obstacles.
ACCOMPLISHMENTS and ACTIVITIES

* State Major GPA of 3.78

* Deans Honor List - Fall 2015, Spring 2016 Fall 2016

Member of Tau Beta Fa

* Member of IEEE

Benjamin Deubel Green

CAREER OBJECTIVE
To operate as an integral part of a team, working with and learning about the latest technology to improve the
future for all people.

EDUCATION

California State University, Sacramento (Expected Graduation: Spring 2017)
Bachelor of Science: Electrical and Electronics Engineering

Concentration and Academic Interests: Controls, Robotics, and Medical Technology
Cumulative GPA: 3.756 Major GPA: 3.821

CSUS DEAN’S HONOR LIST: Fall 2013, Fall 2014, Fall 2015, Spring 2016, and Fall 2017

Associates Degree in Commercial Music Recording with Highest Honors, American River College, 2012
Associates Degree in Commercial Music Business with Highest Honors, American River College, 2012

RELEVANT COURSEWORK

EEE 178 — Intro to Machine Vision EEE 184 — Intro to Feedback Systems

EEE 187 — Robotics EEE 188 — Digital Control Systems

EEE 108 and 109 — Electronics | & 11 EEE 193A and 193B - Product Design Project

TECHNICAL SKILLS

Proficient with Excel — Organizing, tabulating, and making complex visual representations of data
Experience with Lab Testing Equipment — Oscilloscope, function generator, and digital testing equipment
ORCAD PSpice

Multisim

MATLAB & Simulink

C Programming

Solidworks

AFFILIATIONS

Recruitment Officer @ Institute of Electrical and Electronics Engineers, Sacramento Chapter 2016 — Present
Member ® Power Engineers Society 2015 — Present

Member ® Tau Beta Pi Engineering Honor Society 2017

WORK EXPERIENCE
Café Bernardo and the Berkley Bar ® Sacramento, California (2015 - 2016)
Position: Bartender and Lead Server

Stirling Bridges ® Sacramento, California (2014 - 2015)
Position: Lead Server and Server Trainer

The OId Spaghetti Factory ® Rancho Cordova, California (2004 - 2014)
Position: Server Trainer and Bartender Trainer

VOLUNTEER WORK
Juvenile Diabetes Research Foundation ® Sacramento, California
Event: Walk to Cure Diabetes (2011-2013)

e Coordinated and directed the main stage audio operation

F-2

DANA S. NATOV
1859 Imperial Ave, Davis CA 93616 (350) 219-0997 dananatovi@gmail com

EDUCATION
C5U Sacramento 2013-Present
Bachelors of Science, Electrical and Electromic Engineering — Graduating May 2017
* Academic Interests: Analog,/Digital Control Systems, Robotics
* Curmmlative GPA: 3.502 Major GPA: 3.56
#* Dean's Honor Foll

WORK EXPERIENCE
Gold Standard Diagnostics - Manufactoring Intern 2012-Present
® Ascisting in manufacture of the Thunderbolt, 8 medical diagnostic robot

Fesponsible for the production of nltiple sub-assembly parts including stepper
motors, PCBs, chemical lnminescence hardware, assembly frames, mechanical rails and
cabling. Familiar with strict regulations regarding Good Mamufacrturing Processes, Code of
Federal Fegnlations, FDA anditing, quality and mamnnfacturing. Trained in soldering,
programming and troubleshooting of multiple sub-assemblies of the final product.

SKILLS

* Soldering, SMD Soldering, PCBE Programming, PCE Troubleshooting
Programming: Python, C, %86 and PowerPC Assembly, VHDL, G Code, OpenCV
Software: Solidworks, MATLAE, PSpice, Multizim, Cadence Virtuoso

* DMNetwork analysis, AC/DC Circuits, Transmission Limes, Amplifier Circnits, BJTs,
MOSFETs, Control Systems, PID Loops

* Intermetworking, Subnets, Routing

* Machining: Mills, Lathes, CINC, Routers, 3D Printing

PROJECT EXPERIENCE

FR.C team 1678: Citrus Circuits. 2012-2015
* Student from 2012-2013, Mentor from 2013-2015
#2015 Season World Champions

* mne year design project, in progress, requiring first semester prototype and second
semester deplovable prototype

* Amtomated in-home medication dispenser with a oostom cartridge design allowing
automatic uploading of medication schedules.

PROFESSIONAL ORGANIZATIONS
IEEE Member', C5US IEEE Club Officer 2015-Present
Tam Beta Pi Engineering Homor Society Member 2016-Present

Nael Numair
EDUCATION: In progress: B 5. Compute Engineering, California State University, Sacramento Expect Graduation May 2017

Courses:
Computer Hardware Diesign Drata Stochwes and Algonthm Analysis Computer Interfacing
Computer Networks and Infernets Metwork Analysis Signals snd Systems
Discrete Smoctures. Micre Computers and Assembly Adwvance Logic Desizn
Electromics I Operating System Principles Advance computer Crigination
CMOS and VLS Operating System Prazgmatics

PROJECT EXPERIENCE
LED Gaming Board

This was a team project in which we used an arduine uno to create a control unit for and Ex8 LED matrix My job was to
construct the matrix and wire it up to the board. The object of the matrix was o play "Snake".

VFN Tumnel
I'was able to create a hard line VPN tnnel connecting a bay area business's two offices together.

Semior Project Smart Fill Dispensing Box:

The ohjective of this project is to create 3 smart pill box. Curently my job right now is fo program all coninols that will be used in

this project Micro controllers that I am corrently using are the Raspberry Pi 3 and Arduino une. Created an amtomated mail
messaging system. I was also responsible to creating a way to transfer information from one system end to another using RFID
comnmmication. I also created how the dispensing schedule would be handled using pythom. Finally it was my job to do the top
level system intepration between the system UTs, backeround fiunctions and mechanical components.

ENOWLEDGE AND SKILLS
CommunicationOrzanization /T eadership:
I am in charge of coordinating events and crzanizmg the "SWAT™ team for a bay area martial arts school. Leading amd
motivating other siadents in training.
Operating Systems:
Windows XP, 7, 8, 10, Unix and Timox

Computer Languages:
C#, Java, Python, xB6, visual basic, C, VHDL, Verilog

HardwareSoftware:
M5 Word, Powerpoint, Excel, Matlab, Eclipse, Visnal Smdio, Adobe Photoshop, Adobe Indesign pinnacle smdios, analog
discovery, Mulitsim PSpice, Candance Virtosn

Tools:
Orcilloscope, Function generator, Multimeter, Raspberry Pi, Parallax Propeller, Arduino
WORK EXPERIENCE:
Instractor Tony Ramos Kajukenbo 5/10 to present
Free Lance Inferm Turis Group G109 to present

ACTIVITIES AND ACCOMPLISHMENTS:
+ (ftained my instroctorship, 1st Dezree Black Belt and 1st Degres Black Sash in Esjukenbo
» Became 3 "Shadow" candidate for C5UT5 chapter of ACM
Treaswe for IEEE chapter at CSUS 2016-2017

Working & hours per week, while carrying 1.5 units per semester and mamiaining a 2.5 GP4

Jennifer Ong

EDUCATION HONORS & AWARDS

In progress: B.S. Computer Enginesring, Califormia State Deans Honors List, CSUS — Fall 2012/2016, Spring 2013
University, Sacramento Big Sky Conference All-Academic Award —2013, 2016
Expected graduation: May 2017 (Curent GPA: 3.415) Intercollegiate Tennis Association Scholar-Athlete - 2013

EELEVANT COURSEWORE COMPLETED OR IN PROGEESS

= Programmmg Concepts & Methodology I & I = Microconputers and Assembly Language
= Inimducton Computer Architectire = Operatng Sy=tems Princmplas

= Iniroduction System Program Unix = Advanced Logie Desizn

= Syemals & Systerns = Database Managernant Systems

= Computer Inferfacms = Computer Network + Infernet
PROFESSIONAL SKILLS

Programming languages: C, xB6 Assembly, Verlog, VHDL, Java, SQL

Operating Systeams: MS Windows, Unx, Lime

Software: Quartus, Miloee ISE, Multisim, MS Office

Tools: Diligent Analog Dhscovery, oscilloscope, fimcton generator, Amam GTX CPLD, Arduno Platform Spartan 3E
board, Microchip PICkst 3, Parallax Propeller, Raspberry PL

= Bilingual: Enzlich and Vietnamese (infermediate)

PE:D.IEC'I'EPEFERIEH‘TCE
Android TV: Two-week work expenence project at Lime Bocket (applicahon developer). Leamnt how to created a custom
boot loadng for the Android TV by chanpmg the boot logo m kernel

= Remote Conirolled Velacle: Member of a three-member team that designed, developed, and mplemented a remote
confrolled velucle. The Raspberny Pi was used to inplement the desipn. A third party appheation enabled hive video
streanvng that could be viewed on a computer or phone. Sensor was mmplemented to defect oncommg objects.

= Mmultiplier, logic design: Designed, developed., and mplemented the logic that multiples a 4-bit by 4-bit. The desizn was
coded m Venlog and implemented on the Spartan 3E board.

= Banking Program: Designed a graphical user mierface (GUI) that allows users to make deposits and withdwaws froma
bank account Balance of bank account 15 recorded and displayed to the user. The design was coded wsing Jana

programming lanruage

- ﬂmumah.cl’iﬂﬂupmer Senior Diesign Project: Developmg hardware and software project planmmg and engimeenmg
desipn skills usmg the system design methodology. Gamed expenence m desipn philosophies, problem defimbion, project
plarming, budpeting, wiitten and oral conmmmication skills, workmg with others in a team amangement, development of
specifications and effective whlization of available esources. My role m the project inchide mierfacmg different

components fo a microcontroller, and creatmg graphucal user mterfaces.

WORK EXPERTENCE
Deeloitte Consulting LLP
2016 Busmess Technolegy Analyst Summer Scholar Program Werked m the Systems Integration service line on a Pubhe
Hea]ﬂlSEunEmn]ectPaﬂnfﬂEmetlmalTﬁmﬂuif{mmdm aﬁs:sh::lgﬂ.'e chent provide an electromic exchange of
Mmmwmﬁmmmumdammmmw
a website.

COADUNICATION/ORCANIZATION
= Eeliable and salf motmvated. Strong abahity to quickly adapt and react to unexpected cironmstances

ACTIVITIES & ACCOMPLISHMENTS
= Full Division I Athletic Tennis Scholarship - Sacramento State University (2012-16)
= Sacramento Scare University, Women's Temnis Team {2012-16): #1 player on the team (2014), Team captain (2014-16)

F-5

	FinalPrototypeDocumentation
	PrototypeDocumentation
	AppendixA
	Appendix B
	AppendixC.Software
	AppendixD.Mechanical
	Appendix F

	Benjamin Deubel Green Resume No Link
	FinalPrototypeDocumentation

