

Applications in Artificial Intelligence: Neural Networks in

Verilog, Optical Character Recognition, and a Maze Solving

Robot Based on Q-Learning

Abstract – This paper concludes the two-semester project by explaining this team’s societal

problems, design idea contract, funding, and milestones. It will also discuss the work breakdown structure

of this semester’s work, risk assessment, design philosophy, deadline restrictions, design decisions, practical

challenges, and achievements.

Key Terms – Artificial Neural Network (ANN), Optical Character Recognition (OCR), Field

Programmable Gate Array (FPGA), Artificial Intelligence (AI), Activation Function, Micromouse

Breeana D. Proffit

Computer Engineering

California State University,

Sacramento, USA

proffitbreeana@gmail.com

Sudhakar Alla

Computer Engineering

California State University,

Sacramento, USA

sudhakaralla1@gmail.com

Vikram Saroay

Computer Engineering

California State University,

Sacramento, USA

vikramsaroay@gmail.com

i

TABLE OF CONTENTS

LIST OF TABLES ... ii

LIST OF FIGURES .. iii

EXECUTIVE SUMMARY .. iv

I. INTRODUCTION .. 1

II. SOCIETAL PROBLEM .. 1

III. DESIGN IDEA CONTRACT .. 2

IV. PROJECT MILESTONES ... 3

V. FUNDING ... 6

VI. WORK BREAKDOWN STRUCTURES .. 6

VII. RISK ASSESSMENT AND MITIGATION .. 8

VIII. DESIGN DOCUMENTATION: FALL 2017 .. 9

IX. DESIGN DOCUMENTATION: SPRING 2018 ... 10

X. DEPLOYABLE PROTOTYPE STATUS .. 14

XI. PROTOTYPE MARKETABILITY .. 15

XII. CONCLUSION .. 15

XIII. REFERENCES.. 16

XIV. GLOSSARY ... 17

XV. APPENDIX A. USER MANUAL ... 18

XVI. APPENDIX B. HARDWARE BLOCK DIAGRAM ... 19

XVII. APPENDIX C. SOFTWARE BLOCK DIAGRAM .. 20

XVIII. APPENDIX D. MECHANICAL DIAGRAMS ... 21

XIX. APPENDIX E. VENDOR CONTRACTS .. 22

XX. APPENDIX F. RESUMES .. 23

XXI. APPENDIX G. WORK BREAKDOWN STRUCTURES ... 26

XXIII. APPENDIX H: HERMES MODELS AND IMAGES... 30

ii

LIST OF TABLES

Table 5. Funding for Fall and Spring .. 6

file:///C:/Users/proffitb/Documents/Team6DeployablePrototypeDocumentationFinal.docx%23_Toc512841821
file:///C:/Users/proffitb/Documents/Team6DeployablePrototypeDocumentationFinal.docx%23_Toc512841821

iii

LIST OF FIGURES

Figure 1. Rankings in Science and Math [2] .. 1

Figure 2. Agent-Environment Relationship [4] ... 2

Figure 3. Micromouse Competition Maze [5] ... 2

Figure 4. Artificial Neural Network [6] ... 3

Figure 5. Neuron with Weights .. 6

Figure 6. Risk Assessment Chart ... 8

Figure 7. Digitization of the Letter 'A' [7] ... 10

Figure 8. Dead End Avoidance .. 11

Figure 9. Reward Matrix .. 14

Figure 10. Hardware Block Diagram [9] ... 19

Figure 11. Software Block Diagram .. 20

Figure 12. Wiring Diagram for Stepper [10] ... 21

Figure 13. H-Bridge Wiring Diagram [10] .. 21

Figure 14. Work Breakdown Structure: FPGA Model (Part 1) ... 26

Figure 15. Work Breakdown Structure: FPGA Model (Part 2) ... 27

Figure 16. Work Breakdown Structure: OCR Model .. 28

Figure 17. Work Breakdown Structure: HERMES Model .. 29

file:///C:/Users/proffitb/Documents/Team6DeployablePrototypeDocumentationFinal.docx%23_Toc512841820
file:///C:/Users/proffitb/Documents/Team6DeployablePrototypeDocumentationFinal.docx%23_Toc512841821
file:///C:/Users/proffitb/Documents/Team6DeployablePrototypeDocumentationFinal.docx%23_Toc512841830
file:///C:/Users/proffitb/Documents/Team6DeployablePrototypeDocumentationFinal.docx%23_Toc512841831
file:///C:/Users/proffitb/Documents/Team6DeployablePrototypeDocumentationFinal.docx%23_Toc512841832
file:///C:/Users/proffitb/Documents/Team6DeployablePrototypeDocumentationFinal.docx%23_Toc512841833

iv

EXECUTIVE SUMMARY

 Over the course of ten months of Senior Design Project at California State University of

Sacramento, this team has explored three avenues of artificial intelligence. Compared to other groups in this

team’s graduating class, this team has taken a broad approach to its project design. This is, in large part, due to

unpredictable complications associated with pursuing several topics the members of this team were initially

entirely unexposed to only to realize that the time frame provided by the class – as well as the budget available

to this team – made more in-depth research and development of two of the initial project ideas infeasible. This

team pursued the ideas to the best if its abilities given the resources it did have.

During the end of summer and most of the fall 2017 semester, the focus was on the Verilog design. It

was approaching its penultimate design when the issue of the project’s growing complexity requiring more

space than was provided by any reasonably attainable FPGA swiftly brought that portion of the project to its

end.

For the latter half of the same fall semester, this team developed the concept, design, and

documentation for an optical character recognition system using a neural network similar to the one this team

had designed earlier in the semester in Verilog. The software design initially began as a software simulation to

compare to the same processes this team was attempting to create in Verilog.

Then, for winter break and the spring 2018 semester this team switched its focus to a robotic system

that would make use of a Q-learning algorithm to solve mazes. The reason for this switch was pragmatic – the

pursuit of a high-speed optical character recognition that could determine entire words was infeasible given the

difficulty presented in just recognizing single characters. The use of reinforcement learning was in line with our

prior pursuits.

 Each of the three aspects of this project required extensive research, and in summary the members

of this team have all developed a comfortable understanding of: the function and design of artificial intelligence

systems; the difference between supervised and reinforcement learning algorithms; image processing to extract

edges and other characteristic features of handwritten characters for use in neural networks; organization

modules and the design of several floating-point features in Verilog; the entire robot design process, including

balancing the factors of weight, motor torque, battery capacity, and model size; the use of feedback systems

such as PID controllers for ensuring precise movement in robotic systems; and several other skills.

1

I. INTRODUCTION

This paper describes in depth every aspect of

this team’s project, focusing primarily on the work

done during the fall semester with Optical Character

Recognition (OCR) and the spring semester with the

Hyper Expedient Robotic Maze Extraction System

(HERMES). The paper summarizes details about the

two societal problem that this team attempted to solve

and covers the design idea contracts and changes made

to them. Additionally, this paper will provide an

overview of funding, milestones, work breakdown

structures, risk assessments, and design choices. To

finish, this paper will describe both prototype’s status

at the end of their respective semesters, and how these

products may have a place in a consumer market.

II. SOCIETAL PROBLEM

During the fall semester, this team focused on

finding a solution to aid dyslexic students. Dyslexia is

a worldwide societal problem that prevents young

children from focusing on their studies and limits

adults from doing certain tasks. A very common form

of dyslexia that exists worldwide is known as visual

dyslexia, where an individual has a difficult time

reading words/phrases. Mental disorders such as visual

dyslexia have no permanent cure as stated by most

healthcare facilities [1].

There are, however, many treatments that aid

individuals for a good amount of time so that they can

adapt to the situation. For example, some dyslexic

children are enrolled with teachers/mentors, one to

one, and are educated with specific needs to their

problems. Our team’s plan is to create an ANN system

that is able to perform Optical Character Recognition

(OCR) and would make it easier for dyslexic

individuals to overcome learning obstacles.

An OCR system would allow dyslexic

students to correctly identify letters and numbers so

that they can piece together an understanding of which

characters are affecting their situation and act/adapt

accordingly.

Classical OCR systems were designed in

software and used a lot of the energy of the processor

since they were not run in parallel. Running the OCR

system on a portable hardware using ANN is ideal

when it comes to solve the problem of converting

handwritten or digital characters into speech.

During the spring semester, this team’s focus

shifted to introducing students to the concepts of

robotics and artificial intelligence. As American math

and science literacy levels fall, it has become evident

that the education system is in need of help. One of the

most prestigious nationwide tests is the Programme for

International Student Assessment (PISA), which every

Figure 1. Rankings in Science and Math [2]

2

three years measures reading ability, math, science,

and other key skills among fifteen-year-olds in dozens

of developed and developing countries. The most

recent PISA results from 2015 place the USA at an

unimpressive 38th out of 71 countries in math and

24th in science literacy. [2].

III. DESIGN IDEA CONTRACT

This team’s exploration into various Artificial

Applications has spanned three different projects and

two semesters, lending itself to a myriad of various

project milestones. This project’s Design Idea Contract

for the spring 2018 semester is different from that

proposed in the fall 2017 semester for the simple

reason that a significant portion of this project was

altered in response to unforeseen challenges arising

from designs in the fall semester. Whereas the 2017

contract focused on the design of an artificial neural

network that could act as an optical character

recognition system, the 2018 contract focuses on

HERMES, the maze-solving robot.

Figure 2. Agent-Environment Relationship [4]

 Figure 3. Micromouse Competition Maze [5]

A. 2018 Design Idea Contract

 The design idea contract can be well

described in the context of Figure 2 and Figure 3. The

HERMES robot design is comprised of three primary

features: Mind, Body, and Sense.

The Mind feature is made up of Q-learning,

which is a learning algorithm using an agent-

environment relationship as described in Figure 2. In

this project, the environment is the world itself

provided to the agent through sensor data, while the

agent is the algorithm is what decides which direction

to take next. For the Mind feature, the design contract

requires a full implementation of Q-learning, maze

solving capability, and efficiency feature upgrades.

The Body feature consists of motors, control

and feedback systems, and chassis design. The focus

with this feature is providing precise movement to

assure that the Mind feature is always roughly correct

about its understanding of where it is in the real world.

The specific features required by the design contract

are straight horizontal movement and clean ninety

degree turns.

The Sense feature is made up of sensors and

what is accomplished with sensor data. This provides

an understanding of obstacles and variance from

desired angle and position. The specific features for

the Sense feature are wall detection, wall avoidance,

and end detection which is essentially making stops if

the robot approaches a wall too close.

These features are tested in and out of a maze-

like environment. A maze such as that shown in

Figure 3 is used to test the features listed above

working together, but each feature is tested

individually as well to ensure that this team has met

the design contract’s specification for every feature.

B. 2017 Design Idea Contract

To briefly discuss the ideas covered in the

2017 design contract, this team’s primary goal for that

semester was to develop an optical character

recognition system which would accept a real-world

written character as input and output the character as

recognized by the system.

3

Originally this contract had a lean toward the

use of an FPGA-based neural network for use in

optical character recognition, but as issues arose the

focus shifted toward generally optical character

recognition with a neural network of our own design

running a microprocessor.

The specific features required by that contract

consisted of an implementation training datasets to

train a neural network, the creation of a multilayer

neural network, an implementation of training for that

neural network, the ability for the system to be trained

in other topics, and a user-friendly interface.

IV. PROJECT MILESTONES

The milestones accomplished within this

project are categorized neatly into the three project

ideas this team pursued. The milestones pertaining to

those three ideas are given in subcategories for

neatness.

A. FPGA-Based ANN

Major milestones for this particular project

idea consisted of the development of working,

generalized Verilog modules used in the larger top-

level design. An example of a neural network is given

in Figure 4.

The first such milestone came with the

development of floating point multiplication and

addition modules. The back-propagation model made

use of floating point numbers in all aspects of the

system – in synapse weights, in input summation, in

neuron’s the activation function, and in back-

propagation modules. Inputs and outputs to the system

are also floating-point values.

The next milestone for this FPGA design was

the development of a sigmoid activation function

approximation module. In a neuron model, an

activation function is used to transform a summation

of input values to an output between 0 and 1 in a non-

linear manner. The activation function used for the

FPGA model is a sigmoid function, which is described

in the equation below.

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥

This function outputs a curve like the one

shown in Figure 4, described there as “Hyperbolic

Tangent Sigmoid.”

The activation function was particularly

difficult to achieve in Verilog due to its non-linear

nature. A direct representation is possible but highly

complex, so the milestone was accomplished through

the use of a minimax approximation.

The third milestone accomplished was the

development of a neuron, which consisted of weight

multiplication, input summation, and an activation

function working in sequence.

Figure 4. Artificial Neural Network [6]

4

The fourth milestone for the FPGA model was

the development of a neural network of five neurons,

connected from input to output. This was difficult

primarily as a result having to debug the system with

floating point values, but it ultimately the process of

translating floating point to decimal then determining

what issues existed to make floating point values go

astray was developed enough to allow this team to

reach this milestone.

And the fifth milestone accomplished was the

creation of back propagation modules to connect

output values to every layer of neurons. Back

propagation equations for each weight were derived by

hand and generalized for up to three layers so as to

make adding more neurons easier in the future, and

those equations were translated to Verilog modules.

B. Optical Character Recognition ANN

During the second half of the fall semester,

this team began to work on a software version of the

OCR system that was being developed on an FPGA.

To accomplish the goals of the 2017 design contract,

the software OCR system followed the same general

guidelines and resulted in the following milestones.

The first major milestone this subproject

achieved was being able to take pictures using a

Raspberry Pi and converting them to a grayscale

16x16 matrix. This milestone involved using TTL

serial cable camera made for the Raspberry PI. The

camera module provided a 1920x1080 image which

surpassed the desired size restrictions of the neural net.

To bring it in line with the 16x16 pixel size used by

the neural network, this team used the Python Image

Library (PIL) and its resizing functions. Additional

functions provided by PIL allowed the system to

grayscale the image and then convert it to a 16x16

matrix.

The next major milestone was developing a

C++ based ANN that would be able to use the 16x16

matrix generated using the RPI camera and PIL. This

team strictly followed the restrictions provided by for

the FPGA model in order to accurately represent the

same kind of network. These restrictions dictated the

learning system used (in this case Back Propagation),

the applied learning rate, and the activation function

(in this case the Sigmoid function), and more.

Once the neural network system was

developed, it had to be trained. The first iteration of

the OCR system used the MNIST library available

online which is a compilation of 60,000 handwritten

letters and numbers. Training the neural network with

this library was yet another milestone.

Verification “live” testing proved to be nearly

impossible because the image quality captured by the

RPI camera could not match the quality of the

scanners used by the MNIST dataset developers, so the

next milestone was in creating and training the neural

network with a custom dataset was generated using

hundreds of handwritten numbers between zero and

nine. These handwritten numbers had to be different

enough for the system to begin to recognize variances

in input, and to provide this variety data was collected

by asking colleagues in the CSUS Engineering Labs to

write characters for this project.

The number of samples varied, as some

numbers such as one (1) and seven (7) proved difficult

to differentiate without enough data due to their

similarity. Once the custom PNG dataset was

developed, it was processed with the tools resulting

from the first milestone, and the C++ANN was finally

properly trained.

Once the C++ OCR ANN was properly

trained, the next milestone was to use the neural

network trained by the new custom dataset to

accurately recognize characters from pictures taken by

the Raspberry Pi camera. This milestone was

accomplished and presented at the fall semester Senior

Design exhibition.

C. Maze-Solving Robot with Q-Learning

The very first milestone in the spring semester

was the understanding and implementation of the Q-

learning problem solving approach to the Micromouse

problem. This approach included discovering the

various mathematics problem solving techniques when

it comes to making decisions, for example choosing

which direction to go in a maze. Markov’s Decision

Process and Temporal Difference are techniques that

lead to the fully working Q-learning algorithm. The Q-

5

learning is the main ingredient of the maze solving

algorithm.

The main focus during the spring semester

was to implement a full proof custom Q-learning

algorithm onto a Micromouse, therefore the first major

milestone was the complete development of the mind,

or the maze solving capability, coded in python. The

software implementation of the algorithm proved that

the agent inside the maze environment is able to

explore and reach the final destination, no matter the

size of the maze. The largest maze tested during

iterations was 256 by 256 spaces, which took around

8mins for the agent to explore the maze and reach the

end goal, at a very high speed run.

Later the milestone of efficient feature

upgrades was achieved in the maze solving algorithm.

The issue that kept occurring was that the agent

wanted to keep going back to the direction that it

already explored in which it found not luck previously.

This issue would randomly occur in the iterations,

therefore the solution was to give a higher negative

reward to the agent when it wanted to visit the older

locations that had no positive outcome.

The next milestone was the wall detection

capability. The first approach at detecting the walls

was using the Sonar distance sensors on V1, V2, and

V3 of HERMES. The Sonar sensors required

multitasking to operate in parallel, which would slow

down or interfere with other operations on the

Raspberry Pi.

Therefore, the next best option was to use IR

sensors that gave a binary feedback, whether the wall

was there or not. This strategy allowed a smooth

transition from the Q-learning algorithm to the

hardware. The idea was to sense walls around the

agent and capture these walls at every step of the

maze. Every version after V3 used IR sensors for wall

detection.

Wall avoidance was the next big milestone

which gave the agent a little more room to be flexible

while it is roaming around the maze. The wall

avoidance was achieved using the IR sensors which

were set at a comfortable distance from the walls on

each side. The wall avoidance system also helped with

the straight paths.

Another milestone that strengthened the

straight horizontal movement was the PID controls

using the encoder feedback. V1 to V3 of HERMES

used stepper motors, without any sensor feedback,

however the precision was very high when going

straight. The servo and DC motor versions required a

sensor feedback to tell the motors constantly if they

are going straight or not.

The encoders were used on V11 of HERMES,

in conjunction to the 12v DC motors. The PID

controller allowed to correct the error that accumulates

due to the difference in speed on each motor. Also the

slight right and left shifting of the motors, due to

signal noise and bad motors, was fixed by the PID and

correct function.

Along with the straight horizontal movement,

the 90 degree turn control was achieved. The 90

degree turns were achieved by the IMU feedback,

which uses 9 degrees of freedom to calculate the

current angle of the robot. The starting position of the

robot determines the zero degrees and from there, the

robot can determine north, east, west, and south. The

IMU was first included in V9 of the build, in

conjunction to the servo motors.

The most recent milestone achieved was the

front wall detection to make the agent stop in time and

make a decision. As the agent approached a wall in the

front, it needs enough space to make a quick stop, so it

does not collide with the wall, therefore a control

strategy is needed for such situations.

The strategy was to make a right turn as a

quick judgement that the front wall is approaching.

Two front IR sensors were used at different distances

to make the judgement for how close to the front wall

the agent is.

6

V. FUNDING

Fall Price

(per unit)

Source

Raspberry Pi 3 $40 x2 Amazon

Raspberry Pi

Camera

$30 Amazon

Plywood $10 Home Depot

128gb MicroSD $48 Amazon

Spring Price

(per unit)

Source

RPi 3 $40 Amazon

Arduino Uno $15 Amazon

12v Steppers

12v DC motors $17 x2 Amazon

Robot chassis kit $20 Fry’s

IR sensors $10 x2 Amazon

Sonar sensors $10 Amazon

12v Battery $20 Amazon

Servo pack $20 Amazon

AAA holder $8 Amazon

AAA pack $10 Amazon

AAA charger $17 Amazon

Gear pack $11 Amazon

L298n $9 Amazon

L298 7A $16 Amazon

Mount hub 6mm $14 Amazon

90x10mm wheel $12 Amazon

Speed sensor $11 x2 Amazon

IMU 9DOF $40 x2 Amazon

Balsa wood $10 R/C hobby

Pololu DC Motor $20 x2 Pololu

Pololu Encoders $12 x1 Pololu

Servomotors $20 x2 Amazon

6v Steppers $27 x2 Amazon

70x10mm wheel $10 x2 Amazon

Screws $5 Amazon

5V Steppers $15 x2 Amazon

Wires $13 x2 Amazon

PCB boards $10 Amazon

Solder Equipment $25 Amazon

Table 1. Funding for Fall and Spring

VI. WORK BREAKDOWN STRUCTURES

Given that this project consisted of three

subprojects, three work breakdown structures were

created. The higher order features are discussed in this

section – this team is leaving out low order features

from this paper largely because the discussion of the

large volume of smaller features distracts from the

purpose of this paper. Figures for the work breakdown

structures are given in the Appendix G. Work

Breakdown Structures.

A. FPGA-Based ANN

The FPGA Neural Network model, which is as

far as this team was able to proceed with this

subproject’s work breakdown structure, has two

primary features – namely it consists of the creation of

neurons with weighted inputs as well as the integration

of multiple neurons into a network with learning

capacity.

Neurons with weighted inputs were comprised

of several parts. To begin, the input to the neuron had

to be a floating point number which was multiplied by

some variable weight – thus the first feature of the

neuron was the weight module which performed that

function.

After that, weighted inputs were summed

together with a tree of floating point addition modules,

so the summer tree was the second feature of the

neuron.

Figure 5. Neuron with Weights

7

Then the sum of weighted inputs was sent

through an activation function to collapse the output

between 0 and 1. The third feature of the neuron was

the activation function module which was modeled

after a minimax approximation function.

The second part of the subproject’s work

breakdown structure was the integration of neurons

into a network with back propagation.

The neural network was primary made up of a

forward-pass portion which is a series of weighted

summations and activation functions. This was

perhaps the most difficult part of the project to achieve

because testing was highly complex and required

plenty of calculations and translations between

floating point and decimal.

After that, the next portion of the neural

network was the development of back propagation

modules. These performed all of the necessary work

for enabling the neural network to perform supervised

learning.

B. Optical Character Recognition ANN

The Optical Character Recognition subproject

of the fall semester had three primary tasks – image

processing, training dataset creation, and the

implementation of an artificial neural network in C++.

The image processing feature allowed this

team to format images from the Raspberry Pi camera

for the neural network this team used. It resized 1080p

images to 16x16 images, one pixel for each input to

the neural network.

In order to make the features of characters

more obvious in a 16x16 grid, filters were used to

enhance edges, to remove color, to increase contrast,

and to remove noise with thresholds.

The dataset feature is the set of images the

neural network was trained with. These images

originally came from the MNIST dataset. This team

used the same image processing techniques on the

MNIST images as with the camera images, but

eventually it was discovered that using that the

differences between this team’s camera and the camera

used to record characters for MNIST was too great.

Thus a custom dataset was created for the same

purpose as the MNIST dataset.

The final feature is the neural network itself.

Beyond the network itself, this feature was broken up

into training and testing portions, the latter of which

was used to recognize characters written by

individuals at the Senior Design Exposition.

The training portion consisted primarily of an

interface used to input images of both the MNIST and

this team’s custom datasets. The neural network was

then designed to train using the back propagation

learning algorithm.

The testing portion loaded a saved set of

trained weights for a neural network into a new neural

network. Images were taken, then processed, then sent

to the neural network through an interface of this

team’s design.

C. Maze-Solving Robot with Q-Learning

The three primary features of the HERMES

portion of this project were Mind, Body, and Sense.

The Mind portion of Hermes consisted of the

Q-learning algorithm, which is a reinforcement

learning algorithm used to find the best path to a goal,

specifically through a maze in this team’s case. This

algorithm was enhanced by several efficiency

upgrades discussed in the design documentation.

The Body portion of Hermes is made up of the

motors, chassis, and battery. These components were

switched out several times over the thirteen models

this team designed and implemented. The trick to these

features was determining the correct ratio of weight,

size, torque, and energy capacity.

The Sense portion of this subproject was

consisted of all sensors – IMU, digital IR sensors, and

encoders – and their interconnection with the other

portions of the HERMES project. All controls

feedback started with the Sense portion of HERMES,

from the two PID controllers to the wall detection

sensors.

8

VII. RISK ASSESSMENT AND MITIGATION

Since the final subproject is the focus of the

project as a whole as this semester comes to a close,

risk assessment and mitigation for the HERMES

maze-solving robot will be given the most attention in

this section.

Q-learning is the primary ingredient to the

maze solving algorithm. The risk associated with Q-

learning would have been high if it not implemented

correctly. The likelihood of this not working was

very low, because our main focus was to reinforce

the reinforcement learning algorithm. The impact

that this module will have to on the entire project, if

not completed, was very high since the main goal is

to prove that artificial intelligence can solve the

maze. A mitigation plan would be to use the flood

fill algorithm to solve the maze instead.

The efficiency upgrade feature allows the Q-

learning algorithm to be more responsive and

immune to error during exploration phase. The risk

associated was low and the likelihood of this not

being done was also low. The impact on the entire

project was very low since it was used as an upgrade

on the Q-learning algorithm. The migration plan

would be to not use this module at all if it fails.

Straight horizontal movement is required for

HERMES to not run into the left and right walls.

The risk for this to happen was medium to high

since the motors can fail at the last moment or the

battery power might be low for max efficiency or the

encoders can pick of external noise. The impact on

the rest of the project for this module not working

was medium to high as well, because if the robot

runs into the left or right wall, the learning algorithm

can be interrupted and possibly fail entirely. The

mitigation plan would be to reverse every time it

runs into the wall and correct its position/angle.

Clean 90 degree turns are also important in

order to explore the maze and get back from a dead

end. The risk associated with this module was low to

medium. The likelihood of this not working was also

low to medium. The impact on the entire system was

medium, because if the robot was not making

complete 90 degree turns, it can run into a wall due

to the error in the angle. The mitigation plan was to

have and IMU constantly polling the angle or have a

correct function to fix the position/angle.

Wall detection was very important since it

tells the algorithm where all the walls are to map the

entire maze. The risk was medium to high, since the

bot can get lost during the execution phase if it does

not keep track of the walls. The impact of this

module not being completed on the entire system

was medium to high, since the robot will start acting

like it was in the exploration phase even during the

execution phase. The mitigation plan was to make

full stops at every step to allow enough time to

register the walls.

Wall avoidance was very important and

works in conjunction to the straight horizontal

movement module. The risk of this module was

medium to high and the likelihood of this not being

done was low to medium. The impact on the entire

system was high because if the robot cannot avoid

colliding with walls than it will fail at exploring and

solving the maze. The mitigation plan would be to

retrace its steps and correct itself using a custom

correct function with the help of the IMU.

Dead end detection for stops was used to

make a quick reaction for not running into the wall

in front of the robot. The risk was low to medium

since it just needs a custom function to determine a

wall in front and make a stop before running into the

wall. The impact for not completing this module was

medium. The mitigation plan would be to give two

IR object detection signals, one a little earlier than

the other to confirm that a wall was coming up and

be ready to stop.

Figure 6. Risk Assessment Chart

9

VIII. DESIGN DOCUMENTATION:

FALL 2017

This section discusses the design philosophies

and the stories of the two subprojects developed in fall

2017.

A. FPGA-based ANN

The design of an FPGA-based artificial neural

network which would perform optical character

recognition was known to be a challenging task from

the start of the project, in part because none of the

members of this team were comfortably exposed to

artificial intelligence prior to working on it, and in part

because this line of research is new and gaining

interest and lacks much documentation as a result. The

challenge, while present, was to be countered by a

large number of hours worked per week.

Within the first month of the project, the

volume of research references this team had used to in

the development of the FPGA model filled two pages.

This team combined several academic papers

describing floating point arithmetic units in order to

create individual floating point addition and

multiplication modules.

For the activation function module, papers

describing activation function approximations in

software were manually referred to in order to develop

a Verilog model of the same approximations.

Still more papers were referred to in order to

fully understand the mathematics and structure of

neural networks and the use of back propagation

within them – again using papers focused on software

implementations.

Almost all of the work done on this model that

was based on research was performed by transcribing

ideas present in software research to something

useable in Verilog. That said, the combination of those

ideas and the creation of novel ideas for the

development of this model was the primary work this

team performed.

This team finished nearly all work required to

make a fully functional Verilog model of a back

propagation neural network that would run in

simulations.

The completion of the Verilog design was

likely by the time this team came upon the realization

that the model developed was too complex for upload

into the FPGA this team had access to.

Efforts were made to reduce complexity and

make the Verilog program work with available

resources, but it proved impossible. The FPGA models

required to run the Verilog model cost in the range of

$3,000 which fell far outside this team’s budget. As a

result, the Verilog design was left behind.

Nevertheless, the knowledge gained in

creating a neural network within a Verilog system was

enough to make this team comfortable with the

concepts of artificial intelligence in general, and that

level of comfort helped with both of the following

subprojects.

B. Optical Character Recognition ANN

Optical Character Recognition (OCR) is a

problem can be approached from various different

directions, but the two most popular are digitization

and feature extraction.

In digitization, a letter or number is converted

to a matrix of 0’s (white pixels) and 1’s (black pixels).

In doing so, a picture’s entire pixel array is iterated

through and first converted to grayscale, allowing the

conversion of the character ‘A’ from step (a) to step

(b) as seen in Figure 7. At this point, the pixel values

(in binary form thanks to the grayscale pre-processing)

are simply extracted into a matrix which is ready to be

used as training/testing data by the OCR system.

Another equally popular approach is Feature

Extraction.

 In the process of Feature Extraction, certain

features/qualities/traits are designated, and every

image is “taught” to the Artificial Neural Net via an

abstraction of these features. These features may

include center-of-mass (of the black pixel

distribution), segmentation, and conversion to contours

and/or vectors. Although the teaching approach is

varied, the idea of a set of neurons (784 neurons

specifically, assuming a 28x28 input image) learning

10

to recognize characters based on carefully

calibrated/tested weights, remains the same.

Figure 7. Digitization of the Letter 'A' [7]

Modeling a solution for the OCR (Optical

Character Recognition) problem (via Artificial Neural

Networks) is seemingly straightforward, but in reality

requires a lot of preparation to ensure that both

teaching and testing of the system is undertaken with

as similar and controlled parameters as possible. An

application of controlled parameters does not

necessarily take away from an ANN’s ability to predict

output for real-world test cases.

In the first attempt at developing an OCR

system on a Raspberry Pi using a C++ ANN, learning

and testing parameters were not controlled, thus

leading to discrepancies and high levels of inaccuracy

for traditionally written numbers between 0-9.

After extensive debugging and exploring a

myriad of different image pre-processing techniques

and the order in which they are applied, it was

concluded that the issue was not on the validation side,

but rather the teaching/training. The stem of this issue

arose from the selection of the OCR’s training data.

Here, the MNIST database was used (a subset of the

NIST database), which included 60,000 training

images and 10,000 testing images.

As development of the preliminary OCR

system continued, it became obvious that the high

quality of the MNIST database (a result of scanning all

handwritten numbers), could not be satisfactorily

reproduced using the Raspberry Pi camera module.

In the next iteration of the OCR prototype, the

training data was generated under conditions as similar

to the validation scenarios as possible. This involved,

taking training/testing pictures of handwritten numbers

with the same camera (RPI camera), under similar

lighting conditions, and a standardized/controlled focal

length.

It was impossible to replicate the entire array

of 70,000 images provided by the MNIST database in

a timely manner, but equipped with a clear, simple,

and capable Neural Network, training was performed

with far fewer images (~50 different samples per

letter).

Once the custom dataset was developed using

volunteer data from various CSUS Engineering

students, they were compiled into a text file, formatted

using PowerShell (and later Bash) scripting, and were

finally inputted to the C++ OCR ANN. The resulting

tests were highly accurate and provided accuracy

levels above 87% when sent in a randomized set of

100 numbers (these were not used in the training

dataset).

IX. DESIGN DOCUMENTATION:

SPRING 2018

The HERMES project is a system designed

to intelligently solve mazes while providing an

outlet for education in robotics and artificial

intelligence to students. HERMES, otherwise known

as the Hyper Expedient Robotic Maze Extraction

System, is comprised of three primary feature. All

three are crucial and interlinked, and they can be

further broken down into finer features.

In order to develop a learning robot kit,

which can be cost-effective and provide itself as a

tool to increase Math and Science literacy and

interest levels among K-12 students, a robot capable

of such features must first be developed.

The IEEE Micromouse competition

provides a framework within which can this product

can be developed. The micromouse competition

assesses the agent’s (robot such as HERMES) ability

to solve and navigate a 16 x 16 cell maze (where

each cell is 18cm x 18cm), as seen in Figure 3. Each

cell floor space is 16.8cm x 16.8cm, while the walls

(5cm height) add an additional 1.2cm (wall

thickness), for a total of 18cm x 18cm per cell (5%

tolerance assumed) [8].

11

The HERMES agent, makes use of

competition guidelines and outcomes to provide a

reasonable and comparable measure of our

algorithmic success. The competition allows

HERMES, a single run-through of the maze to

encode the walls and obstacles in its memory and

determine the fastest route from any given corner of

the maze to the center. During this first run-through

HERMES will “learn” how to avoid obstacles and

reach the center of the maze within optimal time.

While most agents apply a Flood Fill algorithm, or

various other directed maze-solving algorithms,

HERMES will instead feature a Reinforcement

based learning system called, Q-Learning.

Hermes makes use of the Q-learning

algorithm to navigate to the end (goal) point. Several

auxiliary functions/tools have been provided to

HERMES to improve its exploration, solving, and

traversing efficiencies. An algorithm such as Q-

Learning requires precise sensory inputs and

relevant outputs to navigate the maze without

collisions/other time wasting events. The

movements will be provided to the motor controller

in the form of instructions to move cell by cell

(18cm x 18cm).

A. System Overview & Implementation

The HERMES system’s main features can

be split into the three following categories: Mind,

Body, and Senses. Each of these pivotal categories

brings with it its own subset of features and

components which work harmoniously with the rest

of the HERMES system.

B. Mind: Q-Learning

The HERMES agent must be able to solve

the maze given a 16x16 matrix of 4-bit values

(cardinal wall locations in every cell). Because this

team’s goal is to further explore and apply concepts

of artificial intelligence and learning, the HERMES

agent has instead been equipped with a

reinforcement based, Q-Learning algorithm.

The Q-Learning algorithm served as the

framework upon which the HERMES Mind

algorithm was developed. Q-Learning is an

adaptation of Markov Decision Processes, which is a

decision algorithm that, in short, looks at all possible

actions and chooses the one that will lead to a goal

in the shortest path. The Markov Decision Process

alone is impossible to implement without providing

all possible states and action values within those

states. For a sufficiently large or complex system,

defining those values ahead of time becomes unruly.

The Q-Learning algorithm provides a

means by which the shortest path can be determined

with trial-and-error experimentation. The agent can

arrive at the end, then determine which states can

lead directly to the end, then determine which states

lead to goal-adjacent states, and so on until it finds a

path that leads from the beginning to the end. When

it traverses the action matrix, it will always take the

action with the greatest reward value.

To do this in practice, discrete states must

be quantized to simplify a real-world system that

consists of effectively infinite states, then define

reward values for actions within those states. In

practice, exploring and finding the end of a maze

through trial and error is an arduous process, so

further alterations were made to shorten that process.

The first of those changes was the

implementation of a predefined reward matrix.

Within the context of the IEEE Micromouse

competition, which is a predefined set of rules for

maze generation and solving, the end goal is in a

known location. Furthermore, the start position is

also known – it is in one of the four corners. Thus,

the reward matrix makes use of these restrictions and

places the goal squarely in the center of the maze.

Figure 8. Dead End Avoidance

Another attribute added to the Mind is

dead-end avoidance. This is described most clearly

by Figure 8. When a dead end cell is visited – that is

to say when three walls are detected adjacent to the

agent – HERMES internally walls off the cell. This

is demonstrated visually in Figure 8 with the black

12

square overlaid onto the maze cell. Since these dead-

end cells are virtually counted as walls, real or

virtual, dead end corridors are also blocked off.

HERMES will never revisit a cell that has been

marked as a dead end.

A third alteration to the algorithm changes

the reward value of every space which is visited by

HERMES through a process called reward decay.

This is a simple alteration which takes the current

reward value of a space that HERMES just left and

decrements it by one (1). This encourages wider

exploration by making locations that have already

been visited less appealing to HERMES and placing

choices toward new locations at relatively higher

values.

The final alteration is one called assured

decisiveness. This became an important alteration to

counteract an emergent property of reward decay

that we termed indecisiveness. In long corridors that

needed to be revisited multiple times, since the

reward matrix was altered with every pass of

HERMES, occasionally HERMES would “change

its mind” about the direction it was going and double

back to where it had just been. This became a very

inefficient property, and it was counteracted by

artificially placing spaces that were just left by

HERMES at lower reward values than given by the

reward matrix.

In all, this set of changes formed the

HERMES Mind, which now efficiently solves mazes

upward of 128x128 in simulations.

C. Body: Chassis & Motors

The second extremely important factor of

the HERMES system is the chassis. This chassis

holds all components of the Mind (processor) and

SENSES (sensors and motor controller).

Throughout the thirteen (13) different

iterations of HERMES, the chassis design has

changed considerably. While the first couple

versions were simply built to test features and made

use of lightweight, yet bulky balsawood. More

recent versions of the chassis have made use of 3D

printed custom component casings, full 3D printed

chassis, and plexiglass.

On top of holding all necessary

components, the chassis must also be small and

compact to help ensure crisp right/left turns, avoid

inadvertent collisions (wastes time), and

accelerate/move through specialized maze portions

such as ‘stairs’. The most recent version (v13) of the

HERMES chassis features 2 plexiglass sheets with

1.25 inch separators between them to allow

sufficient space for components.

Another major design idea with the

HERMES chassis is the wiring, which should be

clean and tucked away to prevent snagging on the

maze itself or the agent’s motors/wheels. Often

times the wiring from the battery is the bulkiest

because of custom solder points to split the power

which make the entire wiring scheme a mess.

The second pivotal factor of the Body, is

the motor system. Again, throughout the various

versions of HERMES, many different motors were

used, DC (v3-v8, v11, v12), Steppers (v1, v2, v13),

and even continuous servos (v9, v10). While DC

motors didn’t have necessary torque without a

proper gearbox, most the stepper motors were too

slow. In addition, the DC motors required one H-

Bridge (bulky add-on components to provide

differential speed control for these motors), and the

stepper required two H-Bridges. The continuous

servo motors that were once used didn’t require any

H-Bridges, but synchronizing two servo motors was

extremely difficult.

It is important to have fast motors to keep

run/completion time competitive, but this factor

must be balanced with the torque necessary to move

all on chassis weight. This was a daunting task given

that the agent’s weight was constantly changing

during initial builds, and the DC motors used for

many builds, required constant gearbox tinkering to

achieve the necessary torque to move the constantly

changing chassis + component weight.

D. Sense: Spatial Awareness and Controls

The HERMES agent uses a variety of

sensors to enable spatial awareness. The two most

important goals of the sensors are to first, help the

agent safely navigate the maze. And Second, to

13

provide the processor with a 16 x 16 4-bit matrix of

the cardinal wall locations in every cell of the 16 x

16 maze. Despite the level of innovation and

redesigning required of the other portions of the

HEREMS agent, the senses were relatively hashed

out early in the project and have stayed constant,

except for the addition of an IMU.

Initially proximity based, Ultrasonic

Sensors were used because they provide a feedback

of how far away the walls are, a priceless piece of

information. However, they are difficult to multi-

process with the motors, as well as highly

susceptible to external environment noise. This

random environmental noise can interrupt the relay

of sonar pulses being emitter by the sensor and being

looked for by the receiver. As such, the sonar

sensors were quickly discarded in favor of Infrared

Sensors.

The IR sensors are great for the task of

detecting walls because they operate at a specific

distance (distance between agent and wall) based on

potentiometer setting. This allows for them to be

easily fine-tuned as this distance between the agent

and walls change because the agent’s dimensions are

still changing throughout the various chassis

iterations. IR sensors are also relatively low weight

and not as bulky as the proximity Ultrasonic sensors

were.

Initially, encoders with a resolution of 3.6

degrees were used in tandem with 90mm (diameter)

wheels. This provided an encoder tick at every

2.83mm which helped keep track of wheel

displacement. However, encoders are a tricky add-

on, especially when the chassis and motors were

constantly changing during the earlier phases of the

project.

As such, an alternative was found with the

micro-steppers being used now. The new micro-

steppers (v13) use a built in step count to control

their movement. This allows a constant level of

precision because each step (degree of rotation) of

the motor is recorded and accounted for. The current

steppers being are based on a 4096 steps per

complete revolution system.

Despite their complications, the second

viable version of HERMES (v12) uses magnetic

encoders to keep track of the motor revolutions. The

magnetic encoders on this version of HERMES

provide about 680 ticks per revolution. This level of

precision is important for the Pulse Width

Modulation (PWM) and Proportional Integral

Derivative (PID) functions to control HERMES’

speed. Despite the level of precision provided by

both of these motors, there is still unwanted

movement as the agent travels through the maze.

This problem is somewhat mitigated by

application of the BN005 IMU. An IMU provides

the agent with useful information such as gyroscope,

angular, and rotational acceleration. The IMU helps

the agents move in straight lines without deviating

due to discrepancies in the continuous servo motor

tuning. By detecting for a sudden angular

acceleration while performing a specified

movement, the motors can use the information

provided by the IMU to correct motor rotation speed

and return to a best course for optimal completion

time.

Controlling the motors has generally been

straightforward while using Python. Controlling and

correcting their movement using encoders and

sensor data is a different story altogether. There have

been various techniques used such as wall following,

“bounce-back” correction, and more, but the most

effective seem to be to use an advanced variation of

“bounce-back” correction (for the v12 DC

HERMES) and simple step correction (for v13

Stepper HERMES).

The version 12 of HERMES uses DC

motors as well as sensors which help provide data

with which to ensure straight line movement. The

sensors provide data when the agent is drifting to

one particular side, thus setting off the IR sensor set

to a specified distance. These sensors coupled with

the magnetic encoders allow HERMES to determine

when it is drifting towards a wall and then employ

the encoder data to perform a PID calculation to

correct its motor speeds and return to a straight line

path. The PID calculation helps the MIND send out

appropriate PWM signals to correct the motor path.

For example, if the agent is drifting left, the left

14

motor would be sped up, while the right motor is

slowed down to provide the necessary path

correction. The IMU is also very effective in helping

HERMES determine when it is drifting before the IR

sensors are triggered.

The stepper version of HERMES (v13)

employs a similar method, but instead of using

PWM signals the agent simply reverse specific

numbers of steps based on the amount of correction

needed by either the left or right motor.

X. DEPLOYABLE PROTOTYPE STATUS

For the current subproject and the final work

for the year, this team will discuss the deployable

prototype status of the HERMES model in the context

of the 2018 design contract. To simplify the

discussion, this section will talk about the three main

features and then their integration with each other.

A. The Mind

This feature was given three primary

requirements by the 2018 design contract: Q-learning

implementation, maze solving ability, and the design

of several Q-learning efficiency upgrades.

The Q-learning implementation was

successful very early on in the semester. The design

used the restrictions of the Micromouse competition to

develop a reward matrix wherein the elements of the

desired goal at the center of the matrix were placed at

the highest values and all concentric ‘rings’ of the

matrix extending to the borders were given a

decreasing reward value gradient – shown in Figure 9.

Figure 9. Reward Matrix

The Q-learning algorithm used the reward

matrix heuristic to determine which direction it should

travel in to reach its goal. Q-learning was thus

implemented.

A simulation was designed to allow a

simulated HERMES to travel in mazes far larger than

the real world maze this team used for testing the

robotic model. The simulated model always reached

the goal, as expected, meaning that the maze solving

feature was fully developed.

Efficiency upgrades were necessary in order to

account for some of the wasted time spent revisiting

dead ends and corridors, and time spend going back

and forth within corridors. These features were fully

implemented, along with additional upgrades to make

finding the goal a shorter process as well.

B. The Body

This feature had two primary requirements,

which are key to being able to navigate an actual

maze: horizontal movement and clean ninety degree

turns.

The design of the chassis is important for

these two things – for example a larger pair of wheels

makes more precise motion easier to attain, and wheels

placed approximately in the center of the robot allow

ninety degree turns to occur in the center of maze cell.

These considerations were kept in mind with later

physical models.

This body feature, while physical, occurs

primarily in software through PID controllers. Straight

motion was achieved through the use of encoders.

Every tick of the encoder is recorded through

hardware interrupt functions, and the PID controller

adjusts motor speeds to account for differences in the

speed of the wheels. This function makes use of a

master and slave model, where one motor is given a

fairly constant speed and the other must adjust to meet

that speed. The robot moves very straight now, thus

the straight movement requirement is met.

Ninety degree turns occur within a PID

controller as well – this one using an IMU to

determine absolute orientation and encoders to make

the wheels turn at the same speed. Ninety degree turns

have been achieved, and not only that but ninety

degree turns relative to starting position have been

15

achieved too. This means any error accumulated upon

stopping the robot is accounted for. This requirement

was met.

C. The Sense

This feature allows the HERMES Mind to

detect obstacles and walls in the real world. The

requirements for this particular feature were in wall

detection, wall avoidance, and end detection.

All of these requirements have been met by

using digital IR sensors. Four such sensors are

calibrated to detect walls on all four sides, detecting up

to half a cell away to ensure wall detection and avoid

detecting walls in another maze cell.

Three sensors are calibrated for very close

range wall detection. Two of them detect walls on the

front left and right ends to tell HERMES that it is

about to hit a wall on each side, while the one in the

front tells HERMES that it is about to run head on into

a wall.

These sensors work together to accomplish all

sense features required by the 2018 design contract.

XI. PROTOTYPE MARKETABILITY

The HERMES deployable prototype would

need a user interface to be a marketable device. The

amount of work required to achieve this module is

three to four months of integration. The hardware will

need an upgraded chassis material, similar to ABS

plastic. Sensors, such as IR and IMU, will need to be

embedded inside the PCB design. And most

importantly, the user interface needs to be

accomplished by adding a touch screen or keypad onto

the system to allow students to interact with

HERMES. To accommodate the newly added

hardware, the software must also be updated,

especially for the user interface module. The software

will include prompting the user to start the program

and run it for a certain time before it stops. But the

interface would also give feedback to the user for how

HERMES makes decisions when roaming around the

maze.

XII. CONCLUSION

The spring semester of Senior Design has

been spent developing a tool to help mitigate the

falling Math and Science literacy levels in America.

In order to achieve this, a product with AI and

Learning based robotics had to first be developed.

Using the IEEE Micromouse competition as

a framework within which this team could develop a

product (HERMES) has been challenging but has

proved to be perfect for the desired end product. The

semester long exploration into robotics and applying

AI to them appropriately has provided useful

information about how to develop a cost-effective

tool to increase k-12 Math and Science literacy

levels.

In developing HERMES to solve the

Micromouse maze, many discoveries have been

made about motors (Steppers, DC, Servos), sensors

(IR, Sonar, Proximity, IMU), and Control systems

(PID, PWM). This information has been effective in

helping this team developing an agent to solve the

Micromouse competition, and has also provided

useful in determining the best parts (cost-effective

vs. performance).

The thirteen different builds of HERMES,

some of which are show in Appendix H, have shown

this team that developing a physical agent capable of

using the sensors available to properly navigate and

record the maze is a process that is more or less the

same every time. Starting with high quality

components is helpful, but difficult with a budget

that is never large at any given time.

The Python based Mind will work with any

hardware system as long as the control functions for

eighteen centimeter forward movement and ninety

degree turns exist. Integration of the maze solving

algorithm into a hardware system is as simple as

making those two control functions for movement.

Despite completion of the Mind (maze solving

algorithm based on Q-Learning) early on in the

spring semester, finding reliable motors that were

capable of performing precise movements for the

required movements made this project a semester-

long endeavor.

16

After finally developing two different agents

with precise and accurate controls, it was relatively

easy to integrate the Mind (Q-Learning algorithm).

The agent is using Q-Learning principles and the

related reward matrix to influence its decisions (to

turn or continue straight) whenever possible.

XIII. REFERENCES

[1] Gregory Camilli, Explaining the

National Assessment of Educational Progress

2013-2015 Mathematics Decline.

https://nsf.gov/awardsearch/showAward?AWD_I

D=1641257&Historica lAwards=false

[2] Drew Desilver, U.S. students’

academic achievement still lags that of their peers

in many other countries.

http://www.pewresearch.org/facttank/2017/02/15/

u-s-students-internationally-math-science/

 [3] U.S. Department of Education,

Institute of Education Sciences, National Center

for Education Statistics, National Assessment of

Educational Progress (NAEP), 2009 and 2015

Science Assessments.

https://www.nationsreportcard.gov/science_2015/

#gaps/chart_loc_1?gra de=12

[4] Sutton, Richard S. and Barto, Andrew

G., Reinforcement Learning: An Introduction,

MIT Press, Cambridge, MA, 1998.

[5] Delony, David, Micromouse Robot

Solves Maze in an Instant. Walyou.

http://walyou.com/robot-mouse-maze/

[6] Pozos-Estrada, Adrián, Gómez,

Roberto, and Hong H.P. Use of Neural network to

predict the peak ground accelerations and pseudo

spectral accelerations for Mexican Inslab and

Interplate Earthquakes. March, 2014.

http://www.scielo.org.mx/scielo.php?script=sci_ar

ttext&pid=S0016-71692014000100004

[7] Araokar, Shashank. Visual Character

Recognition using Artificial Neural Networks.

https://arxiv.org/ftp/cs/papers/0505/0505016.pdf

[8] Sites.ieee.org, 2018. [Online].

http://sites.ieee.org/r1/files/2013/03/2013-

Region1-Micromouse-Competition-Rules.pdf

[9]

http://automouse.sdsu.edu/images/block%20diagr

am.jpg

[10]

http://eeshop.unl.edu/pdf/Stepper+Driver.pdf

http://www.pewresearch.org/facttank/2017/02/15/u-s-students-internationally-math-science/
http://www.pewresearch.org/facttank/2017/02/15/u-s-students-internationally-math-science/
http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0016-71692014000100004
http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0016-71692014000100004
http://sites.ieee.org/
http://sites.ieee.org/r1/files/2013/03/2013-Region1-Micromouse-Competition-Rules.pdf
http://sites.ieee.org/r1/files/2013/03/2013-Region1-Micromouse-Competition-Rules.pdf

17

XIV. GLOSSARY

Artificial Neural Network (ANN): A model for

learning algorithms that mimics the design of biological

brains.

Optical Character Recognition (OCR): A system

which inputs an image of text and determines which

characters are present.

 Field Programmable Gate Array (FPGA): A piece

of hardware used for testing Verilog hardware

description language modules.

Artificial Intelligence (AI): A general term for any

system that adapts to inputs to generate better outputs.

Better in this case is defined by the designer.

Activation Function: A function used to collapse

values being input into a system to a number between 0

and 1 or any other range of values desired by the

system.

Micromouse: An IEEE competition standard which

defines a maze through which robots explore and

discover the end as confined by IEEE rules.

APPENDIX A-1

XV. APPENDIX A. USER MANUAL

There is not a specifically designed User Interface for our HERMES agent at this time because the

goal of this semester was to develop the AI/Learning based robot which would then be equipped with

additional tools and features such as a User Interface to assist K-12 students and educators.

However, despite this, there are clear modular functions which allow the HERMES agent to be

controlled to high level of precision. Thus a prospective user can specify the exact amount of distance they

would like to see HERMES travel in any specified direction, or perform certain movements such as turning in

place. These can be done on both version 12 (DC motor based) by setting distances and on version 13 by

setting the desired number of steps to go in any direction.

These functions also allow the user to also specify the learning parameters used by the Mind, if they

would like to change any specific aspect of the Q-Learning efficiency and/or fiddle with the level of

indecisiveness.

APPENDIX B-1

XVI. APPENDIX B. HARDWARE BLOCK DIAGRAM

Figure 10. Hardware Block Diagram (Adapted from [9])

APPENDIX C-1

XVII. APPENDIX C. SOFTWARE BLOCK DIAGRAM

Figure 11. Software Block Diagram

APPENDIX D-1

XVIII. APPENDIX D. MECHANICAL DIAGRAMS

There were no relevant drawings, load calculations, or other documentation for the chassis build as it

was done as an iterative process based on the varying parts used throughout the semester. However, the DC

motors w/ encoders (version 12) and micro-steppers (version 13) do have some relevant documentation as seen

below.

Figure 12. Wiring Diagram for Stepper [10]

Figure 13. H-Bridge Wiring Diagram [10]

APPENDIX E-1

XIX. APPENDIX E. VENDOR CONTRACTS

This team received no help from vendors or off-campus agents in completing this project. However,

there are organizations in the greater Sacramento area that are involved with robotics, education, and IEEE.

These organizations, such as Schilling Robotics-FMC Technologies, could have proven to be useful resources.

APPENDIX F-1

XX. APPENDIX F. RESUMES

APPENDIX F-2

APPENDIX F-3

APPENDIX G-I

XXI. APPENDIX G. WORK BREAKDOWN STRUCTURES

XXII.

Figure 14. Work Breakdown Structure: FPGA Model (Part 1)

APPENDIX G-2

Figure 15. Work Breakdown Structure: FPGA Model (Part 2)

APPENDIX G-3

Figure 16. Work Breakdown Structure: OCR Model

APPENDIX G-4

Figure 17. Work Breakdown Structure: HERMES Model

APPENDIX H-1

XXIII. APPENDIX H: HERMES MODELS AND IMAGES

APPENDIX H-2

APPENDIX H-3

APPENDIX H-4

