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EXECUTIVE SUMMARY 

 Over the course of ten months of Senior Design Project at California State University of 

Sacramento, this team has explored three avenues of artificial intelligence. Compared to other groups in this 

team’s graduating class, this team has taken a broad approach to its project design. This is, in large part, due to 

unpredictable complications associated with pursuing several topics the members of this team were initially 

entirely unexposed to only to realize that the time frame provided by the class – as well as the budget available 

to this team – made more in-depth research and development of two of the initial project ideas infeasible. This 

team pursued the ideas to the best if its abilities given the resources it did have. 

During the end of summer and most of the fall 2017 semester, the focus was on the Verilog design. It 

was approaching its penultimate design when the issue of the project’s growing complexity requiring more 

space than was provided by any reasonably attainable FPGA swiftly brought that portion of the project to its 

end. 

For the latter half of the same fall semester, this team developed the concept, design, and 

documentation for an optical character recognition system using a neural network similar to the one this team 

had designed earlier in the semester in Verilog. The software design initially began as a software simulation to 

compare to the same processes this team was attempting to create in Verilog. 

Then, for winter break and the spring 2018 semester this team switched its focus to a robotic system 

that would make use of a Q-learning algorithm to solve mazes. The reason for this switch was pragmatic – the 

pursuit of a high-speed optical character recognition that could determine entire words was infeasible given the 

difficulty presented in just recognizing single characters. The use of reinforcement learning was in line with our 

prior pursuits. 

 Each of the three aspects of this project required extensive research, and in summary the members 

of this team have all developed a comfortable understanding of: the function and design of artificial intelligence 

systems; the difference between supervised and reinforcement learning algorithms; image processing to extract 

edges and other characteristic features of handwritten characters for use in neural networks; organization 

modules and the design of several floating-point features in Verilog; the entire robot design process, including 

balancing the factors of weight, motor torque, battery capacity, and model size; the use of feedback systems 

such as PID controllers for ensuring precise movement in robotic systems; and several other skills. 
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I. INTRODUCTION 

This paper describes in depth every aspect of 

this team’s project, focusing primarily on the work 

done during the fall semester with Optical Character 

Recognition (OCR) and the spring semester with the 

Hyper Expedient Robotic Maze Extraction System 

(HERMES). The paper summarizes details about the 

two societal problem that this team attempted to solve 

and covers the design idea contracts and changes made 

to them. Additionally, this paper will provide an 

overview of funding, milestones, work breakdown 

structures, risk assessments, and design choices. To 

finish, this paper will describe both prototype’s status 

at the end of their respective semesters, and how these 

products may have a place in a consumer market. 

II. SOCIETAL PROBLEM 

During the fall semester, this team focused on 

finding a solution to aid dyslexic students. Dyslexia is 

a worldwide societal problem that prevents young 

children from focusing on their studies and limits 

adults from doing certain tasks. A very common form 

of dyslexia that exists worldwide is known as visual 

dyslexia, where an individual has a difficult time 

reading words/phrases. Mental disorders such as visual 

dyslexia have no permanent cure as stated by most 

healthcare facilities [1]. 

There are, however, many treatments that aid 

individuals for a good amount of time so that they can 

adapt to the situation. For example, some dyslexic 

children are enrolled with teachers/mentors, one to 

one, and are educated with specific needs to their 

problems. Our team’s plan is to create an ANN system 

that is able to perform Optical Character Recognition 

(OCR) and would make it easier for dyslexic 

individuals to overcome learning obstacles. 

An OCR system would allow dyslexic 

students to correctly identify letters and numbers so 

that they can piece together an understanding of which 

characters are affecting their situation and act/adapt 

accordingly. 

Classical OCR systems were designed in 

software and used a lot of the energy of the processor 

since they were not run in parallel. Running the OCR 

system on a portable hardware using ANN is ideal 

when it comes to solve the problem of converting 

handwritten or digital characters into speech. 

During the spring semester, this team’s focus 

shifted to introducing students to the concepts of 

robotics and artificial intelligence. As American math 

and science literacy levels fall, it has become evident 

that the education system is in need of help. One of the 

most prestigious nationwide tests is the Programme for 

International Student Assessment (PISA), which every  

Figure 1. Rankings in Science and Math [2] 
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three years measures reading ability, math, science, 

and other key skills among fifteen-year-olds in dozens 

of developed and developing countries. The most 

recent PISA results from 2015 place the USA at an 

unimpressive 38th out of 71 countries in math and 

24th in science literacy. [2]. 

III. DESIGN IDEA CONTRACT 

This team’s exploration into various Artificial 

Applications has spanned three different projects and 

two semesters, lending itself to a myriad of various 

project milestones. This project’s Design Idea Contract 

for the spring 2018 semester is different from that 

proposed in the fall 2017 semester for the simple 

reason that a significant portion of this project was 

altered in response to unforeseen challenges arising 

from designs in the fall semester. Whereas the 2017 

contract focused on the design of an artificial neural 

network that could act as an optical character 

recognition system, the 2018 contract focuses on 

HERMES, the maze-solving robot. 

 

 

Figure 2. Agent-Environment Relationship [4] 

 

 Figure 3. Micromouse Competition Maze [5] 

 

A. 2018 Design Idea Contract 

 The design idea contract can be well 

described in the context of Figure 2 and Figure 3. The 

HERMES robot design is comprised of three primary 

features: Mind, Body, and Sense. 

The Mind feature is made up of Q-learning, 

which is a learning algorithm using an agent-

environment relationship as described in Figure 2. In 

this project, the environment is the world itself 

provided to the agent through sensor data, while the 

agent is the algorithm is what decides which direction 

to take next. For the Mind feature, the design contract 

requires a full implementation of Q-learning, maze 

solving capability, and efficiency feature upgrades.  

The Body feature consists of motors, control 

and feedback systems, and chassis design. The focus 

with this feature is providing precise movement to 

assure that the Mind feature is always roughly correct 

about its understanding of where it is in the real world. 

The specific features required by the design contract 

are straight horizontal movement and clean ninety 

degree turns. 

The Sense feature is made up of sensors and 

what is accomplished with sensor data. This provides 

an understanding of obstacles and variance from 

desired angle and position. The specific features for 

the Sense feature are wall detection, wall avoidance, 

and end detection which is essentially making stops if 

the robot approaches a wall too close. 

These features are tested in and out of a maze-

like environment. A maze such as that shown in 

Figure 3 is used to test the features listed above 

working together, but each feature is tested 

individually as well to ensure that this team has met 

the design contract’s specification for every feature. 

B. 2017 Design Idea Contract 

To briefly discuss the ideas covered in the 

2017 design contract, this team’s primary goal for that 

semester was to develop an optical character 

recognition system which would accept a real-world 

written character as input and output the character as 

recognized by the system. 
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Originally this contract had a lean toward the 

use of an FPGA-based neural network for use in 

optical character recognition, but as issues arose the 

focus shifted toward generally optical character 

recognition with a neural network of our own design 

running a microprocessor. 

The specific features required by that contract 

consisted of an implementation training datasets to 

train a neural network, the creation of a multilayer 

neural network, an implementation of training for that 

neural network, the ability for the system to be trained 

in other topics, and a user-friendly interface. 

IV. PROJECT MILESTONES 

The milestones accomplished within this 

project are categorized neatly into the three project 

ideas this team pursued. The milestones pertaining to 

those three ideas are given in subcategories for 

neatness. 

A. FPGA-Based ANN 

Major milestones for this particular project 

idea consisted of the development of working, 

generalized Verilog modules used in the larger top-

level design. An example of a neural network is given 

in Figure 4. 

The first such milestone came with the 

development of floating point multiplication and 

addition modules. The back-propagation model made 

use of floating point numbers in all aspects of the 

system – in synapse weights, in input summation, in 

neuron’s the activation function, and in back-

propagation modules. Inputs and outputs to the system 

are also floating-point values. 

The next milestone for this FPGA design was 

the development of a sigmoid activation function 

approximation module. In a neuron model, an 

activation function is used to transform a summation 

of input values to an output between 0 and 1 in a non-

linear manner. The activation function used for the 

FPGA model is a sigmoid function, which is described 

in the equation below. 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
 

This function outputs a curve like the one 

shown in Figure 4, described there as “Hyperbolic 

Tangent Sigmoid.” 

The activation function was particularly 

difficult to achieve in Verilog due to its non-linear 

nature. A direct representation is possible but highly 

complex, so the milestone was accomplished through 

the use of a minimax approximation. 

The third milestone accomplished was the 

development of a neuron, which consisted of weight 

multiplication, input summation, and an activation 

function working in sequence.  

Figure 4. Artificial Neural Network [6] 
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The fourth milestone for the FPGA model was 

the development of a neural network of five neurons, 

connected from input to output. This was difficult 

primarily as a result having to debug the system with 

floating point values, but it ultimately the process of 

translating floating point to decimal then determining 

what issues existed to make floating point values go 

astray was developed enough to allow this team to 

reach this milestone.  

And the fifth milestone accomplished was the 

creation of back propagation modules to connect 

output values to every layer of neurons. Back 

propagation equations for each weight were derived by 

hand and generalized for up to three layers so as to 

make adding more neurons easier in the future, and 

those equations were translated to Verilog modules. 

B. Optical Character Recognition ANN 

During the second half of the fall semester, 

this team began to work on a software version of the 

OCR system that was being developed on an FPGA. 

To accomplish the goals of the 2017 design contract, 

the software OCR system followed the same general 

guidelines and resulted in the following milestones.  

The first major milestone this subproject 

achieved was being able to take pictures using a 

Raspberry Pi and converting them to a grayscale 

16x16 matrix. This milestone involved using TTL 

serial cable camera made for the Raspberry PI. The 

camera module provided a 1920x1080 image which 

surpassed the desired size restrictions of the neural net. 

To bring it in line with the 16x16 pixel size used by 

the neural network, this team used the Python Image 

Library (PIL) and its resizing functions. Additional 

functions provided by PIL allowed the system to 

grayscale the image and then convert it to a 16x16 

matrix. 

The next major milestone was developing a 

C++ based ANN that would be able to use the 16x16 

matrix generated using the RPI camera and PIL. This 

team strictly followed the restrictions provided by for 

the FPGA model in order to accurately represent the 

same kind of network. These restrictions dictated the 

learning system used (in this case Back Propagation), 

the applied learning rate, and the activation function 

(in this case the Sigmoid function), and more.  

Once the neural network system was 

developed, it had to be trained. The first iteration of 

the OCR system used the MNIST library available 

online which is a compilation of 60,000 handwritten 

letters and numbers. Training the neural network with 

this library was yet another milestone. 

Verification “live” testing proved to be nearly 

impossible because the image quality captured by the 

RPI camera could not match the quality of the 

scanners used by the MNIST dataset developers, so the 

next milestone was in creating and training the neural 

network with a custom dataset was generated using 

hundreds of handwritten numbers between zero and 

nine. These handwritten numbers had to be different 

enough for the system to begin to recognize variances 

in input, and to provide this variety data was collected 

by asking colleagues in the CSUS Engineering Labs to 

write characters for this project. 

The number of samples varied, as some 

numbers such as one (1) and seven (7) proved difficult 

to differentiate without enough data due to their 

similarity. Once the custom PNG dataset was 

developed, it was processed with the tools resulting 

from the first milestone, and the C++ANN was finally 

properly trained.  

Once the C++ OCR ANN was properly 

trained, the next milestone was to use the neural 

network trained by the new custom dataset to 

accurately recognize characters from pictures taken by 

the Raspberry Pi camera. This milestone was 

accomplished and presented at the fall semester Senior 

Design exhibition. 

C. Maze-Solving Robot with Q-Learning 

The very first milestone in the spring semester 

was the understanding and implementation of the Q-

learning problem solving approach to the Micromouse 

problem. This approach included discovering the 

various mathematics problem solving techniques when 

it comes to making decisions, for example choosing 

which direction to go in a maze. Markov’s Decision 

Process and Temporal Difference are techniques that 

lead to the fully working Q-learning algorithm. The Q-
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learning is the main ingredient of the maze solving 

algorithm. 

The main focus during the spring semester 

was to implement a full proof custom Q-learning 

algorithm onto a Micromouse, therefore the first major 

milestone was the complete development of the mind, 

or the maze solving capability, coded in python. The 

software implementation of the algorithm proved that 

the agent inside the maze environment is able to 

explore and reach the final destination, no matter the 

size of the maze. The largest maze tested during 

iterations was 256 by 256 spaces, which took around 

8mins for the agent to explore the maze and reach the 

end goal, at a very high speed run. 

Later the milestone of efficient feature 

upgrades was achieved in the maze solving algorithm. 

The issue that kept occurring was that the agent 

wanted to keep going back to the direction that it 

already explored in which it found not luck previously. 

This issue would randomly occur in the iterations, 

therefore the solution was to give a higher negative 

reward to the agent when it wanted to visit the older 

locations that had no positive outcome. 

The next milestone was the wall detection 

capability. The first approach at detecting the walls 

was using the Sonar distance sensors on V1, V2, and 

V3 of HERMES. The Sonar sensors required 

multitasking to operate in parallel, which would slow 

down or interfere with other operations on the 

Raspberry Pi. 

Therefore, the next best option was to use IR 

sensors that gave a binary feedback, whether the wall 

was there or not. This strategy allowed a smooth 

transition from the Q-learning algorithm to the 

hardware. The idea was to sense walls around the 

agent and capture these walls at every step of the 

maze. Every version after V3 used IR sensors for wall 

detection. 

Wall avoidance was the next big milestone 

which gave the agent a little more room to be flexible 

while it is roaming around the maze. The wall 

avoidance was achieved using the IR sensors which 

were set at a comfortable distance from the walls on 

each side. The wall avoidance system also helped with 

the straight paths. 

Another milestone that strengthened the 

straight horizontal movement was the PID controls 

using the encoder feedback. V1 to V3 of HERMES 

used stepper motors, without any sensor feedback, 

however the precision was very high when going 

straight. The servo and DC motor versions required a 

sensor feedback to tell the motors constantly if they 

are going straight or not. 

The encoders were used on V11 of HERMES, 

in conjunction to the 12v DC motors. The PID 

controller allowed to correct the error that accumulates 

due to the difference in speed on each motor. Also the 

slight right and left shifting of the motors, due to 

signal noise and bad motors, was fixed by the PID and 

correct function. 

Along with the straight horizontal movement, 

the 90 degree turn control was achieved. The 90 

degree turns were achieved by the IMU feedback, 

which uses 9 degrees of freedom to calculate the 

current angle of the robot. The starting position of the 

robot determines the zero degrees and from there, the 

robot can determine north, east, west, and south. The 

IMU was first included in V9 of the build, in 

conjunction to the servo motors. 

The most recent milestone achieved was the 

front wall detection to make the agent stop in time and 

make a decision. As the agent approached a wall in the 

front, it needs enough space to make a quick stop, so it 

does not collide with the wall, therefore a control 

strategy is needed for such situations. 

The strategy was to make a right turn as a 

quick judgement that the front wall is approaching. 

Two front IR sensors were used at different distances 

to make the judgement for how close to the front wall 

the agent is. 
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V. FUNDING 

Fall     Price 

(per unit) 

Source 

Raspberry Pi 3 $40 x2 Amazon 

Raspberry Pi 

Camera 

$30 Amazon 

Plywood $10 Home Depot 

128gb MicroSD $48 Amazon 

Spring    Price 

(per unit) 

Source 

RPi 3 $40 Amazon 

Arduino Uno $15 Amazon 

12v Steppers   

12v DC motors $17 x2 Amazon 

Robot chassis kit $20 Fry’s 

IR sensors $10 x2 Amazon 

Sonar sensors $10 Amazon 

12v Battery $20 Amazon 

Servo pack $20 Amazon 

AAA holder $8 Amazon 

AAA pack $10 Amazon 

AAA charger $17 Amazon 

Gear pack $11 Amazon 

L298n $9 Amazon 

L298 7A $16 Amazon 

Mount hub 6mm $14 Amazon 

90x10mm wheel $12 Amazon 

Speed sensor $11 x2 Amazon 

IMU 9DOF $40 x2 Amazon 

Balsa wood $10 R/C hobby 

Pololu DC Motor $20 x2 Pololu 

Pololu Encoders $12 x1 Pololu 

Servomotors $20 x2 Amazon 

6v Steppers $27 x2 Amazon 

70x10mm wheel $10 x2 Amazon 

Screws $5 Amazon 

5V Steppers  $15 x2 Amazon 

Wires $13 x2 Amazon 

PCB boards $10 Amazon 

Solder Equipment $25 Amazon 

Table 1. Funding for Fall and Spring 

VI. WORK BREAKDOWN STRUCTURES 

Given that this project consisted of three 

subprojects, three work breakdown structures were 

created. The higher order features are discussed in this 

section – this team is leaving out low order features 

from this paper largely because the discussion of the 

large volume of smaller features distracts from the 

purpose of this paper. Figures for the work breakdown 

structures are given in the Appendix G. Work 

Breakdown Structures. 

A. FPGA-Based ANN 

The FPGA Neural Network model, which is as 

far as this team was able to proceed with this 

subproject’s work breakdown structure, has two 

primary features – namely it consists of the creation of 

neurons with weighted inputs as well as the integration 

of multiple neurons into a network with learning 

capacity.  

Neurons with weighted inputs were comprised 

of several parts. To begin, the input to the neuron had 

to be a floating point number which was multiplied by 

some variable weight – thus the first feature of the 

neuron was the weight module which performed that 

function. 

After that, weighted inputs were summed 

together with a tree of floating point addition modules, 

so the summer tree was the second feature of the 

neuron. 

Figure 5. Neuron with Weights 
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Then the sum of weighted inputs was sent 

through an activation function to collapse the output 

between 0 and 1. The third feature of the neuron was 

the activation function module which was modeled 

after a minimax approximation function. 

The second part of the subproject’s work 

breakdown structure was the integration of neurons 

into a network with back propagation. 

The neural network was primary made up of a 

forward-pass portion which is a series of weighted 

summations and activation functions. This was 

perhaps the most difficult part of the project to achieve 

because testing was highly complex and required 

plenty of calculations and translations between 

floating point and decimal. 

After that, the next portion of the neural 

network was the development of back propagation 

modules. These performed all of the necessary work 

for enabling the neural network to perform supervised 

learning. 

B. Optical Character Recognition ANN 

The Optical Character Recognition subproject 

of the fall semester had three primary tasks – image 

processing, training dataset creation, and the 

implementation of an artificial neural network in C++. 

The image processing feature allowed this 

team to format images from the Raspberry Pi camera 

for the neural network this team used. It resized 1080p 

images to 16x16 images, one pixel for each input to 

the neural network. 

In order to make the features of characters 

more obvious in a 16x16 grid, filters were used to 

enhance edges, to remove color, to increase contrast, 

and to remove noise with thresholds. 

The dataset feature is the set of images the 

neural network was trained with. These images 

originally came from the MNIST dataset. This team 

used the same image processing techniques on the 

MNIST images as with the camera images, but 

eventually it was discovered that using that the 

differences between this team’s camera and the camera 

used to record characters for MNIST was too great. 

Thus a custom dataset was created for the same 

purpose as the MNIST dataset. 

The final feature is the neural network itself. 

Beyond the network itself, this feature was broken up 

into training and testing portions, the latter of which 

was used to recognize characters written by 

individuals at the Senior Design Exposition.  

The training portion consisted primarily of an 

interface used to input images of both the MNIST and 

this team’s custom datasets. The neural network was 

then designed to train using the back propagation 

learning algorithm. 

The testing portion loaded a saved set of 

trained weights for a neural network into a new neural 

network. Images were taken, then processed, then sent 

to the neural network through an interface of this 

team’s design. 

C. Maze-Solving Robot with Q-Learning 

The three primary features of the HERMES 

portion of this project were Mind, Body, and Sense. 

The Mind portion of Hermes consisted of the 

Q-learning algorithm, which is a reinforcement 

learning algorithm used to find the best path to a goal, 

specifically through a maze in this team’s case. This 

algorithm was enhanced by several efficiency 

upgrades discussed in the design documentation. 

The Body portion of Hermes is made up of the 

motors, chassis, and battery. These components were 

switched out several times over the thirteen models 

this team designed and implemented. The trick to these 

features was determining the correct ratio of weight, 

size, torque, and energy capacity. 

The Sense portion of this subproject was 

consisted of all sensors – IMU, digital IR sensors, and 

encoders – and their interconnection with the other 

portions of the HERMES project. All controls 

feedback started with the Sense portion of HERMES, 

from the two PID controllers to the wall detection 

sensors. 
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VII. RISK ASSESSMENT AND MITIGATION 

Since the final subproject is the focus of the 

project as a whole as this semester comes to a close, 

risk assessment and mitigation for the HERMES 

maze-solving robot will be given the most attention in 

this section. 

Q-learning is the primary ingredient to the 

maze solving algorithm. The risk associated with Q-

learning would have been high if it not implemented 

correctly. The likelihood of this not working was 

very low, because our main focus was to reinforce 

the reinforcement learning algorithm. The impact 

that this module will have to on the entire project, if 

not completed, was very high since the main goal is 

to prove that artificial intelligence can solve the 

maze. A mitigation plan would be to use the flood 

fill algorithm to solve the maze instead. 

The efficiency upgrade feature allows the Q-

learning algorithm to be more responsive and 

immune to error during exploration phase. The risk 

associated was low and the likelihood of this not 

being done was also low. The impact on the entire 

project was very low since it was used as an upgrade 

on the Q-learning algorithm. The migration plan 

would be to not use this module at all if it fails. 

Straight horizontal movement is required for 

HERMES to not run into the left and right walls. 

The risk for this to happen was medium to high 

since the motors can fail at the last moment or the 

battery power might be low for max efficiency or the 

encoders can pick of external noise. The impact on 

the rest of the project for this module not working 

was medium to high as well, because if the robot 

runs into the left or right wall, the learning algorithm 

can be interrupted and possibly fail entirely. The 

mitigation plan would be to reverse every time it 

runs into the wall and correct its position/angle. 

Clean 90 degree turns are also important in 

order to explore the maze and get back from a dead 

end. The risk associated with this module was low to 

medium. The likelihood of this not working was also 

low to medium. The impact on the entire system was 

medium, because if the robot was not making 

complete 90 degree turns, it can run into a wall due 

to the error in the angle. The mitigation plan was to 

have and IMU constantly polling the angle or have a 

correct function to fix the position/angle. 

Wall detection was very important since it 

tells the algorithm where all the walls are to map the 

entire maze. The risk was medium to high, since the 

bot can get lost during the execution phase if it does 

not keep track of the walls. The impact of this 

module not being completed on the entire system 

was medium to high, since the robot will start acting 

like it was in the exploration phase even during the 

execution phase. The mitigation plan was to make 

full stops at every step to allow enough time to 

register the walls. 

Wall avoidance was very important and 

works in conjunction to the straight horizontal 

movement module. The risk of this module was 

medium to high and the likelihood of this not being 

done was low to medium. The impact on the entire 

system was high because if the robot cannot avoid 

colliding with walls than it will fail at exploring and 

solving the maze. The mitigation plan would be to 

retrace its steps and correct itself using a custom 

correct function with the help of the IMU. 

Dead end detection for stops was used to 

make a quick reaction for not running into the wall 

in front of the robot. The risk was low to medium 

since it just needs a custom function to determine a 

wall in front and make a stop before running into the 

wall. The impact for not completing this module was 

medium. The mitigation plan would be to give two 

IR object detection signals, one a little earlier than 

the other to confirm that a wall was coming up and 

be ready to stop. 

 

 

Figure 6. Risk Assessment Chart  
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VIII. DESIGN DOCUMENTATION:            

FALL 2017 

This section discusses the design philosophies 

and the stories of the two subprojects developed in fall 

2017. 

A. FPGA-based ANN 

The design of an FPGA-based artificial neural 

network which would perform optical character 

recognition was known to be a challenging task from 

the start of the project, in part because none of the 

members of this team were comfortably exposed to 

artificial intelligence prior to working on it, and in part 

because this line of research is new and gaining 

interest and lacks much documentation as a result. The 

challenge, while present, was to be countered by a 

large number of hours worked per week. 

Within the first month of the project, the 

volume of research references this team had used to in 

the development of the FPGA model filled two pages. 

This team combined several academic papers 

describing floating point arithmetic units in order to 

create individual floating point addition and 

multiplication modules. 

For the activation function module, papers 

describing activation function approximations in 

software were manually referred to in order to develop 

a Verilog model of the same approximations.  

Still more papers were referred to in order to 

fully understand the mathematics and structure of 

neural networks and the use of back propagation 

within them – again using papers focused on software 

implementations. 

Almost all of the work done on this model that 

was based on research was performed by transcribing 

ideas present in software research to something 

useable in Verilog. That said, the combination of those 

ideas and the creation of novel ideas for the 

development of this model was the primary work this 

team performed. 

This team finished nearly all work required to 

make a fully functional Verilog model of a back 

propagation neural network that would run in 

simulations. 

The completion of the Verilog design was 

likely by the time this team came upon the realization 

that the model developed was too complex for upload 

into the FPGA this team had access to. 

Efforts were made to reduce complexity and 

make the Verilog program work with available 

resources, but it proved impossible. The FPGA models 

required to run the Verilog model cost in the range of 

$3,000 which fell far outside this team’s budget. As a 

result, the Verilog design was left behind. 

Nevertheless, the knowledge gained in 

creating a neural network within a Verilog system was 

enough to make this team comfortable with the 

concepts of artificial intelligence in general, and that 

level of comfort helped with both of the following 

subprojects. 

B. Optical Character Recognition ANN 

Optical Character Recognition (OCR) is a 

problem can be approached from various different 

directions, but the two most popular are digitization 

and feature extraction. 

In digitization, a letter or number is converted 

to a matrix of 0’s (white pixels) and 1’s (black pixels). 

In doing so, a picture’s entire pixel array is iterated 

through and first converted to grayscale, allowing the 

conversion of the character ‘A’ from step (a) to step 

(b) as seen in Figure 7. At this point, the pixel values 

(in binary form thanks to the grayscale pre-processing) 

are simply extracted into a matrix which is ready to be 

used as training/testing data by the OCR system. 

Another equally popular approach is Feature 

Extraction. 

 In the process of Feature Extraction, certain 

features/qualities/traits are designated, and every 

image is “taught” to the Artificial Neural Net via an 

abstraction of these features. These features may 

include center-of-mass (of the black pixel 

distribution), segmentation, and conversion to contours 

and/or vectors. Although the teaching approach is 

varied, the idea of a set of neurons (784 neurons 

specifically, assuming a 28x28 input image) learning 
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to recognize characters based on carefully 

calibrated/tested weights, remains the same. 

 

Figure 7. Digitization of the Letter 'A' [7] 

Modeling a solution for the OCR (Optical 

Character Recognition) problem (via Artificial Neural 

Networks) is seemingly straightforward, but in reality 

requires a lot of preparation to ensure that both 

teaching and testing of the system is undertaken with 

as similar and controlled parameters as possible. An 

application of controlled parameters does not 

necessarily take away from an ANN’s ability to predict 

output for real-world test cases. 

In the first attempt at developing an OCR 

system on a Raspberry Pi using a C++ ANN, learning 

and testing parameters were not controlled, thus 

leading to discrepancies and high levels of inaccuracy 

for traditionally written numbers between 0-9. 

After extensive debugging and exploring a 

myriad of different image pre-processing techniques 

and the order in which they are applied, it was 

concluded that the issue was not on the validation side, 

but rather the teaching/training. The stem of this issue 

arose from the selection of the OCR’s training data. 

Here, the MNIST database was used (a subset of the 

NIST database), which included 60,000 training 

images and 10,000 testing images. 

As development of the preliminary OCR 

system continued, it became obvious that the high 

quality of the MNIST database (a result of scanning all 

handwritten numbers), could not be satisfactorily 

reproduced using the Raspberry Pi camera module. 

In the next iteration of the OCR prototype, the 

training data was generated under conditions as similar 

to the validation scenarios as possible. This involved, 

taking training/testing pictures of handwritten numbers 

with the same camera (RPI camera), under similar 

lighting conditions, and a standardized/controlled focal 

length. 

It was impossible to replicate the entire array 

of 70,000 images provided by the MNIST database in 

a timely manner, but equipped with a clear, simple, 

and capable Neural Network, training was performed 

with far fewer images (~50 different samples per 

letter). 

Once the custom dataset was developed using 

volunteer data from various CSUS Engineering 

students, they were compiled into a text file, formatted 

using PowerShell (and later Bash) scripting, and were 

finally inputted to the C++ OCR ANN. The resulting 

tests were highly accurate and provided accuracy 

levels above 87% when sent in a randomized set of 

100 numbers (these were not used in the training 

dataset). 

IX. DESIGN DOCUMENTATION:         

SPRING 2018 

The HERMES project is a system designed 

to intelligently solve mazes while providing an 

outlet for education in robotics and artificial 

intelligence to students. HERMES, otherwise known 

as the Hyper Expedient Robotic Maze Extraction 

System, is comprised of three primary feature. All 

three are crucial and interlinked, and they can be 

further broken down into finer features. 

In order to develop a learning robot kit, 

which can be cost-effective and provide itself as a 

tool to increase Math and Science literacy and 

interest levels among K-12 students, a robot capable 

of such features must first be developed. 

The IEEE Micromouse competition 

provides a framework within which can this product 

can be developed. The micromouse competition 

assesses the agent’s (robot such as HERMES) ability 

to solve and navigate a 16 x 16 cell maze (where 

each cell is 18cm x 18cm), as seen in Figure 3. Each 

cell floor space is 16.8cm x 16.8cm, while the walls 

(5cm height) add an additional 1.2cm (wall 

thickness), for a total of 18cm x 18cm per cell (5% 

tolerance assumed) [8]. 
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The HERMES agent, makes use of 

competition guidelines and outcomes to provide a 

reasonable and comparable measure of our 

algorithmic success. The competition allows 

HERMES, a single run-through of the maze to 

encode the walls and obstacles in its memory and 

determine the fastest route from any given corner of 

the maze to the center. During this first run-through 

HERMES will “learn” how to avoid obstacles and 

reach the center of the maze within optimal time. 

While most agents apply a Flood Fill algorithm, or 

various other directed maze-solving algorithms, 

HERMES will instead feature a Reinforcement 

based learning system called, Q-Learning. 

Hermes makes use of the Q-learning 

algorithm to navigate to the end (goal) point. Several 

auxiliary functions/tools have been provided to 

HERMES to improve its exploration, solving, and 

traversing efficiencies. An algorithm such as Q-

Learning requires precise sensory inputs and 

relevant outputs to navigate the maze without 

collisions/other time wasting events. The 

movements will be provided to the motor controller 

in the form of instructions to move cell by cell 

(18cm x 18cm).  

A. System Overview & Implementation 

The HERMES system’s main features can 

be split into the three following categories: Mind, 

Body, and Senses. Each of these pivotal categories 

brings with it its own subset of features and 

components which work harmoniously with the rest 

of the HERMES system.  

B. Mind: Q-Learning 

The HERMES agent must be able to solve 

the maze given a 16x16 matrix of 4-bit values 

(cardinal wall locations in every cell). Because this 

team’s goal is to further explore and apply concepts 

of artificial intelligence and learning, the HERMES 

agent has instead been equipped with a 

reinforcement based, Q-Learning algorithm. 

The Q-Learning algorithm served as the 

framework upon which the HERMES Mind 

algorithm was developed. Q-Learning is an 

adaptation of Markov Decision Processes, which is a 

decision algorithm that, in short, looks at all possible 

actions and chooses the one that will lead to a goal 

in the shortest path. The Markov Decision Process 

alone is impossible to implement without providing 

all possible states and action values within those 

states. For a sufficiently large or complex system, 

defining those values ahead of time becomes unruly. 

The Q-Learning algorithm provides a 

means by which the shortest path can be determined 

with trial-and-error experimentation. The agent can 

arrive at the end, then determine which states can 

lead directly to the end, then determine which states 

lead to goal-adjacent states, and so on until it finds a 

path that leads from the beginning to the end. When 

it traverses the action matrix, it will always take the 

action with the greatest reward value. 

To do this in practice, discrete states must 

be quantized to simplify a real-world system that 

consists of effectively infinite states, then define 

reward values for actions within those states. In 

practice, exploring and finding the end of a maze 

through trial and error is an arduous process, so 

further alterations were made to shorten that process. 

The first of those changes was the 

implementation of a predefined reward matrix. 

Within the context of the IEEE Micromouse 

competition, which is a predefined set of rules for 

maze generation and solving, the end goal is in a 

known location. Furthermore, the start position is 

also known – it is in one of the four corners. Thus, 

the reward matrix makes use of these restrictions and 

places the goal squarely in the center of the maze. 

 

Figure 8. Dead End Avoidance 

Another attribute added to the Mind is 

dead-end avoidance. This is described most clearly 

by Figure 8. When a dead end cell is visited – that is 

to say when three walls are detected adjacent to the 

agent – HERMES internally walls off the cell. This 

is demonstrated visually in Figure 8 with the black 
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square overlaid onto the maze cell. Since these dead-

end cells are virtually counted as walls, real or 

virtual, dead end corridors are also blocked off. 

HERMES will never revisit a cell that has been 

marked as a dead end. 

A third alteration to the algorithm changes 

the reward value of every space which is visited by 

HERMES through a process called reward decay. 

This is a simple alteration which takes the current 

reward value of a space that HERMES just left and 

decrements it by one (1). This encourages wider 

exploration by making locations that have already 

been visited less appealing to HERMES and placing 

choices toward new locations at relatively higher 

values. 

The final alteration is one called assured 

decisiveness. This became an important alteration to 

counteract an emergent property of reward decay 

that we termed indecisiveness. In long corridors that 

needed to be revisited multiple times, since the 

reward matrix was altered with every pass of 

HERMES, occasionally HERMES would “change 

its mind” about the direction it was going and double 

back to where it had just been. This became a very 

inefficient property, and it was counteracted by 

artificially placing spaces that were just left by 

HERMES at lower reward values than given by the 

reward matrix. 

In all, this set of changes formed the 

HERMES Mind, which now efficiently solves mazes 

upward of 128x128 in simulations.  

C. Body: Chassis & Motors 

The second extremely important factor of 

the HERMES system is the chassis. This chassis 

holds all components of the Mind (processor) and 

SENSES (sensors and motor controller). 

Throughout the thirteen (13) different 

iterations of HERMES, the chassis design has 

changed considerably. While the first couple 

versions were simply built to test features and made 

use of lightweight, yet bulky balsawood. More 

recent versions of the chassis have made use of 3D 

printed custom component casings, full 3D printed 

chassis, and plexiglass. 

On top of holding all necessary 

components, the chassis must also be small and 

compact to help ensure crisp right/left turns, avoid 

inadvertent collisions (wastes time), and 

accelerate/move through specialized maze portions 

such as ‘stairs’. The most recent version (v13) of the 

HERMES chassis features 2 plexiglass sheets with 

1.25 inch separators between them to allow 

sufficient space for components. 

Another major design idea with the 

HERMES chassis is the wiring, which should be 

clean and tucked away to prevent snagging on the 

maze itself or the agent’s motors/wheels. Often 

times the wiring from the battery is the bulkiest 

because of custom solder points to split the power 

which make the entire wiring scheme a mess. 

The second pivotal factor of the Body, is 

the motor system. Again, throughout the various 

versions of HERMES, many different motors were 

used, DC (v3-v8, v11, v12), Steppers (v1, v2, v13), 

and even continuous servos (v9, v10). While DC 

motors didn’t have necessary torque without a 

proper gearbox, most the stepper motors were too 

slow. In addition, the DC motors required one H-

Bridge (bulky add-on components to provide 

differential speed control for these motors), and the 

stepper required two H-Bridges. The continuous 

servo motors that were once used didn’t require any 

H-Bridges, but synchronizing two servo motors was 

extremely difficult. 

It is important to have fast motors to keep 

run/completion time competitive, but this factor 

must be balanced with the torque necessary to move 

all on chassis weight. This was a daunting task given 

that the agent’s weight was constantly changing 

during initial builds, and the DC motors used for 

many builds, required constant gearbox tinkering to 

achieve the necessary torque to move the constantly 

changing chassis + component weight.  

D. Sense: Spatial Awareness and Controls 

The HERMES agent uses a variety of 

sensors to enable spatial awareness. The two most 

important goals of the sensors are to first, help the 

agent safely navigate the maze. And Second, to 



13 
 

provide the processor with a 16 x 16 4-bit matrix of 

the cardinal wall locations in every cell of the 16 x 

16 maze. Despite the level of innovation and 

redesigning required of the other portions of the 

HEREMS agent, the senses were relatively hashed 

out early in the project and have stayed constant, 

except for the addition of an IMU. 

Initially proximity based, Ultrasonic 

Sensors were used because they provide a feedback 

of how far away the walls are, a priceless piece of 

information. However, they are difficult to multi-

process with the motors, as well as highly 

susceptible to external environment noise. This 

random environmental noise can interrupt the relay 

of sonar pulses being emitter by the sensor and being 

looked for by the receiver. As such, the sonar 

sensors were quickly discarded in favor of Infrared 

Sensors. 

The IR sensors are great for the task of 

detecting walls because they operate at a specific 

distance (distance between agent and wall) based on 

potentiometer setting. This allows for them to be 

easily fine-tuned as this distance between the agent 

and walls change because the agent’s dimensions are 

still changing throughout the various chassis 

iterations. IR sensors are also relatively low weight 

and not as bulky as the proximity Ultrasonic sensors 

were. 

Initially, encoders with a resolution of 3.6 

degrees were used in tandem with 90mm (diameter) 

wheels. This provided an encoder tick at every 

2.83mm which helped keep track of wheel 

displacement. However, encoders are a tricky add-

on, especially when the chassis and motors were 

constantly changing during the earlier phases of the 

project. 

As such, an alternative was found with the 

micro-steppers being used now. The new micro-

steppers (v13) use a built in step count to control 

their movement. This allows a constant level of 

precision because each step (degree of rotation) of 

the motor is recorded and accounted for. The current 

steppers being are based on a 4096 steps per 

complete revolution system. 

Despite their complications, the second 

viable version of HERMES (v12) uses magnetic 

encoders to keep track of the motor revolutions. The 

magnetic encoders on this version of HERMES 

provide about 680 ticks per revolution. This level of 

precision is important for the Pulse Width 

Modulation (PWM) and Proportional Integral 

Derivative (PID) functions to control HERMES’ 

speed. Despite the level of precision provided by 

both of these motors, there is still unwanted 

movement as the agent travels through the maze. 

This problem is somewhat mitigated by 

application of the BN005 IMU. An IMU provides 

the agent with useful information such as gyroscope, 

angular, and rotational acceleration. The IMU helps 

the agents move in straight lines without deviating 

due to discrepancies in the continuous servo motor 

tuning. By detecting for a sudden angular 

acceleration while performing a specified 

movement, the motors can use the information 

provided by the IMU to correct motor rotation speed 

and return to a best course for optimal completion 

time.  

Controlling the motors has generally been 

straightforward while using Python. Controlling and 

correcting their movement using encoders and 

sensor data is a different story altogether. There have 

been various techniques used such as wall following, 

“bounce-back” correction, and more, but the most 

effective seem to be to use an advanced variation of 

“bounce-back” correction (for the v12 DC 

HERMES) and simple step correction (for v13 

Stepper HERMES). 

The version 12 of HERMES uses DC 

motors as well as sensors which help provide data 

with which to ensure straight line movement. The 

sensors provide data when the agent is drifting to 

one particular side, thus setting off the IR sensor set 

to a specified distance. These sensors coupled with 

the magnetic encoders allow HERMES to determine 

when it is drifting towards a wall and then employ 

the encoder data to perform a PID calculation to 

correct its motor speeds and return to a straight line 

path. The PID calculation helps the MIND send out 

appropriate PWM signals to correct the motor path. 

For example, if the agent is drifting left, the left 
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motor would be sped up, while the right motor is 

slowed down to provide the necessary path 

correction. The IMU is also very effective in helping 

HERMES determine when it is drifting before the IR 

sensors are triggered.  

The stepper version of HERMES (v13) 

employs a similar method, but instead of using 

PWM signals the agent simply reverse specific 

numbers of steps based on the amount of correction 

needed by either the left or right motor. 

X. DEPLOYABLE PROTOTYPE STATUS 

For the current subproject and the final work 

for the year, this team will discuss the deployable 

prototype status of the HERMES model in the context 

of the 2018 design contract. To simplify the 

discussion, this section will talk about the three main 

features and then their integration with each other. 

A. The Mind 

This feature was given three primary 

requirements by the 2018 design contract: Q-learning 

implementation, maze solving ability, and the design 

of several Q-learning efficiency upgrades. 

The Q-learning implementation was 

successful very early on in the semester. The design 

used the restrictions of the Micromouse competition to 

develop a reward matrix wherein the elements of the 

desired goal at the center of the matrix were placed at 

the highest values and all concentric ‘rings’ of the 

matrix extending to the borders were given a 

decreasing reward value gradient – shown in Figure 9. 

 

Figure 9. Reward Matrix 

The Q-learning algorithm used the reward 

matrix heuristic to determine which direction it should 

travel in to reach its goal. Q-learning was thus 

implemented. 

A simulation was designed to allow a 

simulated HERMES to travel in mazes far larger than 

the real world maze this team used for testing the 

robotic model. The simulated model always reached 

the goal, as expected, meaning that the maze solving 

feature was fully developed. 

Efficiency upgrades were necessary in order to 

account for some of the wasted time spent revisiting 

dead ends and corridors, and time spend going back 

and forth within corridors. These features were fully 

implemented, along with additional upgrades to make 

finding the goal a shorter process as well. 

B. The Body 

This feature had two primary requirements, 

which are key to being able to navigate an actual 

maze: horizontal movement and clean ninety degree 

turns. 

The design of the chassis is important for 

these two things – for example a larger pair of wheels 

makes more precise motion easier to attain, and wheels 

placed approximately in the center of the robot allow 

ninety degree turns to occur in the center of maze cell. 

These considerations were kept in mind with later 

physical models. 

This body feature, while physical, occurs 

primarily in software through PID controllers. Straight 

motion was achieved through the use of encoders. 

Every tick of the encoder is recorded through 

hardware interrupt functions, and the PID controller 

adjusts motor speeds to account for differences in the 

speed of the wheels. This function makes use of a 

master and slave model, where one motor is given a 

fairly constant speed and the other must adjust to meet 

that speed. The robot moves very straight now, thus 

the straight movement requirement is met. 

Ninety degree turns occur within a PID 

controller as well – this one using an IMU to 

determine absolute orientation and encoders to make 

the wheels turn at the same speed. Ninety degree turns 

have been achieved, and not only that but ninety 

degree turns relative to starting position have been 
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achieved too. This means any error accumulated upon 

stopping the robot is accounted for. This requirement 

was met. 

C. The Sense 

This feature allows the HERMES Mind to 

detect obstacles and walls in the real world. The 

requirements for this particular feature were in wall 

detection, wall avoidance, and end detection. 

All of these requirements have been met by 

using digital IR sensors. Four such sensors are 

calibrated to detect walls on all four sides, detecting up 

to half a cell away to ensure wall detection and avoid 

detecting walls in another maze cell. 

Three sensors are calibrated for very close 

range wall detection. Two of them detect walls on the 

front left and right ends to tell HERMES that it is 

about to hit a wall on each side, while the one in the 

front tells HERMES that it is about to run head on into 

a wall. 

These sensors work together to accomplish all 

sense features required by the 2018 design contract. 

XI. PROTOTYPE MARKETABILITY 

The HERMES deployable prototype would 

need a user interface to be a marketable device. The 

amount of work required to achieve this module is 

three to four months of integration. The hardware will 

need an upgraded chassis material, similar to ABS 

plastic. Sensors, such as IR and IMU, will need to be 

embedded inside the PCB design. And most 

importantly, the user interface needs to be 

accomplished by adding a touch screen or keypad onto 

the system to allow students to interact with 

HERMES. To accommodate the newly added 

hardware, the software must also be updated, 

especially for the user interface module. The software 

will include prompting the user to start the program 

and run it for a certain time before it stops. But the 

interface would also give feedback to the user for how 

HERMES makes decisions when roaming around the 

maze. 

 

 

XII. CONCLUSION 

The spring semester of Senior Design has 

been spent developing a tool to help mitigate the 

falling Math and Science literacy levels in America. 

In order to achieve this, a product with AI and 

Learning based robotics had to first be developed. 

Using the IEEE Micromouse competition as 

a framework within which this team could develop a 

product (HERMES) has been challenging but has 

proved to be perfect for the desired end product. The 

semester long exploration into robotics and applying 

AI to them appropriately has provided useful 

information about how to develop a cost-effective 

tool to increase k-12 Math and Science literacy 

levels. 

In developing HERMES to solve the 

Micromouse maze, many discoveries have been 

made about motors (Steppers, DC, Servos), sensors 

(IR, Sonar, Proximity, IMU), and Control systems 

(PID, PWM). This information has been effective in 

helping this team developing an agent to solve the 

Micromouse competition, and has also provided 

useful in determining the best parts (cost-effective 

vs. performance). 

The thirteen different builds of HERMES, 

some of which are show in Appendix H, have shown 

this team that developing a physical agent capable of 

using the sensors available to properly navigate and 

record the maze is a process that is more or less the 

same every time. Starting with high quality 

components is helpful, but difficult with a budget 

that is never large at any given time. 

The Python based Mind will work with any 

hardware system as long as the control functions for 

eighteen centimeter forward movement and ninety 

degree turns exist. Integration of the maze solving 

algorithm into a hardware system is as simple as 

making those two control functions for movement. 

Despite completion of the Mind (maze solving 

algorithm based on Q-Learning) early on in the 

spring semester, finding reliable motors that were 

capable of performing precise movements for the 

required movements made this project a semester-

long endeavor. 
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After finally developing two different agents 

with precise and accurate controls, it was relatively 

easy to integrate the Mind (Q-Learning algorithm). 

The agent is using Q-Learning principles and the 

related reward matrix to influence its decisions (to 

turn or continue straight) whenever possible. 
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http://sites.ieee.org/r1/files/2013/03/2013-Region1-Micromouse-Competition-Rules.pdf
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XIV. GLOSSARY 

Artificial Neural Network (ANN): A model for 

learning algorithms that mimics the design of biological 

brains. 

Optical Character Recognition (OCR): A system 

which inputs an image of text and determines which 

characters are present. 

 Field Programmable Gate Array (FPGA): A piece 

of hardware used for testing Verilog hardware 

description language modules. 

Artificial Intelligence (AI): A general term for any 

system that adapts to inputs to generate better outputs. 

Better in this case is defined by the designer.  

Activation Function: A function used to collapse 

values being input into a system to a number between 0 

and 1 or any other range of values desired by the 

system. 

Micromouse: An IEEE competition standard which 

defines a maze through which robots explore and 

discover the end as confined by IEEE rules.
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XV. APPENDIX A. USER MANUAL 

There is not a specifically designed User Interface for our HERMES agent at this time because the 

goal of this semester was to develop the AI/Learning based robot which would then be equipped with 

additional tools and features such as a User Interface to assist K-12 students and educators. 

However, despite this, there are clear modular functions which allow the HERMES agent to be 

controlled to high level of precision. Thus a prospective user can specify the exact amount of distance they 

would like to see HERMES travel in any specified direction, or perform certain movements such as turning in 

place. These can be done on both version 12 (DC motor based) by setting distances and on version 13 by 

setting the desired number of steps to go in any direction. 

These functions also allow the user to also specify the learning parameters used by the Mind, if they 

would like to change any specific aspect of the Q-Learning efficiency and/or fiddle with the level of 

indecisiveness.
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XVI. APPENDIX B. HARDWARE BLOCK DIAGRAM 

 

Figure 10. Hardware Block Diagram (Adapted from [9])
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XVII. APPENDIX C. SOFTWARE BLOCK DIAGRAM 

 

 

Figure 11. Software Block Diagram
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XVIII. APPENDIX D. MECHANICAL DIAGRAMS 

There were no relevant drawings, load calculations, or other documentation for the chassis build as it 

was done as an iterative process based on the varying parts used throughout the semester. However, the DC 

motors w/ encoders (version 12) and micro-steppers (version 13) do have some relevant documentation as seen 

below. 

 

Figure 12. Wiring Diagram for Stepper [10] 

 

Figure 13. H-Bridge Wiring Diagram [10]
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XIX. APPENDIX E. VENDOR CONTRACTS 

This team received no help from vendors or off-campus agents in completing this project. However, 

there are organizations in the greater Sacramento area that are involved with robotics, education, and IEEE. 

These organizations, such as Schilling Robotics-FMC Technologies, could have proven to be useful resources.
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XX. APPENDIX F. RESUMES
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XXI. APPENDIX G. WORK BREAKDOWN STRUCTURES

XXII.   

Figure 14. Work Breakdown Structure: FPGA Model (Part 1) 
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Figure 15. Work Breakdown Structure: FPGA Model (Part 2) 
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Figure 16. Work Breakdown Structure: OCR Model 
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Figure 17. Work Breakdown Structure: HERMES Model 
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XXIII. APPENDIX H: HERMES MODELS AND IMAGES 
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