

Deployable Prototype Documentation

Intelligent Headlights

Alisha Rosario, Juan Chico, Konstantin Komarchuk

Table of Contents

List of Tables i

List of Figures ii

Executive Summary iii

Introduction 1

Societal Problem 1-2

Design Idea Contract 2

Budget 2-3

Project Milestone 3

Work Breakdown Structure & Tasks 3

Risk Assessment and Mitigation 4

Design Documentation 5

Deployable Prototype Status 5-6

Deployable Prototype Marketability Forecast 6

Conclusion 6

Acknowledgment 6

References 7-8

Glossary 8

Appendix A: User Manual 9-10

Appendix B: Hardware 11-12

Appendix C: Software 13-21

Appendix D:Mechanical 22

Appendix E: Vendors 23

Appendix F: Resumes 24-26

..

List of Tables

Table I. 2-3

List of Figures

Figure 1: LED Unit. 3

Figure 2: Project Spending 4

Figure 3: Title and Pan System. 4

Figure 4: Risk Chart 5

Figure 5: Intelligent Headlight 9

Figure 6: locations of Screws and Bolts on Bumper 9

Figure 7: Approximate location of a box on upper tie bare. 9

Figure 8: Connect USB into Appropriate Spot. 9

Figure 9: Bolt Locations. 10

Figure 10: Bumper Fasteners 10

Figure 11: OBD II Slot Location 10

Figure 12: Hardware Block Diagram 11

Figure 13: LED Driver Diagram 11

Figure 14: RGB Strip 12

Figure 15: LED 12

Figure 16: Servo 12

Figure 17: IMU 12

Figure 18: Raspberry Pi and Arduino Communication 13

Figure 19: Arduino and Servo/Turn Signal/High Beam Control 13

Figure 20: LED unit U shaped steel frame 22

Figure 21: Centerpiece that holds the cover with lens and the LED 22

Figure 22: Cover with lens, lens goes into hole in front. Back side is hollow 22

Figure 23: Plate for LED array. Aluminum holds all LED units together 22

Figure 24: Filler panel with LED unit assembly partially installed 22

Figure 25: Work Break Down Structure and Task Assignment 23

Figure 26: Gannt Chart 24

Executive Summary

The objective of the Final Prototype documentation is to document the whole year of work that lead up to the fully working

Intelligent Headlights system. This documentation acts as a record of all the steps that were gone through to make the Intelligent

Headlights possible. The Societal Problem that resulted in the Prototype being designed was Nighttime Driving. Since 3.5 times

more fatal accidents happen in the Nighttime and the amount of nighttime accidents have yet to decrease despite the decrease in

daytime accidents it was apparent this was a critical issue to be solved. To decrease the amount of accidents at night the

Intelligent Headlights give light to the user where needed depending on the Speed and angle the car is at. If the driver is on the

freeway then the light will become narrow and if the driver is driving in residential the light will become wider. The lights will

move based on the drivers turn angle as well, so as the car turns the headlights will turn. Lastly, the headlights will adjust

themselves up or down when the driver is going up or down an incline or over a speed bump to ensure there is always a well-lit

path ahead of them. All of these conditions were outlined in our Design Contract for making the product. In addition to that, as

stated by Federal Codes, the low beams and high beams, along with the turn signal are user controlled. For added safety Daytime

Running Lights are in the Intelligent Headlight to increase visibility in the daytime. They are only on when the low beams, high

beams, or Turn Signal are off. It is important to follow the regulations we are aware of so the product can be marketable. The

Budget is also another thing we considered for the Intelligent Headlight while making it, so we could be competitive with

Automotive Companies prices. The idea was to make the intelligent Headlights affordable for the majority of people and

implementable in any car. Our budget range before we started buying items was between $500-$700. At the end of Spring 2017

Semester our budget fell a little about the middle of the price range. The total included parts we did not use because of alternative

solutions that worked better in implementing our product. Excluding the items that were not used for our Final product it would

have brought the total spending about $65 dollars below $500. The tasks for the Intelligent Headlights were broken into different

components and divided amongst the team members based on their skills. The Daytime Running Lights, Turn Signal, and LED’s

were given to one member. The turning conditions, Angle and speed measurements were given to another member. Lastly, the

structure and movement of the LED’s were given to the last member of the group. Through working together we were able to

mitigate problems with inaccuracy of measurements, functioning of the LED, and spacing problems in the headlight case.

Currently, the final prototype is finished and abides by the Design Contracts requirements. In terms of marketability, there are

still some tests that should be done on the headlights that we did not have the resources to do. There are also little things that can

be improved on to make the product better quality. For the tests, all the components except the sensor underwent temperature test

that tested the components below -18 degrees Celsius and above 43 degrees Celsius. The components passed the test and

functioned without a problem afterwards. The components were then run continuously for 14 hours straight. They still

functioned fine after the test was done on them. The sensor we used was excluded from this and instead was tested for accuracy

of data measurement at different intervals under the same condition. The results showed that there was a small error that would

not be a cause for concern in our product. The other test done on the sensor was a change in voltage test to see if running different

voltages through the sensor while it was collecting data would affect its accuracy. This resulted in a small error that was

negligible for our product. In conclusion, throughout the year we have performed tests on our components, solved our problems,

and stayed within budget to make Intelligent Headlights possible. Without dividing our tasks appropriately we may have not been

able to finish the prototype and help solve the Societal Problem.

Intelligent Headlights

Alisha Rosario, Jun Chico, Konstantin Komarchuk

Department of Electrical and Electronic Engineering

California State University, Sacramento

Abstract— Driving conditions are remarkably different in the

nighttime. vision is reduced and it can be more difficult to see

vulnerable road users such as pedestrians, cyclist, and

motorcyclist. As a result of decreased visibility, the distance a

driver can see is shorten. In addition, hazards can often seem to

appear out of nowhere. To reduce the danger of driving at night

due to poor lighting conditions, my team and I have been

working on an Intelligent Headlight System. This system adapts

to the many driving conditions by providing the driver light

where its needed it the most. To provide the driver light where its

needed the most, our system supports the following features. In

case of either a left or right turn the intelligent headlight system

focuses the light to left and right side respectably. While going on

an uphill or downhill, the system would then focus the light

downward or upward depending on the incline of the vehicle. In

addition, at low and high speeds the headlight system widens and

narrows the light respectively. Although this type of system is

currently being implemented in newer vehicles, our focus is to

develop an alternative system with similar safety features at a

fraction of the cost.

Keywords—Intelligent Headlights, Safety, Nighttime Visibility

I. INTRODUCTION

For a successful Deployable Prototype multiple considerations

need to be accounted for. To start Intelligent Headlight came

about from a need. The need was defined by the societal

problem of Nighttime Driving. In the Intelligent Headlights

documentation, it is important that we go over the whole year

and all the main topics that we had to document and plan in

order to have a successful prototype. The documentation is

documenting the final product of the Intelligent headlight and

the process it took to get have a working deployable

prototype.

II. SOCIETAL PROBLEM

In the world of modern technology, some aspects of

our lives tend to be more technologically advanced, while

others stay neglected. The society has created a fast-paced

lifestyle that requires the average user to rely more and more

on technology. With time, technology has advanced to assist

daily lives, providing comfort as well as provide safety

assistance.

In the automotive world, we see multiple advances in

the art of passive and active safety, such as airbags, seat belts,

and crush zones. As time goes by, some features of the

automotive world remain unchanged, or at least not

significantly changed.

For Nighttime Drivers there was a significant need

for safety improvement. Nighttime Drivers have vision

impairment due to Nighttime myopia which affects any driver

regardless of age. Nighttime myopia gives the driver less

visibility and makes it harder for driver to distinguish objects.

This can cause danger for both the pedestrian and drivers.

Nighttime myopia also affects how the driver perceives

depths. This could affect their judgement of distances or how

far objects are from them. The combination of depth and

object perception affects other drivers, pedestrians, and the

driver own safety, making it more likely an accident will

occur.

Drivers at night base most of their decisions on what

they can actually see. The percentage of fatal accidents that

occur at night is 40%. Though Daytime accidents have

decreased over time, Nighttime accidents remain the same.

Nighttime Driving fatalities occur 3.5 times more than

Daytime Driving fatalities.

Driver still show a level of confidence and low

difficulty for driving as much as they do in the daytime. This

confidence causes driver not to anticipate or plan ahead to

avoid lower contrast/difficulty to see hazards or object.

Reduced visibility at night along with other variables can

make nighttime driving even more dangerous. Recreational

drivers, consisting of more young people than old that drive at

night are less attentive to their surroundings. This is assuming

they are not distracted by other tasks or are not fatigued at

night.

 Fatigue decreases response times and is a factor in accidents

at night. Fatigue is a factor that is uncontrollable and depends

on the amount of sleep the driver has had as well as the time

of night they are driving. Inexperienced drivers who drive at

night may also experience slower response times regardless of

fatigue.

Lastly. Drivers rely on their peripheral vision to

interpret things off to the side and to know where to look next.

Peripheral vision is less accurate than looking straight at an

object and sometimes objects are missed because only objects

of a certain size are detected. This is even truer when driving

in the darkness. The Nighttime Crash Frequency Reduction

Association believes the lighting at night has a connection to

visual performance.

To improve the visibility of the road, we created a

smart headlight system, which would change the way the road

is illuminated according to the way the vehicle moved. This

system would provide lighting where it is necessary, so that

the driver can see more, while using much less energy than

any incandescent light provides.

Proper lighting of the road is a critical part of any

driver on the road today. With speeds ranging from 25 to 85

mph, proper illumination of the road ensures that the driver

can adequately respond to different hazards and dangers.

With all the dangers on the road, and the speeds of

the cars, average drivers needed something that will be

significantly cheaper, smarter, and efficient. This would

significantly improve safety and visibility of the road ahead.

We decided that using high intensity LEDs would be a useful

and efficient way to provide bright light that can be easily

directed and would cost a fraction of an HID or even an

incandescent bulb. By using several LEDs on moving

platforms, we could direct the light where it was necessary,

and the driver would see much more in the direction they are

turning than any other light on the market.

The idea was to make the system be affordable for

anyone, and using several affordable components, it was made

possible to do so. There are currently several systems that are

similar to ours, and are manufactured by the brand that makes

the cars, so we are one of the first ones to offer an aftermarket

system like that.

One more problem we wanted to address was that not

every car manufacturer offers a smart headlight system. So, in

order to help as many people as we could, we had to make our

system universal and independent of the make and the model

of the car. This was achieved by making the entire system

standalone and independent of the vehicle, while requiring

minimal modifications to allow implementation on multiple

makes and models of cars.

The idea behind our project was that we can create a

system that is affordable, efficient, universal and important of

all, provide sufficient lighting for the driver to see ahead to be

able to make proper decisions at the modern speeds on the

road.

III. DESIGN IDEA CONTRACT

The Design idea contract from Fall 2016 to Spring

2017 has been improved from what it originally started from.

The design idea contract was made to address visibility of

drivers at night as discussed in the section above. In Fall 2016

our original design idea was to achieve solving the societal

problem through means that were beyond our scope. Through

a Heads Up Display, information such as speed and traffic

conditions would be displayed on the windshield. The

originally design idea also required a thermal system to detect

the pedestrians and other hazards at night and alert the driver

to the dangers. After discussing these ideas with the instructor

our Design Idea was modified to be more reasonable with our

time constraint and less distracting to the driver.

The Modified Design Idea Contract required that

Intelligent Headlights were made. These intelligent

headlights were required to provide High beams and Lows

beams through user control, which is represented through the

use of a pushbutton. The Light Emitting Diodes (LED’s),

components that provide light to the user and act as the

headlights had to be controlled by servos to spread light

accordingly. The way the LED’s were moved was based on

turn angle of the driver’s car. These conditions allowed the

visibility of the user to be increased through the use of servos

and sensors.

For the Spring 2017, Modifications were made to the

Design idea contract. To further improve our design,

additional conditions for spreading the light as the driver

needed were made. The conditions were whether the car was

moving up or down an incline or speed bump and what the

speed of the car is. The Headlights would adjust downward if

the driver is driving up an incline or angles upward when

going over a speedbump. The headlights will adjust upward if

the driver is going down an incline or angles downward when

going over a speedbump. This allows the driver to be able to

see in front of them at all times. For the speed, if the driver is

driving in residential the headlights will adjust outward, to

widen the visibility of the user. If the driver is driving on the

freeway, the lights will adjust inward to narrow the visibility

of the user. Two of the LED’s will always remain stationary

to make sure there is never a blind spot when the servos adjust

to all conditions from both Fall 2016 and Spring 2017.

Lastly, For Spring 2017, Daytime Running Lights

(DRL’s), lights that are always on in the daytime to increase

driver visibility, were added. A turn signal was also added to

the contract that is user controlled and represented by a

pushbutton. The LED’s were reduced from 6 LED’s to 5

LED’ which stays within the agreed upon LED requirement,

5-7 LED’s.

IV. BUDGET

The team spent a little over $630 total on all items

included and not included in the project. All the money came

out of the pocket of the team members. For different reasons,

some of the items included in Table 1.1 below were purchased

but not used for the project. Some items had to be replaced

due to faults, while others were used to redesign certain

components in the project. The items that were not used are

the last 8 items on the list of the spending report shown below.

The price for all the materials actually used in making the

product comes out to $431.14. Estimated spending was at

$500-$700 when the project was planned, meaning we stayed

within our desired spending forecasts if we include all the

items regardless if they were used..
TABLE I.

Project Spending
[1]

Project Spending

Item QTY Price Total

OBDII

Reader 1 $ 9.79 $ 9.79

Black PLA 1 $ 20.00 $ 20.00

Sunsbell

LED Strip

Light 1 $ 10.99 $ 10.99

Raspberry Pi

3 1 $ 39.99 $ 39.99

Raspberry Pi

US power 1 $ 7.99 $ 7.99

supply

SparkFun

LSM6DS3

IMU 1 $ 19.95 $ 19.95

10 pcs

Aluminum

Heatsink 1 $ 5.98 $ 5.98

SanDisk

32GB

microSDHC 1 $ 11.70 $ 11.70

DROK

LN298N 1 $ 6.99 $ 6.99

IMU

BNO055 1 $ 34.95 $ 34.95

LEDs 5 $ 6.99 $ 34.95

DRL 1 $ 29.95 $ 29.95

Push Button 2 $ 4.00 $ 8.00

Arduino Uno 1 $ 15.00 $ 15.00

Voltage

regulator 1 $ 3.00 $ 3.00

LED Driver 1 $ 3.39 $ 3.39

Servo Shield 1 $ 15.08 $ 15.08

Servo shield

header kit 1 $ 5.95 $ 5.95

Servos 12 $ 3.29 $ 39.48

Fiberglass 1 $ 18.04 $ 18.04

Headlights

(pair) 1 $ 75.00 $ 75.00

Light lens

(Plano-

convex) 1 $ 5.00 $ 5.00

Tubing 1 $ 9.97 $ 9.97

LED Driver 5 $ 3.39 $ 16.95

LEDs 11 $ 6.99 $ 76.89

Relay Shield 1 $ 27.95 $ 27.95

Arduino

Mega 1 $ 45.95 $ 45.95

RGB Strip 1 $ 11.99 $ 11.99

MOSFETs 4 $ 3.00 $ 12.00

5 pcs 4 wire

micro stepper

motor 1 $ 8.99 $ 8.99

Voltage

Regulator 1 $ 3.00 $ 3.00

Total: $634.48

V. PROJECT MILESTONES

The project was completed in several phases. At the

end of Fall 2016 semester we were to provide a laboratory

prototype of the project, and in Spring 2017, a deployable

prototype. The components of the headlight were to be

completed at different time within the nine-month period of

the project.

First, a headlight was to be purchased and

disassembled. At the same time, some of the team began

working on programming the Raspberry PI while the other

part of the team was writing the code for operating the LEDs.

By the middle of November 2016, the basic LED unit was

created, as seen in Figure 1. Servos and LEDs were attached

to the LED unit, and the entire LED unit assembly was put

together to be placed into the headlight housing for the

presentation.

During the assembly, Raspberry PI and the IMU

sensor were connected and programmed to collect data from a

moving vehicle. Once data was collected, it was then analyzed

to determine proper thresholds for operating the servos.

Towards the end of Fall 2016 semester, the LED assembly, the

Raspberry PI and the servos were programmed and operating

in time for the project demonstration in December 2016.

Figure 1: LED Unit

[2]

Beginning with the new semester, the team had to

slightly modify the project to include an OBDII reader, as well

as replace some faulty parts. Some of the team members

began working on the DRLs and the turn signal, which was

done using one LED strip. At the same time, a 3D model was

being created to print out the filler panel to give the light some

shape.

By the end of March 2017, the 3D printing idea was

abandoned, and a fiberglass filler panel was created and

painted. By the middle of the Spring 2017 semester, the

headlight had all the components working, although not

incorporated together. By mid-April, the entire assembly of

the headlight was put together and working, with only a few

minor programming things to solve and fine tune.

By mid-May, the project was to be completely working. For

the presentation, we collected data that is to be run through the

Raspberry PI and sent to the headlight to respond. Another

important milestone was to create a simple two minute video

to showcase our project to the visitors of the presentation of

the system.

VI. WORK BREAKDOWN STRUCTURE AND TASK ASSIGNMENT

The work Breakdown structure can be seen at the end of the

document.
[39]

It had to be separate because it was a pdf file

and including it in the report would have made it hard to read.

VII. RISK ASSESSMENT AND MITIGATION

Through the two semesters our team had to deal with

a few risks when creating an intelligent headlight system. As a

result, we had to mitigate the risk by replacing the part or

using something else completely.

During the first semester, we had to mitigate the

functioning of the LED’s, modify our LED unit design, and

account for IMU inaccuracy. Two factors that needed to be

considered when our team discussed about the functionality of

the LEDs lights include Voltage regulation and the heat of the

overall system. Two of the major risk associated with the

LEDs were that the LEDs will either not light at all or will

burn out while testing the system, if not handled properly. To

mitigate this problem, we had to make sure that we use

resistors for each LED used that will limit the amount of

current each LED receives so that they don’t overheat and

burned out.

One of the greatest risks we had to take during the

first semester was the use of small stepper motors. The motors

were about 8 mm wide by about 10 mm long. Due to size

constraints of our system, we couldn’t go any larger than that.

The Figure below shows what our original system looked like

with stepper motors.

We did not know if the motors would hold, and to

avoid the risk of trying and failing, we decided to redesign the

assembly to accommodate the issue of torque and structural

strength. We had to redesign the motor and centerpiece

configuration, which of course took more time. We had to

redesign our Tilt and Pan system to include two servers per

LED and reduce the number of LEDS we would use from 7 to

5.

Another Risk our team went through in the first

semester of Senior Project was that the Inertial Measurement

Unit (IMU) being used to gather information about the vehicle

was not accurate because of the large amount of noise

interference we were getting from the IMU. The noise level

made it very difficult to accurately determine whether the

vehicle was in motion or not, even when the vehicle was not

moving at all. We had considered many different alternatives

from using two IMUs and taking the average number of the

two, to finding an algorithm that would reduce the noise level

to a minimum. The problem our team had from using either

one of them was that it would have taken weeks or months

trying to reduce the noise level coming from either solution.

Thankfully, another group in Senior Project was dealing with

the same problem and was able to find a solution by buying a

more expensive IMU that had its own filtering system. The

filtering system reduced the amount of noise level to almost

zero. As a result, we mitigated our own problem by using the

same IMU the other Senior Project group used to solve theirs.

In between the first and second semester we had a

risk that our 3D design was not going to properly fit our

headlight system because of the uneven shapes inside of the

system. Our original mitigation to this problem was that we

were going to have to file each of the 3D printed parts in order

to fit in our design. As soon as the first 3D parts finished

printing we knew that it would be almost impossible to file

each of those parts in the different shapes that the system had.

After given it some thought, Konstantin brought up the idea of

molding the inside of the headlight using fiber glass. Using

fiber glass would allow us to mold the inside of the headlight

even with its different uneven shapes. The procedure took

about a week to complete and allowed us to continue the

process of attaching the remaining components in the system.

Figure 2: Tilt and Pan System [3]

Figure 3: Risk Assessment Chart [4]

The figure above shows the risk assessment from the above

mention risks. The green headings represent a low impact in

our system, a yellow heading represents a medium impact in

our system and a red heading represents a high impact in our

system.

Towards the end of the semester our team also had a

risk in which the speed of the vehicle at any given time was

not being produce by the IMU. Even though we were using

the IMU that had its own filtering to eliminate the noise, it

was not enough to reduce the errors we were getting when

trying to calculate the speed of the vehicle. In order to

calculate the speed of the vehicle we were taking the

acceleration and integrating it. Every time we integrated the

acceleration we were also adding a small amount of error into

the equation that allows us to calculate the speed of the

vehicle. As a result, all of those small errors accumulated over

time and made the speed of the vehicle inaccurate. To mitigate

this problem in a short period of time, we decided to use an

additional component to the system. Using an OBDII reader

allowed us to get the speed of the vehicle at any given time

because the On-Board Diagnostics (OBDII) reader connected

to the on board diagnostics system of the vehicle that gave the

speed from the vehicles own sensors.

VIII. DESIGN DOCUMENTATION

The design philosophy of our intelligent headlight

system is about offering the driver the same safety features

that are being implemented in today’s newer vehicle at a

fraction of the price. In addition, our design would be able to

support a wide variety of vehicles, not just vehicles produced

by one manufacture. It all starts with the latest LED

technologies that are brighter than incandescent light bulbs in

today’s vehicles. Using five LEDs per headlight allows the

system to focus the light were the driver needs it the most. In

order to focus the light where it is needed the most, each

headlight uses a set of 3 pan/tilt servo brackets. These brackets

are placed towards the left side in the left headlight, and

towards the right side of the right headlight. The placement

allows the light to in either up or down/left or right direction.

The two remaining LEDs are stationary on the right side of the

left headlight and on the left side of the right headlight. This

prevents a blind spot when a turn is made.

In order to control the intensity of the LEDS, as well

as, the turn signal of the system the system utilizes an Arduino

that will control the high beams, low beams, and turn signal

based on user input. For the user input 3 different buttons are

used. One button turns the headlights on and activates the low

beam, while another button activates the high beams when

pressed. The third button activates the turn signal when

pressed. The turn signal was achieved using an LED RGB

(Red, Greed, Blue) Strip, which is a strip that changes color

according to which colors are being sent to it through

programming. The turn signal is an amber color that is a

chasing light. A chasing light is achieved by turning each

LED on within the strip one at a time consecutively at a fast

speed. An additional Arduino is used to control the servos to

move the LED’s where they need to go. The directions they

can move are left, right, up, and down. These are based on the

signals sent to the Arduino by the Raspberry Pi. The

intelligent headlight uses a Raspberry Pi to communicate with

the second Arduino. The Raspberry Pi is the brain of the

system. It is constantly analyzing data from the attached

sensors and senses when the vehicle is turning, speeding, and

going up or down a hill. Based on any of those scenarios the

Raspberry Pi will then send a different signal to the second

Arduino and based on that signal, the second Arduino would

then proceed to move the brackets into the desired position.

This is in order to focus the light were the driver needs it that

most.

Finally, the system uses two different sensors that

consistently send out data to the Raspberry Pi about the

current position of the vehicle. The sensors include an IMU

which allows the Raspberry Pi to sense when the vehicle is

turning in either direction and also when the vehicle is going

up or down a hill. In addition, the system also uses an OBDII

reader that constantly reports the speed of the vehicle to the

Raspberry Pi. The speed of the vehicle obtained through the

OBD II Reader allows us to narrow the light if the user is

driving on the freeway and widen the light if the driver is in a

residential area or at a slower speed. These additional

conditions allow for users to be more aware of pedestrians in

Figure 4: Intelligent Headlight [5]

the case they are in residential and more aware of what’s

ahead of them if they are on the freeway. Using all of these

components working independent, our system is able to focus

the light where the driver needs it the most. The figure at the

top of the page shows what makes the intelligent headlight

system, intelligent.

IX. DEPLOYABLE PROTOTYPE STATUS

At end of the Spring 2017 semester, the deployable

prototype was to be completed by our team. The project is

completely done in terms of the goals we set in the beginning

of the project. It has all the required components of a

headlight, the LEDs, the turn signal, and the DRL. The light is

directed using a lens, and only three user inputs are used.

With all the regulations of the automotive market, it

is difficult to judge where to place the readiness of the project

to be installed on a vehicle. Headlights are a critical

component, so much more testing needs to be done before

calling it ready for sale to the general public. Production of

such a system will likely require use of different servos and

different microprocessors.

The project works like it is supposed to, but there are

a few minor details that need to be taken care of before

installing the light unto the car. Some extra wiring needs to be

created for powering all the electrical components in non-ideal

environment of driving. The project works on ideal power

conditions, without accounting for significant voltage changes.

The project is complete in terms of the goals we set:

we are using angular velocity to turn LED units inside the

headlight to direct light. We’re also using an OBDII reader to

determine the speed of the vehicle and make decisions based

on the data collected – one major component of the project

that we needed to incorporate. The other major components

include the turn signal, which operates just fine, even with

some pleasant visual effects. All servos work precisely and

point the light where asked by the Raspberry PI. Data is

collected seamlessly; communication works and all electronic

components work like a clock.

The project has not been installed on the vehicle, so

the project did not have real life testing. All the simulations

have been run, but in general the project needs significantly

more testing than we would offer in the timeframe we had.

The project should adhere to multiple federal (USDOT) and

state regulations that determine what headlight should comply

and criteria that it should meet. With the multiple DOT

regulations, there should be a significant amount of research

done to make sure we meet all of them, which would likely

require possible help from lawyers or consultants. At the time

of completion, there is no guarantee that it will be completely

according to regulations. We did our research, and as much as

we could find, we attempted to adhere to all regulations. We

adhere to the Federal codes on the Headlights to the best of

our knowledge. The high beams, low beams, and turn signals

are controlled by user input. The DRL’s are only on when the

low beams or high beams are not on, and the headlights are a

consistent brightness for all the LED’s when they are in high

beam as well as low beam. That was just to name a few of the

Federal codes we followed to the best of our knowledge.

In summary, the project is complete, but it is not

ready to be installed on any vehicle. There are multiple tests

that need to be conducted on the light, such as vibrations, dust,

water and all possible weather conditions. The programs may

also have bugs, which were could not be determined using

laboratory conditions. All the requirements of the project

proposition were met, so the project is complete, but there are

many more steps to take towards actual deployment of the

system unto the market.

X. DEPLOYABLE PROTOTYPE MARKETABILITY FORECAST

There is still a much-needed effort to refine the

deployable prototype to achieve a marketable device based on

our research in the market review. However, because this

prototype was done by college students most of the refine

work is due to the lack of tools and money needed to make

this a better marketable product.

With that in mind foremost our team would have to

research whether or not The Insurance Institute for Highway

Safety (IIHS) finished developing a system for evaluating

headlight performance which was due early 2017. This system

will require vehicles to receive a ‘good’ rating to be

considered a Top Safety Pick Plus, the IIHS’s top safety

rating. In addition, the ratings will also look at a new type of

lights such as LEDs and HIDs, along with other technologies

like auto-dimming high beams. This is to insurer that we are

meeting the safety standards of our LED system. Within the

intelligent headlight system there are couple of changes in

hardware that would also need to be change in order to

achieve a marketable device. This includes a redesign of the

servo bracket that is durable and is able to withstand higher

temperatures. Using both the Arduino and Raspberry Pi is a

cheap alternating option for our current processing needs, but I

would suggest replacing it with something that has more

processing power. Whether or not both Arduino and

Raspberry Pi is used, a casing for the processor of the system

would have to be build that would protect the processor from

external forces. The IMU used by the system would also have

to be placed in a shield case to protect it against the same

external forces that can damage the processor of the system.

Instead of Using an OBDII reader, using another

sensor to detect the speed of the vehicle would be a better

option, for example, a GPS sensor. Having the OBDII reader

plugged-in the onboard diagnostic port means that, any one

fixing the vehicle would have to unplug it in order to use their

own tools to find out what is wrong with the vehicle. In order

for our system to achieve a marketable device, changes to the

software would also have to be made. One of the major code

fine tuning that would have to be made in both Arduino and

Raspberry Pi is the action of which the system should take if

one of those two stopped working. If that is the case we would

want to make sure that the servos are set to their default

position which is to look onward until repairs to the system

are made. This is to ensure that the lights are not facing

different directions when either of the Arduino or Raspberry

Pi malfunctions.

The communication between the Raspberry Pi and

the OBDII reader would need tuning in case there is an

interruption between them. Finally, and most importantly

security changes to the Raspberry Pi would have to be made.

This is to ensure that no one is able to connect to the

Raspberry Pi via Bluetooth or through its Wireless network.

XI. CONCLUSION

The Intelligent Headlights came about due to the

need for Nighttime Driving accidents to decrease. Without

this need, our product wouldn’t have been something we could

have pursued for our project. When designing a product there

are a multitude of things to be aware of. Budget, Risks, Laws,

and marketability are all important things that were considered

through our making of the intelligent headlights. We were

able to split up the tasks needed to make intelligent headlights

possible based on our individual skills. Teamwork is essential

to making a product that works correctly.

As a team we were able to mitigate the problems we

encountered while staying in our budget range, which allowed

us to reach our milestones. The end result of the year was

having a functional prototype that would help increase the

driver’s visibility through the controlling of light based on

driving conditions.

ACKNOWLEDGMENT

Juan, Konstantin, and Alisha thank the Sacramento State

Mechanical shop that helped build the LED units. Without

their help a vital component used to bring the project idea

together would not have been made.

Juan, Konstantin, and Alisha thanks Amy and Team 2 for

sharing information on the current IMU we are using in our

project. Without her recommendation the project would have

been time consuming. Through her recommendation, we were

able to acquire an IMU that does not produce noise even when

stationary.

REFERENCES

[1] Komarchuck, K. “LED Unit.” Senior Design, Fall 2017.

[2] Komarchuck, K. “Project Spending” Senior Design, Spring

2017.

[3] Komarchuck, K. “Title and Pan System.” Senior Design,

Fall 2017.

[4] Komarchuck, K. “Risk Chart.” Senior Design, Fall 2016.

[5] Komarchuck, K. Rosario,A. Chico, J. “Intelligent

Headlight.” Senior Design, Spring 2017.

[6] Komarchuck, K. “locations of Screws and Bolts on

Bumbper.” Senior Design, Spring 2016.

[7] Komarchuck, K. “Approximate location of a box on upper

ti bare.” Senior Design, Spring 2016.

[8] Komarchuck, K. “Connect USB into Appropriate Spot.”

Senior Design, Spring 2016.

[9] Komarchuck, K. “Bolt Locations.” Senior Design, Spring

2016.

[10] Komarchuck, K. “Bumper Fasteners.” Senior Design,

Spring 2016.

[11] Komarchuck, K. “OBD II Slot Location” Senior Design,

Spring 2016.

[12] Komarchuck, K. “Hardware Block Diagram” Senior

Design, Spring 2016.

[13] Rosario, A. “LED Driver Diagram” Senior Design,

Spring 2016.

[14]. P. Burgess. "Wiring: LEDs/LED Strips."

learn.adafruit.com. November 2015. [Online]. Available:

https://learn.adafruit.com/digital-led-strip/wiring. [Accessed:

March 12, 2017].

[15] "Cree Xlamp XM-L2 High Power LEDs" ledsupply.com.

[Online]. Available: http://www.ledsupply.com/leds/cree-

xlamp-xm-l2-leds. [Accessed: March 12, 2017]

[16]. "T-Pro MG90S 9G Metal Gear Servo 1.8kg / 13.4g /

0.10sec." hobbyparts.com. [Online]. Available:

http://www.hobbypartz.com/servo-mg90s.html. [Accessed:

March 12, 2017].

[17] K. Townsend. "Overview: Sensors" learn.adafruit.com.

November 2015. [Online]. Available:

https://learn.adafruit.com/adafruit-bno055-absolute-

orientation-sensor/overview. [Accessed: March 12, 2017]

[18] Chico,J. “Raspberry Pi and Arduino Communication.”

Senior Design, Spring 2016

[19] Chico,J. “Arduino and Servo/Turn Signal/High Beam

Control” Senior Design, Spring 2016

[20] Komarchuck, K. “LED unit U shaped steel frame” Senior

Design, Spring 2016.

[21] Komarchuck, K. “Centerpiece that holds the cover with

lens and the LED” Senior Design, Spring 2016.

[22] Komarchuck, K. “Cover with lens, lens goes into hole in

front. Back side is hollow” Senior Design, Spring 2016.

[23] Komarchuck, K. “Plate for LED array. Aluminum, holds

all LED units together” Senior Design, Spring 2016.

[24] Komarchuck, K. “Plate for LED array. Aluminum, holds

all LED units together” Senior Design, Spring 2016.

[25] Komarchuck, K. “Filler panel with LED unit assembly

partially installed” Senior Design, Spring 2016.

[26] J.D. Bullough, N.P. Skinner, T.T. Plummer. “Adaptive

Driving Beam Headlights: Visibility, Glare and Measurement

Considerations” A Transportation Lighting Alliance Report.

TLA 2016-01. June 2016. [Online]. Available:

http://www.lrc.rpi.edu/programs/transportation/TLA/pdf/TLA

-2016-01.pdf. [Accessed: January 27, 2017].

[27] B.L. Hills. “Vision, Visibility, and perception in driving”

Transport and Road Research Laboratory.Vol.9 pp.183-216.

November 1979. [Online]. Available:

http://journals.sagepub.com/doi/abs/10.1068/p090183?id=p09

0183. [Accessed: January 27, 2017].

[28] D.A.Owens and M.Sivak. “The Role of Reduced

Visibility in Nighttime Road Fatalities” University of

Michigan Transportation Research Institute. Report

No.UMTRI-93-33. November 1993. [Online]. Available:

https://deepblue.lib.umich.edu/handle/2027.42/49541

[Accessed: January 27, 2017].

[29] K.S.Opiela, C.K. Anderson, and G. Schertz. “Driving

after Dark” Federal Highway Administration. Vol.66. No.4.

January/February 2003. [Online]. Available:

https://www.fhwa.dot.gov/publications/publicroads/03jan/05.c

fm. [Accessed: January 27, 2017].

[30] M.Green. “Seeing Pedestrians at Night” Marc Green PhD

Human Factors. 2013. [Online]. Available:

http://www.visualexpert.com/Resources/pedestrian.html.

[Accessed: January 27, 2017].

[31] “Night Driving” Law Offices of Michael Pines, APC.

1998-2015. [Online]. Available:

https://seriousaccidents.com/legal-advice/top-causes-of-car-

accidents/nighttime-driving/. [Accessed: January 27, 2017].

[32] J.Worland. “How Daylight Saving Time Can Be

Dangerous” TIME. October 2014. [Online]. Available:

http://time.com/3549442/daylight-saving-time-traffic-deaths/.

[Accessed: January 27, 2017].

[33] N.Greenfieldboyce “Most Nighttime Crashes With Teen

Drivers Happen Before Midnight” KQED Public Media.

August 2016. [Online]. Available:

http://www.npr.org/sections/health-

shots/2016/08/03/488521545/most-nighttime-crashes-with-

teen-drivers-happen-before-midnight. [Accessed: January 27,

2017].

[34] “The Most Dangerous Time to Drive: As we ‘Fall Back’

to Shorter Days, Take Extra Care on the Road” National

Safety Council. 2017. [Online]. Available:

http://www.nsc.org/learn/safety-knowledge/Pages/news-and-

resources-driving-at-night.aspx. [Accessed: January 27, 2017].

[35] “Tutorial – Arduino and the TLC5940 PWM LED Driver

IC ” TronixStuff, 2013. [Online]. Available:

http://tronixstuff.com/2013/10/21/tutorial-arduino-tlc5940-

led-driver-ic/ [Accessed: 25-Oct-2016]

[36] M, Day. “LED Driver – Paralleled Outputs: Provide

High-Current Outputs” Texas Instruments, 2006. [Online].

Available: http://www.ti.com/lit/an/slva253/slva253.pdf

[Accessed: 3-Nov-2016]

[37] Texas Instruments. “TLC5940 16-Channel LED Driver

With DOT Correction and Grayscale PWM Control” Texas

Instruments, 2014-2015. [Online]. Available:

http://www.ti.com/lit/ds/symlink/tlc5940.pdf [Accessed: 25-

Oct-2016]

[38] Bosch Sensortec. “BNO055: Intelligent-axis absolute

orientation Sensor” [online]. Avalialable: https://cdn-

shop.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf

[Accessed: Spring 2016]

[39]Chico, J. “Gannt Chart”. Senior Design, Spring 2016.

GLOSSARY

LED- An acronym for Light Emitting Diode. LED’s give off

light when they have voltage going through them.

DRL- An acronym for Daylight Running Lights. DRL’s are

lights in the headlights of cars that are on in the daytime to

give the drivers some extra visibility.

IMU- An acronym for Inertial Measurement Unit. The IMU

take measurements of different circumstances. For the purpose

of the headlights it will be measuring the acceleration and

angles of the car.

RGB LED Strip: A light that changes colors using the 3

primary colors. It can turn red, blue, or green. By mixing the

colors in a certain combination it can turn various colors. RGB

stands for Red Green Blue while LED stands for Light

Emitting Diode. There are multiple LED’s on one strip that

can be individually controlled to emit a certain color through

programming.

Servo: A device that turns to a specified angle based on

programming.

OBDII Reader: An On-board diagnostics tool that allows

access to the car data, including speed.

https://cdn-shop.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf
https://cdn-shop.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf

APPENDIX A: USER MANUAL

Read installation procedures carefully before installing any

components. Make sure package includes all items listed

below. Use proper tools for installation. Refer to a

professional if you have no prior experience in disassembly

and assembly of a vehicle. Use caution when handling

electronic parts, to avoid causing any cosmetic or physical

damage.

Tools required:

 10 mm socket and ratchet

 Phillips #2 screwdriver

 Zip-ties

 Flat-head screwdriver or clip removal tool

 Drill with Phillips #2 screwdriver bit

(Recommended)

Items included in package:

 2 x Headlights (one left, one right)

 2 x USB wires

 1 x USB Bluetooth adaptor

 1 x OBDII Bluetooth reader

 1 x Box with processing computer

 1 x Power cable for computer

Step 1.

Remove front bumper by using 10 mm socket to remove bolts

and screws. Store on a stand or safe place to avoid scratching

the paint. Refer to image below for bolt and screw locations.

Figure 5. Locations of screw and bolts on bumper.

[6]

Step 2.

 Using a 10 mm socket, remove the three screws and one bolt

on the side that hold the headlight into place. Refer to Figure 6

for fastener locations. Repeat procedure for other side. To

disconnect wiring, press on the tab that is connected to the

bulb and gently pull.

Figure 6. Headlight fastener locations.

[10]

Step 3.

Using the screws provided, attach the box with the computer

to the upper tie bar, as shown above. Warning: Make sure

you stay away from any moving parts such as fans, belts, etc.

Figure 7. Approximate location of box on upper tie bar.

[8]

Step 4. Connect both USB cables into the box previously

installed; pull one to the left headlight wiring harness, the

other one to the right. Using some zip-ties, secure wire to

radiator support wiring harness. Connect the power cable and

using the vehicle’s wiring harness, connect to the battery

leads. At this step, connect the USB Bluetooth adaptor in an

available slot. Warning: Make sure none of the wires is

touching any moving parts.

Figure 8. Connect USB wires into appropriate slots.

[9]

Step 5.

Install the provided headlight using the bolts from the original

headlight. Make sure to reconnect all vehicle wiring as well as

the extra cable coming from the computer. Repeat procedure

for both sides. See image below for bolt and screw reference.

Figure 9. Bolt locations on headlights.

 [10]

Step 6.

 Reinstall the original bumper, and installs the proper screws

and bolts as they were removed. Use care when installing

bumper to avoid damaging the paint or the newly installed

headlights.

Figure 10. Bumper fasteners locations.

 [10]

Step 7.

Install the provided OBDII reader into the slot located under

the front lower dash panel, near the brake pedals. See image

above for reference. See Figure 10 for location of the OBDII

slot.

Figure 11. OBDII slot location.

[11]

Step 8.

Prior to starting the car, make sure all connections are

properly connected. If everything is connected, start the car,

wait a few minutes for initialization and test basic work

functions by turning on the headlights, high beams and turn

signal. Proceed to driving on the road if all systems are

working as expected.

References

[1]Outline of Toyota 4Runner front end. 2014.

[2]Parts.com, 2004 Toyota 4Runner SR5 V6 4.0 Radiator

Support Diagram. .

[3]ItalTronic, Raspberry PI cover components. .

APPENDIX B: HARDWARE

Figure 11: Hardware Block Diagram

[12]

The figure above shows the block diagram for the

intelligent headlights in relation to what goes into the actual

headlight. Row 4 shows that the Left (LT) servos and LED go

together since the servos control where the light of the LED

goes. It’s a similar concept for the right since the right

headlight is a mirror image of the left side. Below Row 4 is

Row 3 where the Arduino is used to control the servos that

control the movement for the LED. It should be noted that

there is only a single Arduino that control the Servos. In Row

2 the Raspberry Pi is in charge of processing the data for the

sensors and based on the drivers condition will send data to

the Arduino on what action to take for moving the servos.

Lastly, in Row 1 The IMU is the sensor that gives the

raspberry pi the information it needs on the drivers speed and

angle. The drive input in Row 1 is meant to represent the

driver needing to control the turn signal and high beams/low

beams. This signal is fed into an Arduino through the means

of a pushbutton. It should be noted that There are two

Arduinos that are used for separate processes. The one

Arduino that the raspberry pi communicates with based on the

drivers conditions, and the Arduino that handles the user

inputs for high beam/low beams and turn signal, as required

by Federal code.

The next Figure that is being discussed is the LED

Driver. The LED driver is a component that allows multiple

LED’s to be controlled at one. It changes the brightness of the

LED’s and regulates the current going through it. Below is

the Diagram that shows the where to connect each pin on the

LED Driver. It’s the only component level diagram that was

used in the final product.

Figure 12: LED Driver Schematic
[13]

Some data sheets that are used will be listed below:

Full Data sheet for the TLC 5940 (LED Driver) can be in the

references as
[37]

Full data sheet for High Output current on the LED Driver

(TLC 5940) can be seen in the references as
[37]

Full data Sheet for the IMU (BN0055) can seen in the

references as
[39]

The sheet for High output current was a possible way

to increase the current of the LED’s to make them brighter,

but an alternative way is by decreasing the resistor that can be

seen in the draw LED driver schematic above.

The datasheet for the IMU is listed as well since it was used to

gather data on the turn angle for left, right, up, and down

motions..

For the testing of the LED’s and RGB Strip, were

tested at a low temperature of -13.5 degrees Celsius and a high

temperature of 62.78 degrees Celsius. They worked correctly

at each of these conditions and were able to function as

expected without a problem. For the endurance test the LED’s

and RGB Strip were left running for 14 hours. Each of the

items worked as expected without a problem after the

endurance test was over. The endurance test was to ensure

that the component would work over long periods of time

without problems.

The servos were tested at a low temperature of -18

degrees Celsius and a high temperature of 43 degrees Celsius.

The servos were tested to see if they would be able to perform

a sweep through various increments and they did so without a

problem. The servos were also tested to see the maximum and

minimum sweep as well as the angle necessary to move the

LED units.

Lastly, the IMU was tested for consistence in

collecting data. At different intervals the same testing

condition was repeated to see if the data collected at the

separate intervals was the same. The difference between the

data collected was very minimal. The IMU was also testing

under different voltages ranging from 1.6V to 3.6V which is

the range of operation as indicated by the data sheet. The

instrumentation was 0.2V until it reached 3.6V. Collecting

data through this testing period showed only a small fraction

of an error in the difference between the data points gathered.

The errors weren’t big enough to be a cause for concern.

Below are pictures of and RGB Strip, An LED, a

servo, and the IMU.

Figure 13: RGB Strip
[14]

Figure 14: LED
[15]

Figure 15: Servo

[16]

Figure 16: IMU
[17]

APPENDIX C: SOFTWARE

The following Figure Shows a Block Diagram of the

communication between the Raspberry Pi and Arduino.

System ON

System initializing
Connecting to IMU

Connecting to OBDII
Connecting to

Arduino

Continuously
Receiving
Data from

OBDII & IMU

Is Vehicle
Turning?

Speeding?
Up/Down a Hill?

Send Signal to
Arduino Depending
of Driving condition

Arduino

System Off

System ON

System initializing
Connecting to IMU

Connecting to OBDII
Connecting to

Arduino

Continuously
Receiving
Data from

OBDII & IMU

Is Vehicle
Turning?

Speeding?
Up/Down a Hill?

Send Signal to
Arduino Depending
of Driving condition

Arduino

System Off

Figure 17: Raspberry Pi and Arduino Communication

[18]

The following figure shows the block diagram Between

Arduino and Servos/LED/Turn Signal.

Arduino ON

Initialization
Is Raspberry Pi

connected

Turn Signal on?
High Beams ON?

Receives data from
Raspberry Pi and

Push Buttoms

Raspberry Pi on
and Sending
signals about

vehicle

Servo Pan/Tilt Move
DLR Control

Turn Signal Control
High Beams Control

IS vehicle
Turning?

Turn Signal On?
High Beams on?

Arduino off

Arduino ON

Initialization
Is Raspberry Pi

connected

Turn Signal on?
High Beams ON?

Receives data from
Raspberry Pi and

Push Buttoms

Raspberry Pi on
and Sending
signals about

vehicle

Servo Pan/Tilt Move
DLR Control

Turn Signal Control
High Beams Control

IS vehicle
Turning?

Turn Signal On?
High Beams on?

Arduino off

Figure 18: Arduino and Servo/Turn Signal/High Beam Control [19]

The following Python Code is a demonstration test in order to

test the headlight system by feeding the program a set of data

we gather using the IMU on actual run.

Smart Headlight System

Main System program

import logging

import sys

import time

import datetime

#from Adafruit_BNO055 import BNO055

import serial

#ser = serial.Serial('/dev/ttyACM0', 9600)

Initialize Array

simArray = [] // array of numbers that allow us to see if

vehicle is turning left or right

timeArray =[] // time stamp array

Enable verbose debug logging if -v is passed as a parameter.

if len(sys.argv) == 2 and sys.argv[1].lower() == '-v':

 logging.basicConfig(level=logging.DEBUG)

z = 0

t = timeArray[0]

#y = 0

for i in range(len(simArray)):

 # Returns to current while loop if no data provided

 if z < simArray[i]:

 z = simArray[i]

 t = timeArray[i]

 # Configuration settings for each condition.

 if z <= .069 and z >= -.069:

 #ser.write('0') # send default setting to the arduino

 print(t)

 print('Vehicle is in default position')

 elif z >= .07 and z <= .19:

 #ser.write('1') # Slight Left Turn

 print(t)

 print('Vehicle is making a Slight Left turn')

 elif z <= -.07 and z >= -.19:

 #ser.write('2') # Slight Right Turn

 print(t)

 print('Vehicle is making a slight Right turn')

 elif z >= .2 and z <= .34:

 #ser.write('3') # Moderate Left Turn

 print(t)

 print('Vehicle is making a moderate Left turn')

 elif z <= -.2 and z >= -.34:

 #ser.write('4') # Moderate Right Turn

 print(t)

 print('Vehicle is making a moderate Right turn')

 elif z >= .35:

 #ser.write('5') # Sharp Left Turn

 print(t)

 print('Vehicle is making a sharp Left turn')

 elif z <= -.35:

 #ser.write('6') # Sharp Right Turn

 print(t)

 print('Vehicle is making a sharp Right turn')

 else:

 #ser.write('0') # bring vehicle to default position

 print(t)

 print('Vehicle is in default position')

 #y = y + 1

 # Sleep for a 1/10 before reading and sending info back to

the arduino.

 time.sleep(0.333)

The following code is used by the Arduino which allows us to

control the movement of the servos based on the given signal

provided by the Raspberry pi.

#include <Wire.h>

#include <Adafruit_PWMServoDriver.h>

//Call servos

Adafruit_PWMServoDriver servo1_1 =

Adafruit_PWMServoDriver();

Adafruit_PWMServoDriver servo1_2 =

Adafruit_PWMServoDriver();

Adafruit_PWMServoDriver servo2_1 =

Adafruit_PWMServoDriver();

Adafruit_PWMServoDriver servo2_2 =

Adafruit_PWMServoDriver();

Adafruit_PWMServoDriver servo3_1 =

Adafruit_PWMServoDriver();

Adafruit_PWMServoDriver servo3_2 =

Adafruit_PWMServoDriver();

Adafruit_PWMServoDriver servo4 =

Adafruit_PWMServoDriver();

Adafruit_PWMServoDriver servo5 =

Adafruit_PWMServoDriver();

Adafruit_PWMServoDriver servo6 =

Adafruit_PWMServoDriver();

//Servo pinout

uint8_t servo1_1pin = 0;

uint8_t servo1_2pin = 1;

uint8_t servo2_1pin = 2;

uint8_t servo2_2pin = 3;

uint8_t servo3_1pin = 4;

uint8_t servo3_2pin = 5;

uint8_t servo4pin = 6;

uint8_t servo5pin = 7;

uint8_t servo6pin = 8;

//Min and Max values

#define SERVOMIN 150

#define SERVOMAX 600

//Full down angles (50)

int servo1_1LowestPosition = 110;

int servo2_1LowestPosition = 108;

int servo3_1LowestPosition = 115;

int servo4LowestPosition = 115;

int servo5LowestPosition = 105;

int servo6LowestPosition = 90;

//Slight down angles (60)

int servo1_1SLPosition = 100;

int servo2_1SLPosition = 100;

int servo3_1SLPosition = 100;

int servo4SLPosition = 100;

int servo5SLPosition = 100;

int servo6SLPosition = 90;

//Even with surface angles (70)

int servo1_1FlatPosition = 90;

int servo2_1FlatPosition = 80;

int servo3_1FlatPosition = 90;

int servo4FlatPosition = 90;

int servo5FlatPosition = 80;

int servo6FlatPosition = 90;

//Slight up angles (80)

int servo1_1SUPosition = 68;

int servo2_1SUPosition = 68;

int servo3_1SUPosition = 68;

int servo4SUPosition = 70;

int servo5SUPosition = 68;

int servo6SUPosition = 90;

//Full up angles (90)

int servo1_1UpPosition = 55;

int servo2_1UpPosition = 58;

int servo3_1UpPosition = 55;

int servo4UpPosition = 55;

int servo5UpPosition = 55;

int servo6UpPosition = 90;

//Zero position angles (4)

int servo1_2ZeroPosition = 90;

int servo2_2ZeroPosition = 85;

int servo3_2ZeroPosition = 95;

//Slight left position angles (3)

int servo1_2SLPosition = 105;

int servo2_2SLPosition = 100;

int servo3_2SLPosition = 100;

//Moderare left position angles (2)

int servo1_2MLPosition = 130;

int servo2_2MLPosition = 115;

int servo3_2MLPosition = 100;

//Full left position angles (1)

int servo1_2FLPosition = 145;

int servo2_2FLPosition = 125;

int servo3_2FLPosition = 115;

double pulselength = 0;

int raspInput = 0; //input condition from Raspeberry PI

//The four positions are zero, SL (slight left), ML (medium

left), FL (full left)

//Servos are numbered from outside to inside, starting at 1

//Servos numbered _1 are up and down control, _2 left and

right control

void setup() {

 //Begin all servos

 servo1_1.begin();

 servo1_1.setPWMFreq(60);

 servo1_2.begin();

 servo1_2.setPWMFreq(60);

 servo2_1.begin();

 servo2_1.setPWMFreq(60);

 servo2_2.begin();

 servo2_2.setPWMFreq(60);

 servo3_1.begin();

 servo3_1.setPWMFreq(60);

 servo3_2.begin();

 servo3_2.setPWMFreq(60);

 servo4.begin();

 servo4.setPWMFreq(60);

 servo5.begin();

 servo5.setPWMFreq(60);

 servo6.begin();

 servo6.setPWMFreq(60);

 yield();

 //Serial begin

 Serial.begin(9600);

 Serial.println("Ready!");

}

void loop() {

 // put your main code here, to run repeatedly:

 //if (Serial.available()) {

 //raspInput = Serial.read() - '0';

 //delay(2000);

 // raspInput = Serial.parseInt();

 /*

 * Code for serial to get 2 bytes instead of 1

 * convert ASCII to integer, add, and shift left 1 decimal

place

 integerValue = ((incomingByte - 48) + integerValue);

 */

 char buffer[] = {' ',' '}; // Receive up to 2 bytes

 while (!Serial.available()); // Wait for characters

 Serial.readBytesUntil('n', buffer, 2);

 raspInput = atoi(buffer);

 Serial.print("RaspInput: ");

 Serial.println(raspInput);

 switch (raspInput) {

 case 51:

 signal51();

 Serial.println("[51]");

 break;

 case 52:

 signal52();

 Serial.println("[52]");

 break;

 case 53:

 signal53();

 Serial.println("[53]");

 break;

 case 54:

 signal54();

 Serial.println("[54]");

 break;

 case 61:

 signal61();

 Serial.println("[61]");

 break;

 case 62:

 signal62();

 Serial.println("[62]");

 break;

 case 63:

 signal63();

 Serial.println("[63]");

 break;

 case 64:

 signal64();

 Serial.println("[64]");

 break;

 case 71:

 signal71();

 Serial.println("[71]");

 break;

 case 72:

 signal72();

 Serial.println("[72]");

 break;

 case 73:

 signal73();

 Serial.println("[73]");

 break;

 case 74:

 signal74();

 Serial.println("[74]");

 break;

 case 81:

 signal81();

 Serial.println("[81]");

 break;

 case 82:

 signal82();

 Serial.println("[82]");

 break;

 case 83:

 signal83();

 Serial.println("[83]");

 break;

 case 84:

 signal84();

 Serial.println("[84]");

 break;

 case 91:

 signal91();

 Serial.println("[91]");

 break;

 case 92:

 signal92();

 Serial.println("[92]");

 break;

 case 93:

 signal93();

 Serial.println("[93]");

 break;

 case 94:

 signal94();

 Serial.println("[94]");

 break;

 default:

 zeroPosition();

 break;

 } // end of case

 // } // End if serial avaiable

} // End of void loop

void signal51()

 {

 setServo(servo1_1LowestPosition,

 servo1_2FLPosition,

 servo2_1LowestPosition,

 servo2_2FLPosition,

 servo3_1LowestPosition,

 servo3_2FLPosition,

 servo4LowestPosition,

 servo5LowestPosition,

 servo6LowestPosition);

 }

void signal52()

 {

 setServo(servo1_1LowestPosition,

 servo1_2MLPosition,

 servo2_1LowestPosition,

 servo2_2MLPosition,

 servo3_1LowestPosition,

 servo3_2MLPosition,

 servo4LowestPosition,

 servo5LowestPosition,

 servo6LowestPosition);

 }

void signal53()

 {

 setServo(servo1_1LowestPosition,

 servo1_2SLPosition,

 servo2_1LowestPosition,

 servo2_2SLPosition,

 servo3_1LowestPosition,

 servo3_2SLPosition,

 servo4LowestPosition,

 servo5LowestPosition,

 servo6LowestPosition);

 }

void signal54()

 {

 setServo(servo1_1LowestPosition,

 servo1_2ZeroPosition,

 servo2_1LowestPosition,

 servo2_2ZeroPosition,

 servo3_1LowestPosition,

 servo3_2ZeroPosition,

 servo4LowestPosition,

 servo5LowestPosition,

 servo6LowestPosition);

 }

void signal61()

 {

 setServo(servo1_1SLPosition,

 servo1_2FLPosition,

 servo2_1SLPosition,

 servo2_2FLPosition,

 servo3_1SLPosition,

 servo3_2FLPosition,

 servo4SLPosition,

 servo5SLPosition,

 servo6SLPosition);

 }

void signal62()

 {

 setServo(servo1_1SLPosition,

 servo1_2MLPosition,

 servo2_1SLPosition,

 servo2_2MLPosition,

 servo3_1SLPosition,

 servo3_2MLPosition,

 servo4SLPosition,

 servo5SLPosition,

 servo6SLPosition);

 }

void signal63()

 {

 setServo(servo1_1SLPosition,

 servo1_2SLPosition,

 servo2_1SLPosition,

 servo2_2SLPosition,

 servo3_1SLPosition,

 servo3_2SLPosition,

 servo4SLPosition,

 servo5SLPosition,

 servo6SLPosition);

 }

void signal64()

 {

 setServo(servo1_1SLPosition,

 servo1_2ZeroPosition,

 servo2_1LowestPosition,

 servo2_2ZeroPosition,

 servo3_1LowestPosition,

 servo3_2ZeroPosition,

 servo4SLPosition,

 servo5SLPosition,

 servo6SLPosition);

 }

void signal71()

 {

 setServo(servo1_1FlatPosition,

 servo1_2FLPosition,

 servo2_1FlatPosition,

 servo2_2FLPosition,

 servo3_1FlatPosition,

 servo3_2FLPosition,

 servo4FlatPosition,

 servo5FlatPosition,

 servo6FlatPosition);

 }

void signal72()

 {

 setServo(servo1_1FlatPosition,

 servo1_2MLPosition,

 servo2_1FlatPosition,

 servo2_2MLPosition,

 servo3_1FlatPosition,

 servo3_2MLPosition,

 servo4FlatPosition,

 servo5FlatPosition,

 servo6FlatPosition);

 }

void signal73()

 {

 setServo(servo1_1FlatPosition,

 servo1_2SLPosition,

 servo2_1FlatPosition,

 servo2_2SLPosition,

 servo3_1FlatPosition,

 servo3_2SLPosition,

 servo4FlatPosition,

 servo5FlatPosition,

 servo6FlatPosition);

 }

void signal74()

 {

 setServo(servo1_1FlatPosition,

 servo1_2ZeroPosition,

 servo2_1FlatPosition,

 servo2_2ZeroPosition,

 servo3_1FlatPosition,

 servo3_2ZeroPosition,

 servo4FlatPosition,

 servo5FlatPosition,

 servo6FlatPosition);

 }

void signal81()

 {

 setServo(servo1_1SUPosition,

 servo1_2FLPosition,

 servo2_1SUPosition,

 servo2_2FLPosition,

 servo3_1SUPosition,

 servo3_2FLPosition,

 servo4SUPosition,

 servo5SUPosition,

 servo6SUPosition);

 }

void signal82()

 {

 setServo(servo1_1SUPosition,

 servo1_2MLPosition,

 servo2_1SUPosition,

 servo2_2MLPosition,

 servo3_1SUPosition,

 servo3_2MLPosition,

 servo4SUPosition,

 servo5SUPosition,

 servo6SUPosition);

 }

void signal83()

 {

 setServo(servo1_1SUPosition,

 servo1_2SLPosition,

 servo2_1SUPosition,

 servo2_2SLPosition,

 servo3_1SUPosition,

 servo3_2SLPosition,

 servo4SUPosition,

 servo5SUPosition,

 servo6SUPosition);

 }

void signal84()

 {

 setServo(servo1_1SUPosition,

 servo1_2ZeroPosition,

 servo2_1SUPosition,

 servo2_2ZeroPosition,

 servo3_1SUPosition,

 servo3_2ZeroPosition,

 servo4SUPosition,

 servo5SUPosition,

 servo6SUPosition);

 }

void signal91()

 {

 setServo(servo1_1UpPosition,

 servo1_2FLPosition,

 servo2_1UpPosition,

 servo2_2FLPosition,

 servo3_1UpPosition,

 servo3_2FLPosition,

 servo4UpPosition,

 servo5UpPosition,

 servo6UpPosition);

 }

void signal92()

 {

 setServo(servo1_1UpPosition,

 servo1_2MLPosition,

 servo2_1UpPosition,

 servo2_2MLPosition,

 servo3_1UpPosition,

 servo3_2MLPosition,

 servo4UpPosition,

 servo5UpPosition,

 servo6UpPosition);

 }

void signal93()

 {

 setServo(servo1_1UpPosition,

 servo1_2SLPosition,

 servo2_1UpPosition,

 servo2_2SLPosition,

 servo3_1UpPosition,

 servo3_2SLPosition,

 servo4UpPosition,

 servo5UpPosition,

 servo6UpPosition);

 }

void signal94()

 {

 setServo(servo1_1UpPosition,

 servo1_2ZeroPosition,

 servo2_1UpPosition,

 servo2_2ZeroPosition,

 servo3_1UpPosition,

 servo3_2ZeroPosition,

 servo4UpPosition,

 servo5UpPosition,

 servo6UpPosition);

 }

 void zeroPosition()

 {

 setServo(servo1_1FlatPosition,

 servo1_2ZeroPosition,

 servo2_1FlatPosition,

 servo2_2ZeroPosition,

 servo3_1FlatPosition,

 servo3_2ZeroPosition,

 servo4FlatPosition,

 servo5FlatPosition,

 servo6FlatPosition);

 }

/*void slightLeft()

 {

 setServo(servo1_1SLPosition,

 servo1_2SLPosition,

 servo2_1SLPosition,

 servo2_2SLPosition,

 servo3_1SLPosition,

 servo3_2SLPosition,

 servo4SLPosition,

 servo5SLPosition,

 servo6SLPosition);

 }

void mediumLeft()

 {

 setServo(servo1_1MLPosition,

 servo1_2MLPosition,

 servo2_1MLPosition,

 servo2_2MLPosition,

 servo3_1MLPosition,

 servo3_2MLPosition,

 servo4MLPosition,

 servo5MLPosition,

 servo6MLPosition);

 }

void fullLeft()

 {

 setServo(servo1_1FLPosition,

 servo1_2FLPosition,

 servo2_1FLPosition,

 servo2_2FLPosition,

 servo3_1FLPosition,

 servo3_2FLPosition,

 servo4FLPosition,

 servo5FLPosition,

 servo6FLPosition);

 }

*/

void setServo(int a, int b, int c, int d, int e, int f, int g, int h, int

i)

 {

 pulselength = map(a, 0, 180, SERVOMIN, SERVOMAX);

// converts pulse lenght to dregrees

 servo1_1.setPWM(servo1_1pin, 0, pulselength);

 // Serial.println(a);

 //Serial.println(pulselength);

 pulselength = map(b, 0, 180, SERVOMIN, SERVOMAX);

// converts pulse lenght to dregrees

 servo1_2.setPWM(servo1_2pin, 0, pulselength);

 //Serial.println(b);

 //Serial.println(pulselength);

 pulselength = map(c, 0, 180, SERVOMIN, SERVOMAX);

// converts pulse lenght to dregrees

 servo2_1.setPWM(servo2_1pin, 0, pulselength);

 // Serial.println(c);

 //Serial.println(pulselength);

 pulselength = map(d, 0, 180, SERVOMIN, SERVOMAX);

// converts pulse lenght to dregrees

 servo2_2.setPWM(servo2_2pin, 0, pulselength);

 //Serial.println(d);

 //Serial.println(pulselength);

 pulselength = map(e, 0, 180, SERVOMIN, SERVOMAX);

// converts pulse lenght to dregrees

 servo3_1.setPWM(servo3_1pin, 0, pulselength);

 //Serial.println(e);

 //Serial.println(pulselength);

 pulselength = map(f, 0, 180, SERVOMIN, SERVOMAX);

// converts pulse lenght to dregrees

 servo3_2.setPWM(servo3_2pin, 0, pulselength);

 // Serial.println(f);

 //Serial.println(pulselength);

 pulselength = map(g, 0, 180, SERVOMIN, SERVOMAX);

// converts pulse lenght to dregrees

 servo4.setPWM(servo4pin, 0, pulselength);

 //Serial.println(g);

 //Serial.println(pulselength);

 pulselength = map(h, 0, 180, SERVOMIN, SERVOMAX);

// converts pulse lenght to dregrees

 servo5.setPWM(servo5pin, 0, pulselength);

 //Serial.println(h);

 //Serial.println(pulselength);

 pulselength = map(i, 0, 180, SERVOMIN, SERVOMAX);

// converts pulse lenght to dregrees

 servo6.setPWM(servo6pin, 0, pulselength);

 //Serial.println(i);

 //Serial.println(pulselength);

 }

Finally, the below code is used to control the Turn signal as

well as the Daylight Running lights.

#include <Tlc5940.h>

#include "LPD8806.h"

#include "SPI.h" // Comment out this line if using Trinket or

Gemma

#ifdef __AVR_ATtiny85__

 #include <avr/power.h>

#endif

const int buttonPin = 2; //pin of button controlling low beams

const int buttonPin2 = 4; //pin of button crontrolling high

beams

int buttonState1 = HIGH;

int lastButtonState;

int buttonState2 = 0;

int ledState;

unsigned long lastDebounceTime = 0;

unsigned long debounceDelay = 50;

int nLEDs = 32;

int dataPin = 7; //pin of button controlling turn signal

int clockPin = 8; //pin to control RGB strip

int buttonPin3 = 12; //pin to control RGB strip

int buttonPress3;

LPD8806 strip = LPD8806(nLEDs, dataPin, clockPin);

void setup()

{

pinMode(buttonPin, INPUT);

pinMode(buttonPin2, INPUT);

 Tlc.init(0);

#if defined(__AVR_ATtiny85__) && (F_CPU ==

16000000L)

 clock_prescale_set(clock_div_1); // Enable 16 MHz on

Trinket

#endif

pinMode(buttonPin3, INPUT);

 // Start up the LED strip

 strip.begin();

 // Update the strip, to start they are all 'off'

 strip.show();

delay(100);

}

void loop()

{

 int i;

int reading = digitalRead(buttonPin); //read a button press

buttonState2 = digitalRead(buttonPin2);

buttonPress3 = digitalRead(buttonPin3);

if (buttonPress3 == LOW)//if button is pressed turn signal

activates

{

 colorWipe(strip.Color(255, 30, 0), 50); //DRL's amber

 colorWipe(strip.Color(0, 0, 0), 50); //DRL's off

 delay(1);

}

if(reading != lastButtonState)

{

 lastDebounceTime = millis();

}

if((millis()- lastDebounceTime)>debounceDelay)

{

 if(reading != buttonState1)

 {

 buttonState1 = reading;

 if(buttonState1 == HIGH)

 {

 ledState = !ledState;

 }

}

}

 if (ledState == HIGH && buttonState2 == HIGH) //if button

2 pressed than low beams on

 {

 Tlc.update();

Tlc.set(1, 50);

 for (i = 0; i< 32; i++)

 {

 strip.setPixelColor(i ,0, 0, 0); // DRL off

 strip.show();

 delay(1);

 }

}

delay(1);

 }

else if (ledState == HIGH && buttonState2 == LOW) //if

button 2 pressed turn high beams on

 {

Tlc.update();

Tlc.set(1, 4095);

 for (i = 0; i< 32; i++)//DRL's off

{

 strip.setPixelColor(i ,0, 0, 0); // yellow 127-64-0

 // orange 255-160-0

 strip.show();

 delay(1);

}

delay(10);

 }

else if (ledState == LOW)//if buttons not pressed than the

headlights are off

 {

Tlc.update();

Tlc.set(1, 0);

delay(1);//10

 for (i = 0; i< 32; i++) // DRL's on only iff the headlights are

off

{

 strip.setPixelColor(i ,64, 64, 64);

 strip.show();

 delay(1);

}

 }

lastButtonState = reading;

}

void colorWipe(uint32_t c, uint8_t wait)

{

 int i;

 for (i=0; i < strip.numPixels(); i++)

 {

 strip.setPixelColor(i, c);

 strip.show();

 delay(30);

 }

 }

APPENDIX D: MECHANICAL

Project consists of several mechanical components: the LED

units, and the LED assembly. There is also the filler panel

holding everything together, as well as providing visually

appealing design features.

i. LED Unit

Consists of three parts:

1. U shaped steel bracket (Fig. 20)

Figure 20. LED unit U shaped steel frame[20]

2. Aluminum centerpiece with steel rods to attach to steel

bracket. (Fig. 20)

Figure 21. Centerpiece that holds the cover with lens and the LED[22]

3. Plastic cover with lens (Fig. 21)

Figure 22. Cover with lens, lens goes into hole in front. Back side is hollow.

[23]

ii. LED array

Consists of am aluminum plate, with holes drilled for servos.

See Fig. 4 for details.

Figure 23. Plate for LED array. Aluminum, holds all LED units together. [24]

iii. Filler Panel

The filler panel is a fiberglass piece that the LED array is

attached to and the entire assembly is then placed into the

headlight housing. See Fig. 21.

Figure 24. Filler panel with LED unit assembly partially installed. [25]

APPENDIX E: VENDOR CONTACTS

N/A

APPENDIX F: RESUMES

Alisha Rosario

Objectives

My objective is to get an entry level position as an Electrical

Engineer and apply my knowledge towards a company with a

good reputation and successful business venture.

Education

 California State University, Sacramento

Bachelor of Science in Electrical Engineering (May 2017)

GPA: 3.3

 Solano Community College

Associates of Arts in Mathematics (May 2012)

Technical Experience

 Senior Design (Fall 2016-Spring 2017)

 To reduce the amount of accidents at night,

the visibility of the driver will be increased

through the means of self-adjusting

headlights

 Servos, LED’s, and Sensors are key

components that are programmed to act

accordingly

 Advanced Analog Integrated Circuits Lab (Fall 2016)

 Drew and Simulated a Latching Comparator

using Mentor Software

 Electronic Circuits Lab I & II (Fall 2015 - Spring

2016)

 Built circuits on a breadboard and tested the

circuit for behavior using the oscilloscope.

 The function generator and Voltage source

was used to send signals to the circuit.

 Simulated Circuits using Multisim Program

Skills

 Programming: C#/C++, Visual Basic

 Problem Solving

 Communication

 Group Processing Module through Tau Beta

Pi (October 2016)

 Teamwork Skills

 Team Leader for a semester

 Worked with groups on projects

Achievements

 Member of Tau Beta Pi Engineering Honor Society

 California State University of Sacramento

 RLDC (Regional Leadership Development

Conference) (2011)

 Made a Business Plan with a group

 Talked with Professionals at Microsoft

about Business Plan

 Member of MESA (Mathematics, Engineering,

Science, Achievement)

 Napa Valley College (2011- 2012)

 Member of SHPE (Society of Hispanic Professional

Engineers)

 Napa Valley College (2011- 2012)

Juan Chico

OBJECTIVE:

To enter California's high technology workforce, and make

significant contributions to the field.

EDUCATION:

In progress: BS, Computer Engineering ∙ CSU Sacramento ∙

Dec 2017

Courses:

 Electronics Advanced Computer Organization

 Assembly Architecture

 Network Analysis Data Structures &

Algorithm Development Programming Methodology

 Circuit Analysis Computer Interfacing

 Advanced Logic Design Systems Programming

PROJECT EXPERIENCE:

 16-bit Single cycle Processor:

Member of a two person team, I help develop and implement a

16-bit single cycle processor unit using MIPS architecture. To

accomplish this task I had to develop many of the components

that made our five stage pipeline design using behavioral

modeling Verilog. The purpose of this project was to

implement store/word operations, integer arithmetic and

branching. Simple hazard detection and forwarding was used

to avoid hazards caused by the instructions.

 Android software implementation with a Micro

controller:

Member of a four person team, I help design and implement a

toy vehicle controlled via an android phone.

Using an Arduino as the car's micro controller, I was in

charged in the development and design of an application that

would accomplish this task. Using blue tooth for connectivity,

I developed an application using the phone’s accelerometer to

drive the vehicle. The application functions included driving

the vehicle forward, backward, steering and turbo.

 Data System Conversion:

I was in charge in a system conversion for two Dental offices.

Two accomplish this task, I had to install a network of

computers at each work station. A server was use for the

synchronization and communication between these computers.

In order for these computers to manage and maintain patient’s

records, a data conversion had to be done. Using a digital X-

ray machine was also used in order to digitally take patients

X-rays and place them on the patient?€ ?s dental records.

 Web Developer:

For the past few years I was in charge in developing and

maintaining websites for small businesses. The tools I used to

accomplish this included knowledge in HTML and PHP.

Software such as MySQL and CMS was also used.

 Quiz Show Buzzer:

 I was in charge in developing a system to create a quiz show

buzzer for one of my engineering clubs. I created a user

interface using C#, in which it displayed a question and would

display a number between 1 thru 4 depending on which buzzer

was click first. In order to achieve, I used four buzzers which

all of them were connected to an Arduino micro controller.

The Arduino was used to decide which of the four buzzers

were click first and send out a signal to the interface created

using C# to display which buzzer clicked first.

 Check-in System:

I was in charge in developing a system to check-in students

for one of my engineering clubs. In order to achieve this, I

used a Magnetic Stripe ID Swiper for which students would

use their school ID to check-in. The ID Swiper was link to a C

program I made to grab the raw information from the students

ID and filter out the students name and ID number. After

filtering the information needed, the program then placed the

information into an Excel sheet with a time stamp.

 Safe Rides America Android APP:

I am currently working on an android application that markets

and operates the mobile-app-based transportation network.

The Application allows consumers to submit a trip request,

which is routed to Safe Rides America taxi drivers.

KNOWLEDGE AND SKILLS:

Computer Languages:

Verilog ∙ C ∙ Java ∙ C++ ∙ C# ∙ X86 Assembly ∙ HTML ∙ PHP ∙

SQL

Systems:

Linux ∙ Windows 8 ∙ Windows 7 ∙ Windows XP

Software:

ModelSim ∙ Cadence PSpice ∙ MultiSim ∙ Eclipse ∙ Visual

Studio ∙ Matlab ∙ Xilinx ISE ∙ MS Office

Tools:

Oscilloscope ∙ Function Generator ∙ Logic Analyzer

WORK EXPERIENCE:

 Teacher Assistant CSUS MESA 3/14 - 4/14

 Document Analyst Old Republic Title

 3/15 to present

 Computer Repair Technician Self-Employed

 3/06 to present

ACTIVITIES AND ACCOMPLISHMENTS:

 • Web Master, Society of Hispanic Professional

Engineers

• Active Member, Association for Computing Machinery

• Active Member, Competitive Robotics

• Captain, High School Soccer Team

Konstantin Komarchuk

I am currently a student, majoring in Electrical Engineering,

with concentration in Digital/Analog Electronics. Looking for

an entry level/internship position to get experience in the

industry while still in school as well as apply acquired

knowledge right in the field.

Educational Experience

California State University, Sacramento Sacramento, CA

Electrical and Electronic Engineering (2015-Present)

Expected Graduation: 2017

Previous Courses:

Network Analysis

Electromechanical Conversion

Applied Electromagnetics

Signals and Systems

Electronics I

Introduction to Microprocessors,

Introduction to Feedback Systems

Computer Hardware Design

Electronics II

Robotics

Modern Communication Systems

Product Design Project I (Senior Project)

Currently taking - Spring 2017:

Product Design Project II (Senior Project)

Engineering Economics

Digital Control Systems

Physical Electronics (Semiconductor Physics)

American River College Sacramento, CA

Associates of Science, Mathematical and Physical Science

Associates of Arts, Social Science

Graduated: 2015

Professional Experience

B & J Body Shop & Towing Rancho Cordova, CA

Body/jury man Assistant 2013-Present

Personal Skills

I am fully fluent in two languages, English and Russian, as

well as have basic understanding of Belarussian and

Ukrainian.

C/C++/C#, Visual Basic, HTML, CSS, PHP, MultiSim,

Advanced Design System (ADS), MS Office, PSPICE

Responsible leader of church groups and events, including

camps, teaching and conferences. (Second Slavic Baptist

Church, North Highlands, CA)

Intelligent Headlight System Semester 2 Apr 30, 2017

Gantt Chart 5

Name Begin date End date

DRL Strip 1/23/17 1/31/17

LED Array 1/23/17 1/31/17

Programming Servos 1/23/17 1/31/17

Testing IMU/Raspberry Pi 1/23/17 1/31/17

Programming DRL 1/30/17 2/7/17

Begin 3D Design 1/30/17 2/7/17

Continue Testing IMU/Raspberry Pi 1/30/17 2/7/17

Continue Programming DRL 2/6/17 2/14/17

Begin Programming Turn Signal 2/6/17 2/14/17

Continue 3D Design 2/6/17 2/14/17

Begin Testing LED Array & Sevors 2/6/17 2/14/17

Finish Testing IMU/Raspberry Pi 2/6/17 2/14/17

Continue Programming Turn Signal 2/13/17 2/21/17

Continue Programming DRL 2/13/17 2/21/17

Continue 3D Design 2/13/17 2/21/17

Test IMU/Raspberry Pi from diff. Factors 2/13/17 2/21/17

Complete 3D Design 2/20/17 2/28/17

IMU - Gather Acceleometer Data 2/20/17 2/28/17

Continue DRL Test - 12hr On duration 2/27/17 3/7/17

Begin 3D Printing 2/27/17 3/7/17

Continue IMU - Acceleometer Data 2/27/17 3/7/17

Test EGB Strip Under Diff. Facotrs 3/6/17 3/14/17

Test Sevoors & LED under Diff. Factors 3/6/17 3/14/17

Finish Testing IMU/Rasp under Diff Facotrs. 3/6/17 3/14/17

Analize Accel. Data from IMU 3/6/17 3/14/17

OBDII Reader for Speed Dectection 3/20/17 3/28/17

Integration of DRL/Turn Signal 3/27/17 4/4/17

Finish 3D Printing parts 3/27/17 4/4/17

Integrate OBDII to the System 3/27/17 4/4/17

Finish Integrating DRL & Turn Signal 4/3/17 4/11/17

Create a Mold for Headlight System 4/3/17 4/11/17

Continue OBDII & IMU Integration 4/3/17 4/11/17

Update Code for the Lighting 4/10/17 4/18/17

Complete Mold for headlight system 4/10/17 4/18/17

Begin Assembly of Headlight System 4/10/17 4/18/17

Conclude Speed, Turn , Elevation Detection 4/10/17 4/18/17

Finish Headlight Assembly 4/17/17 4/25/17

Conclude Speed, Turn, Elevation Detection 4/17/17 4/25/17

Finish Speed, Turn, Elevation Detection 4/24/17 5/2/17

Test System & Minor Tweaking 5/1/17 5/9/17

Deployable Prototype Completion 5/8/17 5/12/17

 DRL Strip
 {Alisha Rosario}

 LED Array
 {Konstantin komarchuk}

 Programming Servos
 {Konstantin komarchuk}

 Testing IMU/Raspberry Pi
 {Juan Chico}

 Programming DRL
 {Alisha Rosario}

 Begin 3D Design
 {Konstantin komarchuk}

 Continue Testing IMU/Raspberry Pi
 {Juan Chico}

 Continue Programming DRL
 {Alisha Rosario}

 Begin Programming Turn Signal
 {Alisha Rosario}

 Continue 3D Design
 {Konstantin komarchuk}

 Begin Testing LED Array & Sevors

 Finish Testing IMU/Raspberry Pi
 {Juan Chico}

 Continue Programming Turn Signal
 {Alisha Rosario}

 Continue Programming DRL
 {Alisha Rosario}

 Continue 3D Design
 {Konstantin komarchuk}

 Test IMU/Raspberry Pi from diff. Factors
 {Juan Chico}

 Complete 3D Design
 {Konstantin komarchuk}

 IMU - Gather Acceleometer Data
 {Juan Chico}

 Continue DRL Test - 12hr On duration
 {Alisha Rosario}

 Begin 3D Printing
 {Konstantin komarchuk}

 Continue IMU - Acceleometer Data
 {Juan Chico}

 Test EGB Strip Under Diff. Facotrs
 {Alisha Rosario}

 Test Sevoors & LED under Diff. Factors
 {Konstantin komarchuk}

 Finish Testing IMU/Rasp under Diff Facotrs.
 {Juan Chico}

 Analize Accel. Data from IMU
 {Juan Chico}

 OBDII Reader for Speed Dectection

 Integration of DRL/Turn Signal
 {Alisha Rosario}

 Finish 3D Printing parts
 {Konstantin komarchuk}

 Integrate OBDII to the System
 {Juan Chico}

 Finish Integrating DRL & Turn Signal
 {Alisha Rosario}

 Create a Mold for Headlight System
 {Konstantin komarchuk}

 Continue OBDII & IMU Integration
 {Juan Chico}

 Update Code for the Lighting
 {Alisha Rosario}

 Complete Mold for headlight system
 {Konstantin komarchuk}

 Begin Assembly of Headlight System
 {Konstantin komarchuk}

 Conclude Speed, Turn , Elevation Detection
 {Juan Chico}

 Finish Headlight Assembly
 {Konstantin komarchuk}

 Conclude Speed, Turn, Elevation Detection
 {Juan Chico}

 Finish Speed, Turn, Elevation Detection
 {Juan Chico}

 Test System & Minor Tweaking
 {Alisha Rosario},Juan Chico,Konstantin komarchuk

 Deployable Prototype Completion
 {Alisha Rosario},Juan Chico,Konstantin komarchuk

2017

Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20
1/22/17 1/29/17 2/5/17 2/12/17 2/19/17 2/26/17 3/5/17 3/12/17 3/19/17 3/26/17 4/2/17 4/9/17 4/16/17 4/23/17 4/30/17 5/7/17 5/14/17

	IntelligentHeadlightDocumentationTeam6
	Section VI - WBS

