
Final Project Documentation -Team 8
Adrian Barrera, Brandon Buck, Kevin Crowe, Yutthachat Thao

Project Green Wall
April 27, 2020

Professor Tatro

College of Engineering and Computer Science, California State University, Sacramento
6000 J Street, Sacramento, CA 95822

AdrianValentino@csus.edu
BrandonBuck@csus.edu
KevinCrowe@csus.edu

YutthachatThao@csus.edu

TABLE OF CONTENTS
Table of Content………………………………………………………………………………....i
Table of Figures…………………………………………………………………………………ii
Table of Tables………………………………………………………………………………….iv
Executive Summary……………………………………………………………………………..v
Abstract………………………………………………………………………………….………1
Keyword Index……………………………………………………………………….………….1
Introduction………………………………………………………………………….…………..1
Societal Problem………………………………………………………………….……………..2
Design Idea………………………………………………………………………….…………..4
Funding………………………………………………………………………………….……..10
Project Milestones……………………………………………………………………….……..11
Work Breakdown Structure……………………………………………………………….……12
Risk Assessment…………………………………………………………………………..…....15
Design Philosophy………………………………………………………………………….….20
Deployable Prototype Status………………………………………………………….………..24
Marketability Forecast………………………………………………………………..………...26
Conclusion…………………………………………………………………………..………….27
References……………………………………………………………………………...……....28
Glossary………………………………………………………………………………….……..29

Appendices
Appendix A: User Manual…………………………………………………………………....A-1
Appendix B: Hardware……………………………………………………………………….B-1
Appendix C: Software………………………………………………………………………..C-1
Appendix D: Mechanical……………………………………………………………………..D-1
Appendix E: Vendors………………………………………………………………………....E-1
Appendix F: Resume………………………………………………………………………....F-1
Appendix F: Using the System………………………………………………………………G-1

i

TABLE OF FIGURES
Figure 1: Agricultural Producer to Consumer Logistic Cycle……………………………………3
Figure A1: Corian Enclosure…………………………………………………………………..A-2
Figure A2: Two Parts Nutrient Solution……………………………………………………….A-2
Figure A3: Net Pots…………………………………………………………………………....A-2
Figure A4: Green Rockwool…………………………………………………………………..A-2
Figure A5: Rockwool in Net Pot……………………………………………………………....A-3
Figure B1: Electrical Connection…………………………………………………...…………B-1
Figure B2: Raspberry Pi 3……………………………………………………………………..B-2
Figure B3: DHT22 Specification……………………………………………………………...B-3
Figure B4: DHT22 Sensors…………………………………………………………………....B-3
Figure B5: UV Sensor GUVA-S12SD………………………………………………………...B-3
Figure B6: Mcp3008 Wiring to Pi…………………………………………………………….B-4
Figure B7: Mcp3008…………………………………………………………………………..B-4
Figure B8: Gravity Analog pH Sensor………………………………………………………. .B-5
Figure B9: 4 Relay Module…………………………………………………………………....B-5
Figure B10: EC Sensor Setup………………………………………………………………….B-6
Figure B11: 100 Watts 12 V Power Supply…………………………………………………...B-6
Figure B12: LM295 Buck Converter………………………………………………………….B-7
Figure B13: Kingled 600 Watt Grow Light…………………………………………………...B-7
Figure B14: Peristaltic Pump………………………………………………………………….B-8
Figure B15: Main Pump 12V Submersible…………………………………………………...B-8
Figure B16: Tsl2591 Visible/Ir Sensor………………………………………………………..B-9
Figure B17: TCA9548A I2C Multiplexer…………………………………………………….B-9
Figure B18: pH Sensor Stability over a Day………………………………………………...B-10
Figure B19: pH with EC Sensor Stability…………………………………………………...B-11
Figure B20: EC with pH Sensor Stability…………………………………………………...B-11
Figure B21: EC Stability over a Day………………………………………………………..B-12
Figure B22: DHT22 Humidity Sensor……………………………………………………....B-12
Figure B23: DHT 22 Temperature Sensor…………………………………………………..B-12
Figure B24: Temperature Accuracy Test Result…………………………………………….B-13
Figure B25: Angle_Veg Flat………………………………………………………………...B-13
Figure B26: Veg Flat Average……………………………………………………………....B-14
Figure B27: Veg-45 Angle Test……………………………………………………………..B-14
Figure B28: Veg-60 Angle Test……………………………………………………………..B-14
Figure B29: Bloom Flat Angle Test………………………………………………………...B-14
Figure B30: Bloom-45 Angle Test………………………………………………………….B-14

ii

Figure B31: Bloom 60 Angle Test…………………………………………………………..B-14
Figure B32: Bloom Lux Test………………………………………………………………..B-15
Figure B33: Bloom Lux Test 2……………………………………………………………...B-15
Figure B34: Veg Lux Test…………………………………………………………………...B-15
Figure B35: Bloom and Veg Lux Test………………………………………………………B-16
Figure C1: Master.py and Light.py…………………………………………………………..C-1
Figure C2: Water_pump.py…………………………………………………………………..C-3
Figure C3: Sensors.py………………………………………………………………………..C-3
Figure C4: Send_data.py……………………………………………………………………..C-5
Figure C5: Env_reg.py…………………………………………………………………….....C-5
Figure C6: Master.py - Popen()..C-6
Figure C7: Master.py - Runprog Example………………………………………………...…C-6
Figure C8: Master.py - poll()...C-6
Figure C9: Master.py - request………………………………………………………….……C-7
Figure C10: Request - put………………………………………………………………..…..C-7
Figure C11: Login Logic……………………………………………………………………..C-8
Figure C12: Login Pseudocode………………………………………………………………C-9
Figure C13: User Profile………………………………………………………………….…C-10
Figure C14: Community Contact Logic………………………………………………….….C-11
Figure C15: Layout Pseudocode…………………………………………………………….C-12
Figure D1: Construction……………………………………………………………………...D-1
Figure D2: Tape Compression………………………………………………………………..D-2
Figure D3: Sanding…………………………………………………………………………...D-3
Figure D4: Brace Cutting……………………………………………………………………..D-4
Figure D5: Powder Coating…………………………………………………………………..D-4
Figure D6: Dimensions……………………………………………………………………….D-5
Figure G1: Plants after the Transplants……………………………………………………….G-1
Figure G2: After setting in Designated place………………………………………………....G-2
Figure G3: Day 4 after the Transplant………………………………………………………...G-3
Figure G4: Day 5……………………………………………………………………………...G-4
Figure G5: Day 6……………………………………………………………………………...G-5
Figure G6: Day 9……………………………………………………………………………...G-6
Figure G7: Day 10…………………………………………………………………………….G-7
Figure G8: Day 18…………………………………………………………………………….G-8
Figure G9: Day 25…………………………………………………………………………….G-9
Figure G10: Day 27…………………………………………………………………………...G-10
Figure G11: Final Day………………………………………………………………………..G-11

iii

TABLE OF TABLES
Table I: Total Cost of the Project……………………………………………………………..11
Table II: Fall Hours Breakdown……………………………………………………………....13
Table III: Spring Hours Breakdown…………………………………………………………..13
Table IV: Group Meeting Hours Breakdown………………………………………………....14
Table V: Risk Matrix………………………………………………………………………….16
Table B-I: pH Sensor Test………………………………………………………………......B-10

iv

EXECUTIVE SUMMARY

We are making an automated indoor
aeroponics system that will solve many of the issues
with the current farming model.

Currently, farms for produce have gotten
larger and larger, and farther away from where the
produce is actually consumed. This is due to ever
increasing populations. The problem with this is that
a lot of money is spent on transporting and storing
produce. We came up with an idea that would put
food production right in the customers home. This
would cut out all transportation costs and ensure that
the customer gets the freshest produce possible.
People who are trying to eat more healthy or cooks
looking for fresh herbs would benefit greatly from
such a system. We would have to address various
issues when taking on this problem. We have to
create a system that can fit in a room easily, be
completely contained, quiet, help the user grow the
plants, and create an overall system that is automated.
We would create a contained system that has various
sensors like temperature, humidity, and light. It
would require minimal user interaction like being
able to go at least one week between fill ups. Once
we came up with our societal problem (the current
farming model), and our design idea (an automated
aeroponic system) we have a few more things to
address.

We detail out the complete budget for the
project. This includes all the parts we bought and
what was donated which total up to about $1100. This
would have been hard on us if we did not have
donations from outside sources. As we did not predict
accurately the cost of the whole system, we were left
relying on those outside sources. In this report we
detail our work breakdown. We had 5 major features
that we wanted which are that the system can collect
environmental data; it requires little user interaction;
it can encourage community interaction; it is
automated and has little impact on the room

environment. We split this into small features and
tasks that will allow us to divide up the work. This
work breakdown structure is an analysis of the major
things we had to accomplish and which group
member worked on the task. Along with this we
detail the total hours spent on each section by the
group members. Comparing ourselves to other teams,
we spent less hours in total. However, we were ahead
in the first semester as we were able to easily assign
everyone with the task that they were familiar with.
In total, we spent 880 hours on the project which
included our group meetings.

Next we analyze the risk associated with the
project. Everything from minor things like
component failure all the way to natural disasters
shutting the school down. It is critical to plan for
problems so that if they occur we will be ready and
keep the project moving forward.Then we list out in
detail every metric our design must satisfy. We were
able to meet all the measurable requirements through
careful selection of parts and the group’s
communication. All of our testing data is laid out to
prove we accomplished everything we set out to do.
We tested many of our components such as the
sensors and apps to know that they worked as
intended.

Finally we explain our entire design
philosophy for every component and then analyze
how our product fits in the market. Our system can fit
pretty well into the market if we keep doing tests with
our system. Although our system is viable, it still has
a lot to go through to actually be a great product as
they are still minor issues with bugs in the coding and
factors that we did not account for such as the
lighting issues and even leaks in our system.
However, our system is able to meet all its
requirements and with the small fixes, we can turn it
into a viable product.

v

Abstract ​— Team 8 has proposed a solution to the
problem of access to fresh produce due to the ever
growing urban population: a smartphone
connected indoor aeroponics system to address the
issue of accessibility to fresh produce in urban
areas. This system will allow users access to their
own personal garden. This will help reduce the
need for groceries. In turn, it will reduce the
amount of food miles that the produce would have
to travel if it is mass grown in a rural area away
from the urban population. This system is cost
effective compared to similar systems on the
market. As we spent about $1100 for the whole
system, and it can grow up to 12 plants unlike the
ones in the market right now. They cost in the
upper thousands while only able to support a
small plant. This is achieved through
environmental sensors like humidity, temperature,
and light are integrated with a raspberry pi to
create an automated growing system. As we went
through the process of selecting the sensors that
are cost effective and materials that we knew
would last, we are able to build a system that can
compete in the market. The system requires little
user interaction by having an app that facilitates
the growing process. All in all, our system was
able to keep plants alive for 2 weeks. With further
tuning, we can fix our shortcomings and have our
prototype compete in the global market.

Keywords​—​aeroponics, urban agriculture, food
desert, farm, food shortage

I. INTRODUCTION
As the urban population continues to increase

rapidly, people are in need of a way to get fresh
produce. Therefore, we decided that we will look to
tackle this societal problem. The problem we decided
on was the lack of availability of healthy food in
urban areas. From there we thought of the necessary
features our project would need to have to address
that problem. We decided on an automated, indoor,

aeroponics system that would be low-experience
friendly. It would also have the capability, through an
android application, to read relevant sensor
information in close to real time and allow users to
trade crops. With this system people will be able to
grow their own fresh produce in their home.
Although our design is small, we make up for it with
our simple trading system. We plan for there to be
many users of our system, and they can do some
trading of surplus to help with their needs.

We described our funding for the project over
the course of the two semesters as well as the simple
total for parts on the final machine. We got funding
of about $1100 in which $560 came from us. We
were able to receive this funding from one of
teammate’s workplace. This was very helpful for us
to complete the project because we did not anticipate
that the cost was going to be near the thousands.
However, we did plan on spending 150 each which
with the outside fund allowed us to meet our budget.

 With the design idea done we went on to plan
the tasks that would need to get done over the two
semesters to make sure our project was done in time.
We first looked at the milestones our project would
have over the time. These milestones included the
important dates where the project would need to be
done but also the assignments we would need to
manage while we get the project work done. With this
in mind we split the mechanical. hardware and
software work between the four of us. Adrian
designed the smartphone application and supporting
database. Brandon designed the structure for and
planned the physical layout of the device structure.
Kevin was responsible for the lighting and
automation programs. Yutthachat was responsible for
the sensors and the sensor code. The planning for the
first semester focused around getting our deployable
prototype done for the senior showcase. We did our
best to complete as much as we can because we want
to prove that we can succeed in our project. The
second semester was dedicated to fixing any

1

problems with, and upgrading, the design for the
senior showcase. We redid our wiring and upscale our
system. This allows the system to now support 12
plants. Furthermore, we got new lighting that can
easily supply 12 plants with enough sunlight.

We next look at the risks of the assignment
for the user and for ourselves and what we did to
mitigate the harm if it exists. We planned for
situations that are similar to the past such as the
Paradise fire. This risk prevention strategy allowed us
to migitage the Covid 19 pandemic as we had already
moved all our material from the lab. From there we
go into the reasons for designing our system the way
it is and the reasons for using certain
materials/components. This ranges from buying the
correct sensor such as the DHT22 temperature and
humidity sensor. Also, getting a submersible sensor
of the Electrical Conductivity and pH sensor. We also
picked building material such as corian as it is sturdy
and will be perfect for our project. From there we
look at the status of our project here at the end of the
year and where a product like ours, given some
changes in manufacturing, would sit in the market.
We still need to fine tune the system, but it is still
working as we have already grown a few plants.

II. SOCIETAL PROBLEM
Our design was created to address the issue of

getting healthy food into urban areas and to join the
trend toward urban farming as a means to fix other
problems within the food industry. People in heavily
populated urban areas suffer from being in what are
called “food deserts”, places where healthy food is
less accessible than cheaper and unhealthier options.
Making healthy food more available in urban areas,
places where people eat food that comes from far
away from them, could help to tackle issues of
obesity or lack of nutrition. There is also an
upcoming trend toward the idea of urban farming,
farming in areas inside a city to cut out the cost and
pollution associated with transportation. Joining on

this trend could help to make healthier food more
available in urban areas with the added benefit of
reducing pollution.

A. U​RBAN​ F​ARMING

The idea of urban farming has predated the
now normal method of farming, industrial farming.
People have been farming since the Neolithic Era,
from seven to ten thousand years ago. The rise of
farming allowed people to stay in one geographical
area, as they could grow the food that they needed,
leaving behind the hunter-gatherer lifestyle. At that
time, humans were farming crops such as wheat, flax,
and barley. For the following few millennia,
agriculture saw only small improvements such as
more efficient irrigation and crop cycling. However,
things began to rapidly change in the 18th century,
when the technology of agriculture grew to include
tools such as the mechanical combine harvester. In
the early 1900s, machinery completely replaced
horse-drawn plows, with tractors becoming
increasingly popular. Not only was this machinery
making farmer’s lives easier, they were also allowing
farms to be more productive, leading to the perfect
conditions for population growth.

As time went on, and the population grew, so
did our technology. We saw the rise in urbanization,
and the development of vast cities. The rise of the
automobile and other modes of transportation, along
with refrigeration, changed agriculture forever. These
technologies further allowed people who lived in
cities to not need to rely on locally grown food as
much, since transport was becoming a more viable
option. With the growing efficiency of agriculture,
more and more people were able to not have to learn
any agricultural skills, and focus their attention
elsewhere. Cities provide opportunities for people
that had never been available to people before such as
new professions, global trading, and new means of
entertainment. With the creation of cities, though,
came the reliance on others for food, and the idea of

2

making your own food, especially in an urban
environment, resurfaced.

The usefulness of urban farming is well
known, as seen during World War II, many resources
and labor in the United states were put into the war,
creating a shortage in food ration. To combat this, the
government encouraged citizens to plant a “Victory
Garden”. These gardens used backyards, empty lots,
and rooftops to grow their own food. At its height, the
gardens were able to produce 40% of all vegetables in
the United States [1]. As society continues to grow,
many prominent people of our civilization are starting
to embrace this idea of a personal garden that can
provide food for the family. Former First Lady
Michelle Obama started a garden in the White House.
The United States Secretary of Agriculture
encourages many citizens to join in what is called the
“People’s Garden” [1].

There’s no such thing as a free lunch. Urban
agriculture, while growing more popular, has many
obstacles to overcome. The main issue that our team
discovered is the barrier to entry when it comes to
growing your own food. A person wanting to grow
their own food must not only do extensive research
on the plants that they want to grow, but also what
they need and build their own system or to buy a
complete system. Even this choice, though, is made
uneasy because there are different growing methods:
soil, aeroponics, and hydroponics. The second issue
was the cost of many of the “all-in-one” systems
available on the market, a problem we go more in
depth on in the market review section of this paper.
The last major issue is the one of physical space;
urban farmers are in urban areas. In urban areas,
especially dense city centers, space is expensive.
Look no further than San Francisco, a Californian
city where space is a luxury not easily afforded: the
median price per square foot of space is $1,108 [2].

B. F​OOD​ D​ESERTS

One of the main problems that our team set
out to tackle is the problem of food deserts; we saw
the distance between consumers and producers of
food to be a problem. Typically, as shown in Figure
1, a person who wants to buy produce has a few
choices when it comes to how: farmer’s markets,
supermarkets, or from a shipping company directly.
No matter the avenue, the process is cumbersome at
the least. A customer can sacrifice convenience by
going to a farmers market, or they can go to a
supermarket where the produce may not be fresh or
be overpriced. The problem is multiplied the larger
the city in question gets, as the agricultural lands that
support the city are even farther away. For example,
New York City and its surrounding areas are highly
urbanized, and have huge populations. To support
these populations, consumers must rely on food being
transported in from distant farms.

Figure 1: Agricultural Producer to consumer logistic cycle
adapted from [3]

Regardless of the source, the traditional model of
food production leaves at the mercy of the
agricultural producer, transporter, supermarket, and
any other intermediate entity. If there is a problem
with any number of these intermediate entities, the
consumer suffers. For instance, if the price of fuel
skyrockets, it costs more to transport any food from
the producer to the consumer’s table. This can lead

3

the consumer to choose cheaper, more processed food
in response to the increasing prices for fresh produce.

C. E ​NVIRONMENTAL​ B ​ENEFITS

Key benefits of moving food production
closer to home include the reduction of food waste,
the reduction of plastic waste, and reducing carbon
dioxide emissions in already congested areas. Cutting
out the transportation aspect of the food logistic cycle
directly leads to less carbon dioxide emissions by
transportation trucks, and industrial machinery used
to process and package the food.

The reduction of carbon dioxide output of the
food production industry and increase in plant life
around a city has the added benefit of reducing
temperatures in the city. Meharg [2] and Ackerman
et. al. [3] refer to the “urban heat island” effect of big
cities. Waste heat coming as a result of having such a
dense population in a landscape of concrete and glass.
This is a problem of cities that is a benefit to urban
farming, “waste heat that all cities generate can be
harnessed”[4]. All the activities in a city such as
driving, production of goods, and usage of energy
adds energy to the environment. These energies,
instead of being released into the surrounding, are
circulated in the city’s microsystem. The
microsystem consists of the greenhouse gases emitted
in the city. In addition, all the buildings and materials
in a city are absorbing the heat of the sun. Without a
way to use up the 2 energy it is then trapped in the
city for the day, “cities are typically found to be
warmer than other areas, anywhere from 0.6°C to
12°C warmer”[4]. However, with gardens throughout
a city, plants can absorb that sunlight with a way to
convert that energy into food.

When there is an abundance of aged food at
any point in the traditional logistic cycle, the entity
tends to throw out the food because it either can’t
sell, won’t sell, or to make room for another
shipment. This incredible amount of food waste is not
only bad for the environment through wasted water

and pollution growing food that will be discarded, but
also creates a huge amount of packaging waste. Items
such as strawberries are kept in a plastic enclosure,
where other items are wrapped, such as heads of
lettuce. According to the United States Food and
Drug Administration, food waste is estimated at
between thirty to forty percent of the food supply,
corresponding to approximately 133 billion pounds
and $161 billion worth of food in 2010 [5].

D. R​EVISION

With the start of the second semester of the
Senior Design course, our team took the broad
societal problem that we began with, and refined it.
We took a step back and reevaluated the societal
problem, and how our design best fits in the overall
solution. We realized that there is no silver bullet to
the many problems surrounding the agriculture
industry, Our design, as mentioned in the next
section, addresses the problem of accessibility to
fresh produce to those in urban areas. Where we had
to scale back our expectations, though, was the
design’s ability to supply enough food for a
community to thrive; our design focus is on making
the process of growing more accessible, and helping
ease the reliance on supermarkets. Overall, the core
of our goals have not changed, but the extent at which
we expect the design to have an impact went through
revision.

III. DESIGN IDEA
In order to address our societal problem our

team created a set of features our design would need
to be a viable solution. We started with the idea that
the growing device would need to have sensors to
gather all the relevant data required to grow food. We
also decided that the process of growing the food
should be primarily automated so people who aren’t
seasoned food growers can still work the device. The
device would also have to require little interaction
from the user so the device can run for long periods
of time. Further we decided that the device should
connect to other users through a smartphone

4

application. This could allow people to trade food,
fostering community and adding the option for
variety in the person’s diet. Lastly we wanted the
device to have little impact on the environment it
would be put in, not causing noise or being confined
to only certain allowable areas.

A. S​YSTEM​ C​OLLECTS​ E​NVIRONMENTAL​ D​ATA

After discussing what our system should be
able to do, we decided that our design will have a
way for the user to see the data to help grow the
plants. We initially thought of 5 environmental data
that we need to collect in order to help the user grow
their plants. Also, the data can also be used to control
the automation of the plant. These five environmental
data include: the lights, humidity, temperature, pH,
and electrical conductivity. After the first semester,
we looked backed at our data collection and tried to
see if we needed to change anything for the data
collection. However, we believed that the data that
we are collecting are sufficient for what we aimed to
do with the design.

1) L​IGHT​ S​ENSOR​: ​For the first semester we just
planned to use a general light sensor, something able
to measure light intensity so that there could be a
range of known light levels for the user to utilize. We
also found it important that the sensor could measure
UV light as the sun and many grow lights put off a
good deal of it. To understand the amount of light our
device would need to give off we looked to online
sources to get an idea of the amount of light required
for different types of foods. The most used metric
used seemed to be Watts per square meter (W/m^2),
Online sources give a recommendation of 32
(W/m^2) [6]. We decided to use the range of 25-40
(W/m^2), making our device suitable for growing
lower light level food. This value would help us
choose the correct power of light since it should just
require knowledge of how big the grow space is.

There were several problems we encountered
when trying to work this value into the design. Firstly

most sensors output values in lux, the conversion
from (W/m^2) to lux seemed to vary by the spectrum
of the grow light used. Secondly, LED grow lights do
not advertise the power required to operate them, they
advertise their equivalent output to a High Pressure
Sodium (HPS) grow light. The LED grow lights often
operate at much lower power than is advertised. A
third related problem was that distance from the grow
space was not taken into account with the (W/m^2)
metric. All of these facts made it hard to confidently
design a lighting system that wouldn’t burn the plants
or starve them of light. Due to this, for the second
semester the metric for the sensor was changed to a
range of Photo-Synthetic Photon Flux (PPFD).

While this metric had the same problem as
(W/m^2) in that it still had to be calculated from the
lux value sensors, it was far easier to compare grow
lights and to be sure plants were getting the right
amount of life. PPFD measures the amount of light
photons that hit a square meter of area [7]. It is a very
direct way of measuring light that allows for
considerations like distance and different lights. Most
LED grow lights even give their tested PPFD values.
We found after research that a good range would be
200-600 PPFD, again covering low light plants like
lettuce and herbs.

2) H​UMIDITY​ S ​ENSOR​: ​The second data that we
plan to use and collect is the humidity. At the
beginning of the semester, we believed that collecting
the humidity of the ambient environment and the
humidity of the inside of our roots will help us
control the system. The humidity within an aeroponic
on average should be near the 100% relative
humidity. With this information, we can use the
humidity data gathered to check if the plants are still
getting their water and nutrients.

Therefore, when deciding what would be the
appropriate humidity that our sensor should be able to
measure, we can use what we know initially. Since
we knew the humidity that we were trying to

5

measure, we can search for a sensor that can measure
a relative humidity of 40%-100%. As stated in our
measurable requirements, the humidity sensors
should be able to measure a relative humidity of
40%-100% with the temperature between 60F - 90F.
We put the temperature requirement with the
humidity section because the humidity sensor is only
able to measure the relative humidity of a
surrounding and not the absolute humidity. Therefore,
it needs a temperature requirement to accurately
measure the relative humidity.

We decided that since our design is mostly for
internal use within a household, the temperature of
the environment will not change drastically.
Therefore, the temperature will always be around
60F-90F. Furthermore, the design needed to measure
two different humidity: one for the ambient
environment and the one that is measuring the
environment within the design box. After the first
semester, we learned that our design contract for the
humidity sensor is still valid as we did not change
anything for the second semester. The requirements
are still the same as the first semester meaning that
we probably knew a bit about what we were doing for
the environmental data collection.

3)T​EMPERATURE​ S​ENSOR​: ​Another data that is
closely aligned with the humidity data is the
temperature data. At the start of the semester we
knew that we needed to measure the temperature for
our system because it is an easy data to collect and
may be useful for the user if they plan to use this
design outside. We decided that the design will be
able to measure the temperature within the box and
the ambient temperature. Since we agreed that our
design is mostly for indoor use, we plan to fully use
the fact that the temperature within a household is
near room temperature which is around 70F.
Therefore, we knew that the temperature will only
change a little and created the measurable
requirements that is from 40F-110 with a precision of

+- 2F. This will give us a lot of headroom for the
temperature within the box.

Within the box, we plan on running the pump
constantly or at a quick interval to maximize the
amount of water the plants will receive. Thus, the
temperature within the box may drop to near 65 or
60F. Then, according to our design requirements, our
temperature sensor should be able to measure that
temperature accurately.

After the first semester, we reviewed our
measurable requirements to see if we needed to
change anything. However, looking at how our
temperature sensor and the data it collected are, we
believed that there was no need for a change order.
The temperature that we collected was well within
what we had had hope, so we didn’t need to revise
any requirements.

4) ​P​H S​ENSOR​: ​For the pH sensor, we knew
that we needed to measure the pH of the nutrient
solution to know the effect it would have on the
plants. At the beginning of the semester, we noted
that our group does not have any one who is really
familiar with farming. The average pH need is within
5.5-6.5. Plants like more acidic soil and solutions.
With this information, we set out to find a sensor that
will meet this requirement and is well within our
budget.

Our requirement is that the pH sensor should
be able to measure the pH of the nutrient solution
from pH of 5 - 7.5 with a precision of .1. We decided
to overshoot the average pH that plants needed
because we wanted the sensor to help with the control
of the pH of the nutrient solution. The pH sensor will
have to be able to measure the pH accurately, and
then, we can use that pH value to monitor and control
the pH via a peristaltic pump.

After the first semester, we learned that our
pH sensor and its data were within our requirements.

6

We did not need to implement any pH controls for the
first semester, so we cannot determine if the pH
sensor will be able to regulate the pH of the nutrient
solution. However, we learned that the pH sensor was
able to measure the pH accurately. This was all we
needed to know to precede with the second semester.
Therefore, looking at our requirements from the first
semester, we agreed that the pH requirement is good
for the plants and our design contract.

5) ​E ​LECTRICAL​ C ​ONDUCTIVITY​ S​ENSOR​:​ The
electrical conductivity sensor or the parts per million
sensor was used to see the amounts of nutrients left
within the nutrient solution. In the first semester, we
wanted our design to be able to regulate its own
nutrient solution. This would be done if we could
measure the amount of nutrients within the solution.
We researched and found that the electrical
conductivity of a solution is able to be converted to
parts per million or we can just use the EC as a
measurement. The EC of a solution was a standard
unit of measurement for hydroponic solutions. Its
units are millisiemens/cm. We also looked at the
typical electrical conductivity of a solution and
created our design requirement based on the typical
value of EC. The measurable requirements for the EC
is to be able to measure accurately with the range of
.1 EC to 10 EC. Since the typical EC values are
between 2 to 4 EC. This requirement will allow our
sensor to measure outside the range of the typical EC
and using that information, regulate the EC of our
solution. Therefore, we decided to find a sensor that
can measure the EC of a solution.

In the first semester, we knew that we wanted
the project to be low-budget and the EC sensors that
we found online were expensive nearing the 100s.
Therefore, we decided to build our own using a
voltage divider and two probes within the solution.
This design was able to measure what we wanted but
the amount of time spent calibration and setting up
the sensor was far from what we wanted. After the
first semester, the EC sensor was still working fine

and it met all our requirements. However, it still
needs more work to calibrate it everytime we change
the structure of our system. Looking back, buying an
off-the-shelf EC sensor would have been much easier
and would have definitely taken less out of our group
in terms of time spent.

B. A​UTOMATED​ G​ROWING​ P ​ROCESS

In our design, we wanted the system to
automate the growing process of the plants. We
would use the data collected from the sensors and
control various aspects of the system to help with the
plant's growth. We concluded on three primary
regulations: the system should be able to regulate its
nutrient solution; the plants are to be misted with
nutrient enriched water; the system should be able to
control the lights.

1) ​N ​UTRIENT​ S​OLUTION​ R ​EGULATION​: ​In the first
semester, we decided that our design should be able
to regulate its own nutrient solution, so the user
would not have to worry about the plants running out
of food. The first thing we recognized was that
aeroponics will have to use hydroponic solutions as
they are basically the same thing. Since aeroponic is a
subsection of hydroponic, we needed hydroponic
solutions and a way to regulate it. We knew that we
needed to regulate the amount of nutrients inside the
solution to help the most with the plant growth.

This system control of the nutrient within the
solution would be done via a pump using the data
gathered from the EC Sensor. The user will be able to
set a threshold for when the pump should start
pumping in more nutrients. Since we are not expert in
plants or farming, we cannot give precise detail to
which EC the user should. However, the system will
have a default value for the EC threshold. This value
would be the average typical value we researched
which is at 2 EC. The system then, will help water the
plants with this solution and while the nutrient within
the solution depletes. The system will be able to add
more solutions. At first we planned on also

7

introducing a system that will control the pH of the
solution. However, looking at our design
requirements, we believed the pH of the system
would not change drastically from what it is supposed
to be. Also, the pH of the hydroponic solution is more
acidic; therefore adding more to the nutrient solution
would decrease the pH of the solution. This is okay as
plants like more acidic solutions nearing 5.5 to 6.5.
Furthermore, when the water is changed the pH will
be up toward the pH 6.5-7.5. Adding the solution at
the time will only help with the pH of solution as it
will reduce the pH of the solution toward the 5.5-6.
5 mark.

After the first semester and into the second
semester, we knew that our EC sensor was working,
and now we can work on the nutrient regulation. We
also knew that we can meet our design requirement as
we can now read the EC and make a closed loop
control to regulate the nutrition.

2) ​W ​ATER​ P​UMP​ F ​OR​ P ​LANTS​: ​Another
automation that we want is nutrient and water
delivery systems. We planned to use a few pumps to
spray the roots of the system with nutrient enriched
water. This fulfills the plants’ nutrition and water
requirements which should help them grow. In our
design contract, we stated that the user can control the
interval for the water pump. This is exactly what we
planned because we do want the user to have some
knowledge about plants to actually grow them. The
user would use an app to control the water intervals,
and the system would a default value for the water
interval. This default value is just an arbitrary value,
however it should be able to keep the plant moist and
the inside of the box at high humidity.

After the first semester prototype, we knew
that our water and nutrient delivery systems work and
we would just have to upscale. Furthermore, the
system was adjustable, so it can easily be configured
to work on a larger scale. We didn’t need to change
this requirement as it does not have an exact defined

measurable metrics, but if the design is able to output
water onto the plant, then the feature is met.

3) ​L ​IGHT​ ​INTERVAL​ C​ONTROL​: ​The last big feature
that we want our design to have is the ability to
control its own grow lights. This would be an
amazing feature to help the automation of the system
as the lights would turn on and off in accordance with
what the user wants. Again we let the user decide
how much light the plants should get because every
plant is different, and the user would know more than
us.

Similar to the water and nutrient delivery
system, we do not have an exact measurable metric
for light control. However, as long as the system can
control the light and the user can configure it, the
feature should be met. In the first semester prototype,
we were able to control the lights using the raspberry
pi and relays. This demonstrated that our feature can
be met, and in the second semester, we would be
working on making this work with the user app.

C. R​EQUIRES​ L​ITTLE​ U​SER​ I ​NTERACTION

1) W​ATER​ T​ANK​ L​AST​ ​FOR​ ​A​ W​EEK​: ​ If the system
is supposed to be in the home and user friendly, then
it must be contained and not require the user to
service it constantly. We decided that one week was a
fair time span to go in between water and nutrient fill
ups. Along with this requirement we decided that the
system can’t be hooked up to an external source. It
had to be a reservoir inside the system. This way the
user would have much more flexibility and be less of
an intrusion in the home. We had to make sure the
system was well sealed as well so we didn’t lose and
water and create a mess.

2) ​U ​SER​ A​CCESS​ S​TATUS​ ​INFORMATION​ ​IN​ U ​NDER​ 60
S​ECONDS​: ​A user will not be inclined to use the
aeroponics system in our design if it is not easy to
use. A large part of the user experience when it comes
to software is how long it takes the user to access the
information that they want to see. Our design calls for

8

a solution that allows the user to access the
information on the aeroponics system in less than
sixty seconds. This time period was measured from
the time that the smartphone application starts, to the
time that the user sees updated sensor information on
the main landing page. Sixty seconds was chosen as it
takes into account the time it takes for the user to be
able to login to the smartphone application, and any
network delays.

The user being able to access their system’s
data quickly is part of the larger user experience
design for the smartphone application. Our team set
out to make the smartphone application as simple and
intuitive as possible, to avoid user frustration. While
we spent time ensuring the ease of use, proper user
experience and design research was deemed to be
outside both the scope of our team’s expertise, but
also outside the scope of the project. Sixty seconds is
an adequate qualitative measurement of how quickly
the user can understand and navigate the smartphone
application.

3) ​N ​OTIFICATION​ O ​F​ S​YSTEM​: ​If not cared for
correctly, many plants will die very quickly. Because
of this the system must be reliable and alert the user if
anything goes wrong. Since the system can go over a
week between fill ups there is the possibility that the
user will not actively monitor it. To help with this the
system will alert the user if it detects problems. If the
sensors do not detect light when the light should be
on it will display an error. This error will indicate that
the light has burned out. Another error will be sent if
the inside humidity is the same as the outside. This
will indicate that the sprayers are not working. Both
the light and sprayers are very critical so that's why
we implemented these error notices.

D. E ​NCOURAGES​ C​OMMUNITY​ I​NTERACTION

1) ​T ​RADING​ C ​ONTRACTS​:​ The idea behind
community interaction for the purposes of addressing
our societal problem is to help foster the popularity of
urban agriculture and make it easier for users to come

together to fill the nutritional gaps in their system.
The aeroponics system, while able to be a standalone
unit, also includes the ability for users of the system
to contact other users of the aeroponics system in
their respective area. With a way of interacting with
other users, an individual can agree to cultivate a
certain type of food, with other users doing the same.
The users would then be able to trade their yield to
get a more balanced food supply.

While this initial design was to create a user
profile system, and a chat feature, time constraints led
to the simplification of the feature. The final
prototype has the ability to show which users are in a
given zip code, and contact information. While not
ideal, this solution still allows users to be able to
connect with other users. This feature is also optional;
the user of the aeroponics system can opt out of
having their information available.

1) 10 S​IMULTANEOUS​ U ​SERS​: ​Since multiple
users are able to have their own aeroponics system,
our team decided that it is important to ensure that the
database can support at least ten users
simultaneously; the user experience would suffer if
only one user or a handful of users can access their
data simultaneously. The ability for at least ten
simultaneous users to be supported was a driving
motive behind the decisions regarding the database.
We chose to go with the Firebase RealTime database.
Firebase allows up to 100 simultaneous users on its
free tier of service, which is perfect for the purposes
of this design.

E. M ​INIMAL​ E​NVIRONMENTAL​ I ​MPACT

The system must not impact the area it is
placed in. It must integrate well within a home setting
and not disturb the user.

1) M​AXIMUM​ N​OISE​ L ​EVEL​: ​The system must
produce no more than 70 decibels. The sprayers and

9

pumps must be set up in a way that quiets them. If the
system is loud no one will want it in their home.

2) F ​LOOR​ S ​PACE​ S​AVING​: ​To make the system fit
in homes easier we decided it had to have a 2:1 wall
to floor space ratio. Generally people have much
more open vertical space than floor space. A 2:1
design is more efficient in our target setting.

3) W ​IRELESS​ C​ONNECTION​: ​Another feature that
makes the system less intrusive is a wireless internet
connection. It is a cleaner design with no ethernet
cables required so the system can be placed anywhere
it is in range of wifi.

IV. FUNDING
The funding from this project came from the group
members. Each of us bought the necessary equipment
for our separate aspects of the project, primarily in
the first semester, and planned to split the cost evenly
at the end of the semester. We kept track of the
equipment we bought and prepared a seperate list of
the equipment used in the final product. We further
examined the funding to see the total cost of our
project and several other interesting factors.

A. F​UNDING​ P​LAN

The funding plan for the project in both
semesters was whoever needed the piece of hardware
had to get it, apart from some purchases just before
the two showcases. This was not a big problem
because most of the purchases were inexpensive but
several essential components were expensive and had
to be bought individually. Significant help in terms of
resources came from the employer of one of our
members, providing materials and tools that helped us
with what would have been the most expensive part
of the project.

In the first semester the primary purchases
were the sensors and the actuators. The more
expensive pieces of the project were not yet
purchased due to fear of damage or realizing they’re
not what’s needed. One of each of the sensors were
purchased with the most expensive pieces purchased
being the structure material and the analog pH sensor.

Several other important items were bought in
the second semester but most hardware in the final
project had already been purchased at this point. At
the start of the semester the grow light was bought
along with several more sensors but from there all of
the pieces of the project had been assembled

B. D​ATA

The total team cost is 558.42 which is the total
personal cost to the team removing any materials that
were donated or owned. We believe this cost is very
acceptable given the final product we were able to
get. Furthermore, we did expect to spend as least 150
per person for the project. Therefore, the team cost at
558 is perfect for us. For the funds, we allowed
anyone to spend on anything they needed for the
project. The only thing they need to do is to keep
track of the purchase. This is done through online
purchasing and receipt for brick and mortar stores.
Since we did not want any one person to pay for more
of the components, we added the total and split up the
differences. Luckily for us, we also had outside
sources that were able to donate the material and
components that we needed for our project. Without
these sources, we may have to pay some much for the
project. This just shows that when planning a budget,
we needed to think and account for much more than
we had needed.

10

Table I. Total Cost of the Project adapted from [8]

The table above shows a list of all parts and
materials used in the deployable prototype. There are
several things to note. First is that an equal amount of
value in our project came from donations, we were
able to create a very professional design because the
resources we were afforded. Another point is that the
personal cost that went into this final prototype was
$482.40. Given that the numbers the team provided
are close to accurate, there was very little spending,
primarily hardware, that didn’t make it into the final
product. Another fact is that Amazon was the primary
supplier of the parts used in the prototype even for the
many Adafruit products. We found that most products
available on company websites like Adafruit were
also available on amazon with the benefits that come
with being on the website.

V. PROJECT MILESTONES
Our project milestones are events that we

personally feel that we have accomplished what we
set out to do. This includes class assignments, work
breakdown tasks, and building the actual structure.
These milestones are encouraging to us because it
helps prove that we are able to build the design and
finish senior design.

A. F​ALL

In the first semester, the earliest milestone is
when we knew what we wanted to build to help with
our societal problems. At the time, we all have
different ideas on how we would tackle the lack of
fresh food in urban environments. However, we all
decided that it was best if we would have an
automatic aeroponic system. The next milestone was
when our design requirements were accepted. We

11

spent a lot of time designing our requirements as we
knew that it would be what we would be working for
the next 2 semesters. Even though we were very
excited that our design requirements were accepted,
we were still cautious about how we would actually
fill those requirements. Our whole group does not
have a single person that is very familiar with
gardening less aeroponic. This means that from the
start after the design contract, we were still unsure if
our design can actually work.

Jumping to the middle of the semester when
the technical review was coming up real quick. We
each presented our works and tasks to our whole
group, and everyone was on track. The whole group
was able to demonstrate what they did and how it will
help with the final product. At this point, we knew
that we could achieve the tasks that we set out for
ourselves. This feeling carried on toward the
December prototype where we met up at Kevin’s
house and finalized the setup for display. We worked
on the setup for the whole day, and at the end, our
design was pumping water, reading sensors’ data, and
communicating with the phone app. At this point, we
all knew that if we continue this way, we will be able
to meet all our measurable requirements. This
finalized prototype brought out our confidence in our
design.

B. S​PRING

This confidence from the first semester carries
to the second. We met all our previous goals for the
december prototype, and now all we need to do is to
upscale the system and test its components. The first
major milestone in the second semester was
concurrent with the device test plan. We knew that
we would have to test our components to see if they
can meet our measurable metrics. We test each of our
sensors, our database and phone, and even our
previous structure. At the submission of this
assignment, we were able to meet all the components
testing requirements. We were really proud of
ourselves as we knew that our first semester was a

great jumpstart to finishing our final deployable
prototype.

The next major milestone was when we got
the structure built and we needed to integrate all the
components. With the structure in front of our eyes,
we knew that our design was coming to life. We
continue during that day finishing and test the
integration to where we had it running for 1 hour.
After a week of the initial integration, we needed to
record the feature breakdown for the review. This
prototype helped us understand that our group was
still on the track to finishing strong. On that day, we
transfer a few plants and decide to start using our
system to see if the plants are going to grow. This
was an important milestone because of all the
previous tasks, we have not tried to grow anything
yet. The next important milestone was two week after
the initial transplant. We documented the growing
process of our system and acted how a user would to
see if our system can help plants grow. In the first
two weeks, we noticed a good progress from the
plants. However, after the 2nd week, our system had
some leaking issues combined with wifi connection
issues. This occurred and like how the user would act,
the person taking care of the plants did not notice it
until 3-4 days had gone by with the system broken.
This event demonstrated that our system still needed
further testing to actually keep plants alive with
minimal user interaction. We learned even though we
met our measurable metrics, they are still a lot of our
variables that we needed to be well aware of if we
want to actually grow the plants.

VI. WORK BREAKDOWN STRUCTURE
After deciding on our design we planned the

work that would need to be done to complete the
project in time. The five overall features were split
among the four of us and we came up with a plan for
the work for the Fall and Spring semesters. Each of
the five design features split into many sub-features
that set all of the measurable metrics for our project.
After completely breaking down the tasks that would

12

need to be accomplished to both complete our
prototype and further to complete the final project we
set out dates for when these would need to be
completed. We each set the tasks that we would need
to complete with several milestones to mark when
certain parts of the project would need to be
completed.

Below are the charts of how we spent our time
for the project. Since we knew what we wanted to do
early on, we did not spend a lot of time researching.
Therefore, we were ahead of many groups when it
comes to getting our project done. Furthermore, we
splitted the tasks to each member and were well
versed in those tasks. Brandon has connections to
engineers, and he was familiar with construction and
building materials. Therefore, most of the hours that
he spent was on the structure of the system. Likewise,
Adrian is a computer engineer. He understands how
to program and how to get started on the app that we
need. He got assigned to the software side of the
project mainly the app and the database. For Kevin
and Yutthachat, they were both used to
microcontrollers and how to interact with them.
Therefore, they were assigned various tasks that dealt
with the hardware and components section of the
project. This was the reason why our team spent less
than average time, and this was how we stayed on top
of our project.

Table II. Fall Hours Breakdown Adapted from [9]

Features (Fall) Adrian Brandon Kevin Yutthachat

Collecting
Environmental
Data 0 0 8 39

Automated and
User Control
Growing
Processes 0 2 27 9

Features (Fall) Adrian Brandon Kevin Yutthachat

System
Requires Little
user interaction 49 4 5 0

System
Encourages
Community
interaction 40.5 0 0 0

System is not
intrusive 0 37 0 0

Class
Assignments 31 28 40 40 Total

120.5 71 80 88
359.5
HRS

Table III. Spring Hours Breakdown Adapted from [9]
Features
(Spring) Adrian Brandon Kevin Yutthachat

Collecting
Environmental
Data 0 0 15 88

Automated and
User Control
Growing
Processes 0 0 53 0

System Requires
Little user
interaction 50 0 0 0

System
Encourages
Community
Interaction 30 0 0 0

System is not
intrusive 0 66 2 5

ClassAssignmen
ts 40 35 40 36 Total

120 101 110 129
460

HRS

13

Table IV. Group Meetings hours Breakdown Adapted
from [9]
Group Meetings Hours

Fall 23.5

Spring 31

A. S​YSTEM​ C ​OLLECTS​ E​NVIRONMENTAL​ D​ATA

System collects environmental data including
temperature, humidity, electrical conductivity, pH,
and the amount of light that the plants are getting.
This feature was broken down into 5 small features
which included: temperature and humidity sensors,
pH sensor, EC sensor, and the lights sensors. These
tasks were further broken down to smaller tasks
which included gathering the right sensors, adding the
code to the pi, and testing the sensors.

These tasks were split between Yutthachat
and Kevin. Yutthachat worked with the pH, EC,
temperature, and humidity sensors from ordering
parts, getting the parts to work, and testing the parts.
For Kevin, he worked on the light sensors which
include 1 UV sensor and 3 flux sensors. He created
code for them and tested them to see if they met our
measurable requirement.

These two people were perfect for this section
of the project as the hardware requirements means
that only these two people will only need to talk to
one another to finish their task. This is also the reason
why most of their time alloted was with this feature
set. Next, we will look at the automation of our
system.

B. A​UTOMATED​ G​ROWING​ P​ROCESS

The automated growing process included the
watering of the plants, the regulation of the EC in the
nutrient solution, and the controls of the lights.
Again, with how we splitted our task, Kevin was
mostly working on this part. Since these tasks
included using the microcontrollers and other
hardware components, Kevin was the perfect

groupmate for the job. These subfeatures were broken
down into small tasks including gathering the
components needed such as the lights, pumps, and
relays.

Kevin coded and built the system to control
the pumps and to control the lights. These were to be
integrated with Yutthachat’s sensors such as the EC
and pH. Both Yutthachat and Kevin’s tasks were
closely aligned, and they worked closely with one
another to finish the small components and the
sensors. Furthermore, in this section, we have a few
tasks that involved communicating with the database.
This database communication is used to get data from
the user to control the pi and its automation. Kevin
also worked on these tasks. Overall, these first two
features have a lot of dependence, so having two
people only involved in these tasks allow for a
smooth sailing toward the laboratory prototype and
also deployable prototype. Something that does not
have to do with these tasks were the app and its
database which was the main focus of our computer
engineer, Adrian.

C. R​EQUIRES​ L​ITTLE​ U​SER​ I ​NTERACTION

The System requirement little user interaction
means that the user should not have to worry a lot
about the system. This feature was broken down into
sub features including: the ability to go one week
without water fillup; users being able to access the
environmental data in under 60 seconds; users being
notified of system errors. The ability to go one week
is easy to meet because our preferred plants are small
and the final prototype was going to be pretty big.
Therefore, this task was assigned to Brandon, and he
knew that it can be fulfilled easily. For the other two,
they were broken down into the smallest task that
ranges from creating an android app with user
authentications. These all included getting the app to
work with our firebase database.

Like stated before, Adrian was a good fit for
these tasks as he is the most knowledgeable with the

14

software side of our project. He learned to program
an android app with Android Studio, and he also
learned to work with the Firebase. He accomplished
these tasks well and was independent from the rest of
the group because he can test his own code with
random data. Since our database acts as a buffer
between the app and the Pi, he did not need to work
with any other person to create the app. However, he
also helps Kevin and Yutthachat with the
communication between the Pi and the database.
Overall, Adrian spends the most time learning about
the software side of our project and that is why he has
fewer hours on other parts of the project.

D. E ​NCOURAGES​ C​OMMUNITY​ I​NTERACTION

Another feature that we wanted to implement
was the ability to communicate with other users of
the system. This was split into two smaller
subfeatures which were that the system would be able
to connect 10 simultaneous users and that users can
make contracts with other users. These tasks were
assigned to Adrian as he was already working with
the phone app, and these tasks were to be
implemented into the app. Therefore, Adrian was the
only person working on the app. He spent the most
time on the software.

E. M ​INIMAL​ E ​NVIRONMENTAL​ I ​MPACT

Minimal environmental impact that we
wanted the system to have was to save space for the
user and allow accessibility for quick maneuver of the
system. This feature was broken down into
subfeatures which were that the system would not
make noise above 70dB; it will be an indoor vertical
design that will use more wall space than floor space,
and that the system will be able to connect to wifi
from a range of 100ft. This feature is meant to
address the structure that we would be building. Since
Brandon was familiar with materials and had working
engineers as consulting, this feature was to be

completed by Brandon. These features were split into
smaller tasks which required Brandon to research a
good material and designed our prototype. Brandon
was able to achieve these tasks quickly and
effectively. This is why he had the most hours on this
feature as he was the one with the most knowledge on
construction.

Another subfeatures within this feature was
the ability of the system to connect up to a range of
100ft for the wifi. This was not a hard task, and we
were able to purchase an wifi adapter and test it to
meet this feature.

F. G​ROUP​ M ​EETINGS

Finally is the group meeting that we have
every week. At the start of the first semester, we
designate a time and place to meet every week. This
was on Thursday around 3 pm. This was perfect for
everyone because we are able to talk and complete
many assignments and small tasks. This meeting was
the most helpful in helping our team with keeping
track of our progress. Furthermore, these meetings
allow many of us to help each other with smaller
tasks in other features that they were not assigned. In
conclusion, meeting every week furthered our
progress and reduced the need to spend more
independent time working on our project and
assignments.

VII. RISK ASSESSMENT
Our project involves wires being around water

we had to take account for those and other important
risks to make sure our device is safe to use. Electrical
problems could theoretically come from being in the
vicinity of water and water vapor but could happen
just as easily from being dropped or other improper
care. We took several factors into account to ensure
that these risks are minimised.

15

Table V. Risk Matrix Adapted from [10]
Impact

Minimum
Impact

Tolerable
Impact Limited Impact Serious Impact Catastrophic Impact

L
V 1 2 3 4 5

Unlikely(>
0.01 - <=
0.10) 1

-Failure of Firebase
Server

-Pandemic (Covid19)

Low
Likelihood
(> 0.10 - <=
0.30)

2

-User Data
Breach

-Broken
Temperature
and Humidity
sensor
-Failure of
Server Data
Transmission
-Chemical
pump failure

-Broken pH sensor
-Microcontroller
failure

-Loss of Smartphone
Application Code -
Inability to Send
Information From
Smartphone to Server

Likely (>
0.30 - <=
0.50) 3

-Light sensor
failure -Grow
light failure

-EC sensor affecting
pH sensor

-Water affecting the
electronics

-Power shutting down due
to wildfire

Highly
Likely
(0.50 - <=
0.70) 4

-Water pump failure

Nearly
Certain (>
0.70 - <=
1.00) 5

A. P​HYSICAL​ D​EVICE

The main risks to the physical system were
damage from being dropped, corrosion, and just
mistakes during assembly. The system is made from
corian and glue mostly so it is in danger of being
broken if the system was ever dropped or hit. The
main mitigation of this was to just be careful and to
reinforce the system with aluminum extrusions. This
made it incredibly robust and much less prone to
breaking. Since we must use a nutrient solution which

is quite corrosive we had to mitigate the risks
associated with that. To mitigate the risk we only
used real nutrient solutions when we had to, and no
steel parts were used. Mostly corrosion resistant
plastics and powder coated aluminum. Lastly any
mistakes in assembly could lead to a weak design and
could cause leaks. To mitigate this the system was
observed over a period of a few weeks to make sure
everything was well sealed.

16

B. S​ENSORS

For our sensors, we took precaution when
dealing with expensive sensors such as the pH sensor.
However for the other sensors, temperature/humidity
sensor and the lights sensors, we made sure to find
sensors that can be delivered in under three days. This
is where we look up on Amazon to see if the product
quantities are high and if the item is on the Amazon
Prime delivery system.

Although we did not experience any failures
in our sensors, we did have a few moments where we
were rushing to order new components. As stated
before, we make sure to purchase the components that
are high in quantity and can be delivered in under
three days. The first scare was the DHT22 Sensor
which is used to measure temperature and humidity.
We have two of these sensors, one for the inside and
the other is for the ambient environment. The one for
the ambient environment was giving us an offset of
5% relative humidity. Also, the sensor tends to stop
working in the middle of operations. Luckily as stated
before, we purchased sensors that are able to be
purchased and delivered fast. This was the case for
the DHT22 sensor. We bought two extra; however,
we really did not need to purchase the problem that
the sensor was not the sensor but the wire connected
to it. This way we avoid a potential disaster.

However, this way of mitigating the potential
risk of the sensors would still be good if there was no
pandemic to mess with the delivery. However luckily
for us, we have about two of each sensor beside the
pH sensor. This gave us peace of mind from worrying
about the sensor failures.

C. L​IGHT​/P​UMP​ F ​AILURE

Since we are growing plants, lighting and
water are two of the most important things. Although
we are using LEDs (which are quite reliable), it is not
impossible that they burn out or some other type of
problem that kills the light. If the light goes out and

we are not aware of the problem the plants could die
fairly quickly. To mitigate this we implemented code
that would send the user an error if the light sensor
does not detect anything when the light is supposed to
be on. If the light did break we would be able to
source one within three days.

If the pump goes out the plants would die
even faster. Like the light, an error will be sent if the
inside humidity is the same as the outside humidity.
We chose an aquarium pump that is made to run
continuously for years. In our usage case the pump
should not have any problems.

D. S​MARTPHONE​ A ​PPLICATION​ F ​AILURE

The smartphone application is the main way
that the end user will interact with the system; the
user will use the application to adjust parameters in
the system such as light timing and watering
intervals. The application is the window into the
happenings of the device; the user will use the
application to see the status of various sensors such as
humidity within the structure. Additionally, one of
the main components to the design is the ability for
users to interact with one another. This user-to-user
interaction relies heavily on the smartphone
application.

The measurable metrics that will be affected
by the failure of this subsystem are related to the
system requiring minimal user interaction: the user
can access status information in under sixty seconds,
and the user is notified of system errors requiring
attention. Without the smartphone application, there
is no other way for the user to be able to do either of
these tasks.

Because the smartphone application is such an
integral part of the design as a whole, the failure of
any of its individual parts can have a large impact on
the end product. An all-out failure of this subsystem
would be considered a catastrophic level on the risk
matrix. However, the likelihood of the whole
subsystem failing is low. Therefore, it is important to

17

look at the components that go into creating the
smartphone application subsystem, and evaluate each
with regard to their risks. From the work breakdown
structure, the components and tasks associated with
the smartphone application’s critical path are the
integrated development environment, user experience
design, and connection of the application to the
server.

The integrated development environment
chosen was Google’s Android Studio. The risks
associated with the use of this application, and the
related risks of how our team chose to develop the
application, rank low on the likelihood scale (level 1),
and can potentially have a tolerable impact (level 2).
Since this development environment is from Google,
who created the Android operating system, the risks
of the development environment not having the tools
needed for proper smartphone application
development is nonexistent. The other main risk of
this software is a risk of data loss.

The development environment was initially
only installed on one teammates computer, and all
files were hosted locally on that machine. The
possibility of the failure of that machine posed a
significant risk to the completion of the project, as the
loss of the code would mean that time would have to
be dedicated to rewrite it. This risk was deemed to be
likely (level 3), and have a serious impact on the
project (level 4). This risk was categorized as a
schedule risk. To mitigate the impact of this event,
we created cloud backups of the source code for the
application, so that the application can be recreated
from any machine. Since Android Studio is a
free-to-use software, any team member can quickly
and easily install it, so its failure on one machine was
considered to be low on the impact scale.

The next portion of the smartphone
application is the ability for it to send information to
the server. This information can be things such as
changes to the lighting timing, or data that pertains to

an agreement to trade produce between two users in a
given geographical area. If the smartphone
application were to fail to send data, it could pose a
level 4 range impact on the project. It would be a
serious impact due to the user not being able to
change any settings on the aeroponics system, and not
being able to connect with other users in the way we
intended. The likelihood of this risk was rated as
likely, because there are many points of failure. These
points of failure include loss of internet connection on
the smartphone and bad coding on the host end of the
application.

The risk of failure to connect can be mitigated
by ensuring the code for the smartphone application
is robust, and well tested. In the event of a connection
failure, there will be code to ensure that the system
can notify the user on where the connection failed.
Also, the aeroponics system will have a base case for
watering and light timing, so that the user doesn’t
need to immediately set those parameters to get
started.

E. D​ATABASE​ F​AILURE

Similar to the smartphone application, failure
of the database, or connection to the database, can
pose a significant problem to the deliverables for the
design. The critical path subtasks of the database are
the data structure creation, connection to the server
for both the user’s smartphone as well as the
microcontroller, login authentication, and
transmission of data to the smartphone application
and microcontroller.

The measurable metrics pertaining to this
section of the risk assessment fall under the feature
that the system encourages community interaction
and local consumption, as well as the system
requiring minimal user interaction. Under these
features, the specific measurable metrics are that the
system can connect ten simultaneous users, and the
user will be able to make up to two simultaneous
trading agreements with other users.

18

This path of the project has a relatively low
probability to fail; outside of the code for the server
and connection to the server on the client side, there
is a low probability that the server will fail. The low
probability of failure of the server was one of the key
reasons for choosing to use Google’s Firebase and
associated tools; since the tools are backed up by one
of the largest technology companies in existence, a
system failure on their part is extremely unlikely.
However, in the unlikely event that this failure does
occur, it would have a significant impact on the
completion of this path (level 3) due to how reliant
our design is on Firebase. There are very few
alternatives for moving our project. The other risk
involved with this path is the event that the code
developed is erroneous and not robust. While this can
be likely if the code is not tested adequately before
the deployable prototype, the impact is tolerable, as
the code can be easily updated to include any bug
fixes. The risk associated with the Firebase server
service was deemed inevitable; we can only mitigate
the effects.

Building off the risks that are unavoidable, a
data breach regarding user authentication falls under
this category. In the event that there is a breach in the
database's security system, there is not much we can
do on our end. This risk, although unlikely, still poses
a potential impact on the project. The servers that our
project resides on can be housed anywhere around the
world, which itself can increase the risk associated
with the use of Google’s servers. In order to deal with
this risk, our team can only use the tools available by
Google to monitor any suspicious activity on the
server.

The ability for the server to send data to both
the microcontroller and the smartphone is pivotal in
creating the system that was intended in the design.
As with the server failure, the likelihood that the
server will not be able to send data is low, and
presents a significant impact on the measurable
metrics for the design. The risk can be mitigated by

testing multiple scenarios in which the server would
transmit data.

F. M ​ICROCONTROLLER​ F​AILURE

Another important electrical device that we
have is the microcontroller and all the other small
components that connect to the microcontroller. This
includes the analog to digital converter, the wires, and
the soldering boards. Like the sensors, these devices
are easy and quick to replace. We look for the devices
and models that are easy to purchase and can also be
delivered fast. Although the Raspberry Pi 3 can be
expensive, it is still easy and quick to replace.
Furthermore, for the connection and fear of short
circuits, we have our team work mostly with 3.3v and
5v which reduces the risk of us frying our boards.

In addition, whenever we are working with
the wall voltage and or 24v, we make sure to have all
the team members there to check the connection.
However this is rare and only when we are finishing
the final touches on the project would be connecting
to the wall. Like before, the risk for the board failure
is minimal but still can affect us harshly as we are
relying on the Pi to be the brain of the system. After
working on the project for two semesters, we were
able to minimize all the risk toward our completion of
our project.

G. E​XTERNAL​ R ​ISKS

For the first semester, we looked at what
event that can occur and affect our project greatly.
We have the Paradise Fire as an anecdote to how we
should prepare if something were to occur and affect
our school. In the report, we create a plan to make
sure we do not leave important equipment and
hardware at school. Therefore, when the Pandemic
hit, all our stuff was already at home, and the
structure was in the hand of one of our groupmates.
This allowed us to finish our project in time, and we
were able to follow our work breakdown structure.

19

Another obstacle we were able to overcome is
the necessary delivery of our components. Although
we mostly relied on Amazon, we also have group
mates who have some of the components that we
needed instead of purchasing from Amazon.
Fortunately, we also purchased all our equipment and
components beforehand. Even though the task of
purchasing and working on a specific part of the
project was not due, we make sure to purchase the
components before especially if the component is less
accessible like our pH sensor.

These external risks such as a world wide
pandemic or local fire can greatly affect how we
do our project and how our group would work
under these new conditions. These risks have been
in small consideration when we divided up the
tasks. Firstly we group all the tasks that require
the same components into the same group and
give those tasks to one person. This way, if we
were unable to meet, the groupmate would still be
able to do their tasks. Although we can not see the
future, we can prepare for disasters based on
previous events and a risk analysis.

H. E ​NGINEERING​ ​AND​ S​TRATEGIC​ R ​ISKS

The main strategic risks to consider is our
timeline. We must consider what parts are going to
take the longest and what to prioritize. The obvious
risk in all of this is that we will focus on the wrong
thing without knowing that another part is going to
take much longer. Since this is our first time building
such a system, these types of problems are almost
unavoidable. Surprises are bound to pop up. The best
we can do to mitigate it is to think through and plan
the whole project to guess the best we can what will
take the most time and in what order we must do
things.

VIII. DESIGN PHILOSOPHY
The ideas behind our design comes generally

from our design requirements and the vision of where
our product would fit into a person’s life. The goal of

the design is simply to be an in-home gardening
system that can make enough food to satisfy a person
wanting to have one. Due to this our design had to
take up as little space as possible while still growing
enough food to make a difference to someone. The
system had to be functional but at the same time had
to have an attractive design. Making people want to
have it in their home is critical. If the system works
but no one is willing to place it in their home then we
have failed. Another consideration was how the
sensors would work with the device to give a person
useful information. With that in mind we considered
how an app could benefit a user in their growing
pursuits while also helping a variety of healthy food
to circulate through these communities. We also
looked at what kind of plants could be grown and
how to get quality food to a person without increasing
the cost too high. There are also some
non-engineering problems that we had to deal with in
order to have a successful project such as algae
growth, plant light requirements, and proper
water-nutrient levels.

A. S​PACING

For the spacing, we wanted our design to use
its space effectively. This would be accomplished
through building the structure 2 to 1 vertical to the
floor space. This will allow our system to support
more plants and still not clutter up the room where
the system is set. We followed through with this
design since the start of the design requirement for we
knew that space utilization is very important for
families that are starting their own personal gardens.
Therefore, our first prototype was about 2 feet tall
compared to 1 foot across. For our final this, we
continue with this ratio to ensure that users are not
inconvenienced by the size of our design.

B. S​ENSORS

1)​ L ​IGHT​ S​ENSOR​: ​The choice of the light
sensors was very simple with choices both semesters.
During the first semester it was clear the selection of
cheap and premade light sensors was very slim. This

20

caused problems in the second semester that couldn’t
be fixed by replacing the part.

In the first semester we didn’t know much
about the proper measure of lighting but the sensor
selection was simplified as most all the sensors output
in lux rather than the prefered watt per square meter.
With that only one sensor was capable of both high
range and precision, the TSL2591. It far surpassed the
lux range set with limited information during the
Design Idea report and reached into what was
seeming to be the actually needed range of light. The
UV sensor was also simple because of the lack of
choice, we went with an analog UV sensor that
outputs a voltage proportional to the UV index. The
UV index is a scale.

In the second semester problems came when
trying to scale the number of visible light sensors.
The sensor uses the I2C interface and has one
unchangeable address so in theory only one could be
used per device. We looked for another suitable light
sensor such as the previous model, the TSL2561,
which allowed for more addresses, but it was
unavailable and other options would not work. The
solution was adding an I2C multiplexer. It allows for
up to 8 I2C connections with the same address and
after some simple research was able to run without
additional coding libraries. The team decided on three
sensors because of the growing levels. The UV sensor
was placed in the center to give a relative look at the
amount of UV light since the precise intensity wasn’t
very important. It is more there to warn the user if the
light is giving off too much dangerous light to the
plants or worse yet them.

The only other problem came during testing
when we found the light sensors would max out their
readings if the light got close. This was a problem
because the light was set to be much closer than the
distance it was maxing out at. The solution was
making sure the sensors were at a sharp enough angle
to the light that they would continue to give values.

One sensor still output a 0 when the full light’s
brightness was on it but it was able to be fixed with
some code. The other problem was the test results for
the commercial lux sensor were an order of
magnitude smaller than the output of the sensors. We
used the commercial lux sensor as the benchmark and
lowered all of the signals by a constant to it’s values.
Lastly, the sensor readings from the commercial
sensor were converted to PPFD with the help of an
online calculator to agree that the range of 200-600
PPFD was successfully done.

2) ​H ​UMIDITY​/T​EMPERATURE​ S​ENSOR​: ​For the
humidity and temperature sensor, we went with the
DHT22 sensor (See appendix B) as it meets all our
requirements, and like stated in our risk management,
it is easy to order and delivered quickly. We went for
two DHT22 sensors, one for the outside and the other
one is for the inside. We wanted to measure both the
humidity and temperature of where the plants were
going to be and where the roots would be also.
Furthermore, we needed the data from these sensors
to control or to be notified of failure. For example,
the humidity inside the box is an indication that the
water delivery system is working. The temperature
that comes along with the humidity sensor allows it to
measure the relative humidity.

Although at first, our ambient temperature and
humidity sensor was just there to let the user know
the temperature and humidity. It wasn’t really used
for any other thing until we got the new lights. The
new light was 600 watts light that can easily heat up
the ambient temperature if left for too long in a small
enclosed space. Since our system is supposed to be
within a household, some may put the system inside a
closet. This will allow the system to heat up easily
and the ambient temperature and humidity data will
help notify the user.

Also since one of our groupmate was familiar
with the DHT11 which is a smaller and weaker
version of the DHT22, he would be able to control

21

this sensor easier. That was the case and this sensor
was popular among hobbyists; therefore it has a lot of
support such as libraries and even tutorials to control
the sensor. When this was integrated into our system,
we used the Adafruit library that easily helped us get
the data we needed. Following the Adafruit tutorial,
we got this setup quick and easy. This sensor is
minimal in its design. It has 3 pins: one for ground,
one for VCC, and one for data. All of these make the
DHT22 a perfect choice for us to use and build with.

3) ​P​H S ​ENSOR​: ​The pH sensor that we chose
was the Gravity Analog pH Sensor with a meter (See
Appendix B). This sensor was within our budget, and
it’s the only sensor that was able to stay underwater
for continuous reading. As we were searching for the
right pH sensor, we were informed that most pH
sensors do not work well continuously submerged.
Therefore, we have to look for a sensor that was still
within our budget, and it will work well. This sensor
is within our budget and meets the measurable
requirements that we had agreed.

Working with this sensor was a bit harder than
expected as the documentation for this sensor was
still lacking. The documentation contains only a
simple way to start using the sensor. Therefore, we
spent quite some time getting this sensor running.
This sensor also needed to be calibrated. This is done
using the packages that came with the product. There
are premixed pH solutions. Using these solution
packets, we calibrated the sensor, and it worked great.
However, we knew that this sensor still needed to be
calibrated every once in a while due to its intrinsic
quality. This sensor will slowly drift off the accurate
value because the KCl solution inside the pH sensor
will slowly deplete. It will make a small change in the
signal. This small change added a hundred times will
cause an offset in the reading especially when the
signal is amplified with the on board amplifier.
However, since this sensor voltage is closely linear
compared to the pH, we can add an offset to the
sensor collection program to adjust for the offset.

Although the temperature of the water can
affect the pH reading, this pH sensor does not take
into account the temperature of the solution. This is
because we believed that since the user is going to put
this in their house. The temperature of the water will
not change drastically from the tap water that is going
to be used for the tank. Therefore, this sensor was
adequate, and it was able to do what we wanted.

4) ​E ​LECTRICAL​ C​ONDUCTIVITY​ S​ENSOR​:​ For the EC
sensor, we wanted a sensor that is able to stay under
water for a long time and measure the EC of the
nutrient solution accurately. We search for EC
sensors that meet our requirements and are within our
budget. However, all the EC sensors that can do this
are from china or they are very expensive. We did
want to risk buying a defective cheap EC sensor, so
we build our own (See Appendix B). This sensor is a
simple voltage divider with one part of the resistance
underwater. The unknown would be the resistance of
the water, and we use an ADC to measure voltage
across the unknown to get its conductivity. However,
this was easier said than done as water behaved
differently from a resistor. First, the distance and
shape of the probes would affect the reading. In order
to minimize this effect. We create a simple probe
with a known solution of EC and calculate the cell
constant. The cell constant is a constant that tells us
how the distance between the probes and the shape of
the probe would affect our reading.

After creating this program, we started off
with a few cheap items to act as the probe. One time
we got two walls connected and used that as our
probe. However, we decided to build one that can
look less ridiculous and that is where we settle with
our EC sensor. With this new EC probe and an ADC,
we were able to measure the resistance of the water
and convert to EC. This was a huge step in our sensor
design. We were able to measure EC for cheap.
However, after researching even further, we learned
that applying voltage across water can ionize the

22

water making our reading usable. Most EC sensors
work with AC signals which aids in overcoming this
obstacle. Since we do not have an AC signal, we
decided to test the probes and learn that we only
apply the voltage for a sec and have the water “rest”
for a minute, then the reading is still accurate. So, that
is what we decided to do. Overall, our EC sensor
worked great until it doesn’t like when the calibration
goes off or when the pH sensor is near it.

A major problem that we had to overcome
was that the EC sensor and pH sensor was affecting
one another in the water. We wanted to get rid of this
interference between the two sensors by alternating
when the sensors are active. However, since the pH
sensor is passively working, this still affected both
the sensors. We decided that if the distance between
the two sensors would be large about 1.5ft, then the
interference would be minimal. We went with that the
final deployable prototype worked very well.

C. A ​NDROID​ A​PPLICATION

Our team wanted to make the plant growing
process more easily accessible to the average person.
As such, we decided to tie the monitoring and control
of the system to a smartphone application. We took a
look at how to best approach the problem of making
the application, and the system, available to the most
people possible. This is why we chose to go with
Google’s Android smartphone operating system,
which has the largest market share in the smartphone
market.

After choosing the platform, we had to choose
which version of Android to develop for. Choosing a
version was more complicated than choosing the
operating system because there were more benefits
and drawbacks to take into consideration. With each
new version of Android, there comes more features,
and better security. However, not all phones and
service providers allow the update to the newest
version of the operating system; The newest
operating system tends to be adopted by less than 10

percent of all Android users. With this in mind, we
decided to go with Android Nougat, or API 24. While
a bit dated, choosing to develop for this version
ensured that our application would be able to run on
at least 75 percent of current Android phones.

D. D​ESIGN​ ​LAYOUT

Building off of the idea that we want our
system to be accessible, we also wanted the
smartphone application to be as intuitive as possible.
This motive was the driving force of the design of the
appearance of the application. We decided to keep
things as simple as possible, while still maintaining a
good level of functionality. Not only were the
elements of the application taken into account, but
also the colors and presentation.

The login page was designed to be standard
when it comes to smartphone login pages, with the
added brand identity of California State University,
Sacramento (CSUS). We used the official CSUS
colors and logo so that the user recognizes the
application as being tied to the school. There are only
two buttons on this page, which are labeled clearly.

The main landing page displays all sensor
data for the system. We decided to display all the data
on one page as opposed to on different pages for each
category so that the user will be able to see the
information without searching for it; it keeps the
amount of necessary touch inputs to a minimum. The
sensor page has different categories differentiated by
color: green for lighting, blue for humidity, red for
temperature, orange for the nutrient solution, and
green for controlling watering and light timing. There
is also a button to switch pages to view the users in
the area. This page is laid out in a simple list type
fashion so the user has no problem viewing and
entering the information they need.

The integrated development environment we
used, Android Studio, uses XMLto code the
appearance of the application. XML was new to us,
so there was a learning curve we had to overcome

23

while simultaneously achieving our goal for a simple
design.

E. N ​ON​-E​NGINEERING​ P ​ROBLEMS

The biggest non-engineering problem is
actually growing the plants and learning information
about farming. Although we knew a bit about farming
and plants from our research, we were still unable to
get all the information to actually help us grow the
plants. We decided that the user should be able to
grow their own plants with their knowledge as we
cannot provide all the necessary information about
the plants. However, we do have some default
settings that are there just to be the baseline for the
and not the actual way to keep growing plants.

Another tough problem that we did not realize
before it was too late is that the system light was
bright, and it could possibly disturb the user.
However, a fix is to put a towel over it. This is one of
the oversight that we have managed to see after
building the prototype. Another would be the waste
management. We were excited about growing plants
and maintaining them that we forget that plants will
die and the system would have to notify us of
something about. This is an oversight in our design
contract and our prototype. However, with these
oversights, we depend on the user to provide what is
necessary for the plant that our system is lacking.

IX. DEPLOYABLE PROTOTYPE STATUS
The deployable prototype at the end of our

project has successfully met the requirements set out
in our feature set. Our testing has shown we have met
all of the measurable metrics as we had them laid out
for our features.

A. S​YSTEM​ C ​OLLECTS​ E​NVIRONMENTAL​ D​ATA

1) ​L ​IGHT​ ​SENSOR​: ​The requirement for the light
sensor is that it’s able to measure a spectrum of
200-600 PPFD and separately that we are able to
measure the UV light intensity. The light intensity
spectrum was tested using a commercial lux sensor. It

gave accurate lux values that could be used to
calculate the PPFD and to test the accuracy of the
sensor. The sensors gave data much higher than it
should be but code was able to fix the problem. The
calculated PPFD using the commercial light sensor
though was 166-614 PPFD, just better than the
desired range.

2) H​UMIDITY​ S​ENSOR​: ​Our humidity sensors
worked great, and both the sensors were able to
measure the humidity accurately after testing the
sensors. To perform the test, we use the saturated salt
method which when put within an enclosed space will
create a relative humidity of 75%. After we left the
saturated salt within a seal bag for a day, we tested
the humidity with both of our sensors which resulted
in both sensors being able to measure a relative
humidity of 75% and 80%. We knew that the second
sensor was offset by 5% relative humidity, so we
tested to see if it was just a one time thing or if the
sensor had some kind of defect measuring the
humidity (See appendix B for data).

We then performed a stability test that showed
that both the sensors are stable; however, the second
sensor was offset about 5% relative humidity. This
means that to have the correct humidity for the
second sensor, we created an offset in the software to
help this defect. All in all, our sensors are still
working and measuring accurately during our
growing process.

3) T​EMPERATURE​ S ​ENSOR​: ​Since our humidity
and temperature sensors are conjoined, we did similar
tests with sensors. For accuracy, we use a multimeter
temperature sensor to measure the ambient
temperature. We ran both the sensors and compared it
with the multimeter. It shows that both the sensors are
within +- 1F of the accurate temperature; therefore,
we knew that both the sensors were accurate.
However, since we had an issue with the relative
humidity, we wonder if the temperature sensor has

24

the same problem as the humidity with an offset.
However after testing the sensors for a day, both
sensors’ temperature were within one another. This
means that both the sensors were working fine (See
appendix B for Data).

4) ​P​H S ​ENSOR​:​ For the pH sensor, we went
with off the shelf sensors that have the required
measuring depth for us. We followed the instruction
and calibrated the sensor. It was working very well,
and after testing its reliability and accuracy with a
premixed pH solution, we learned that the sensor was
within what we needed for our measurable metric.

However, a problem occured when you put
both the EC and pH sensor into the same solution.
They would interfere with one another, and so, we
have to solve this issue. For this, we believed that if
the distance between the two sensors were great
enough, the interference will be minimal. Therefore,
we did a test moving the two sensors 6 inches apart to
1 foot apart. From this test, we found that the
interference drops dramatically when the sensors are
1 foot apart. Furthermore, our final prototype has the
two sensors about 2 feet apart which even further
reduce the interference.

5) ​E ​LECTRICAL​ C​ONDUCTIVITY​ S ​ENSOR​:​ The EC sensor
was homebuilt, so we have to put a lot of effort to test
its validity. We did initial testing for the sensor when
we created the sensor, and it showed promises. We
then created new probes for the sensors and did the
accuracy test by using a known EC solution and
measuring it. It was able to measure it within our
required metric. Furthermore, we assumed that the
sensor may require calibration every once in a while,
so we did a stability test for a day to see how much
change there would be. However, after the test, we
can say that the calibration of the EC sensor will be
quite long as it did not change in a day. According to
the data, the sensors tend to stabilize after 15 to 18
hours.

B. A​UTOMATED​ G​ROWING​ P ​ROCESS

1) ​N ​UTRIENT​ S​OLUTION​ R​EGULATION​: ​The nutrient
solution regulation consists of the EC sensor and a
peralstic pump. The EC sensor will measure the EC
and report back to the raspberry pi. From there, it will
look at the EC threshold set by the user and add the
nutrient mixture until the desired amount is reached.
This is still working although the EC pump is very
slow in adding the nutrient solution. However, this is
to our advantage because it allows for more
concentrated nutrients to be within the two bottles in
the systems.

2) ​W ​ATER​ P ​UMP​ F​OR​ P​LANTS​: ​To control the
water pump, we had set it up to where the pi will get
the user input from the data and set its own interval.
This interval was easy to test and just changing the
number on the database changes the interval to which
the water was to be sprayed on the roots. This is still
working and able to be reproduced easily through the
use of the relays.

3) ​L ​IGHT​ I​NTERVAL​ C​ONTROL​: ​The light interval
control is similar to the water pump. The pi will read
the data from the database and change its own
interval to match the database. This allows the user to
set their own interval that they would like. For right
now, we have it to where the user would set a time,
and the lights will turn on at that time for 3 hours.

C. R​EQUIRES​ L ​ITTLE​ U​SER​ I ​NTERACTION

1) ​O ​NE​ W ​EEK​ ​BETWEEN​ ​FILLUP​: ​To meet this
requirement, our system was able to hold 5 gallons of
water. This water is able to go a week without being
used up. As demonstrated when we grew 12 plants.
However, there was a leak during our first test. This
was quickly fixed but not before it did some damage
to the plants. With this fix, the water lasts pretty long.

2) ​U ​SER​ ​ACCESSING​ ​INFORMATION​ ​UNDER​ 60
S​ECONDS​: ​Our team was successful in achieving a
below 60 second access time to the system’s sensor
information. This was possible through a simple login

25

system, as well as a layout design that ensured the
user can access data in a timely manner.

3) ​U ​SER​ ​IS​ ​NOTIFIED​ ​OF​ ​SYSTEM​ E ​RRORS​: ​Our
system has the ability to notify users in the event that
there is an issue with humidity: if the outside
humidity is near the inside humidity, this indicates
that there is an issue with the watering system. If
there is no light sensor data when there should be, the
system also throws an error.

D. E ​NCOURAGES​ C​OMMUNITY​ I ​NTERACTION

1) ​10 S ​IMULTANEOUS​ U ​SERS​: ​The app must
enable at least 10 people to be logged on at the same
time. The Firebase real time database is rated to
support up to one hundred simultaneous users. Our
team was able to test 11 simultaneous virtual Android
machines before running into performance issues
with the host machine, as seen in the testing results in
Appendix B.

2) ​T ​RADING​ ​WITH​ ​OTHER​ U​SERS​: ​The initial
design idea behind the user being able to contact
other users of the system was to allow the user to
make user contracts of trading produce with other
users. The user would have a user profile and be able
to create a chat session with other users to discuss the
trading of grown produce. With the campus closures
and surrounding disruptions, our team scaled back
our expectations regarding this measurable metric,
with the solution being to allow users of our design to
be able to contact other users within the same zip
code, with an ability to opt out of the feature.

E. M ​INIMAL​ E ​NVIRONMENTAL​ I ​MPACT

1) ​M ​AXIMUM​ N ​OISE​ L​EVEL​ 70 ​D​B: ​After using a
phone app to test the noise level of the system, we
can conclude that the noise level of the was well
below 70dB. We used a phone app that measured a
level of about 40dB. This means we are well below
the maximum noise level.

2) ​I ​NDOOR​ V​ERTICAL​ D​ESIGN​: ​For the indoor
vertical design, we went with a 2 to 1 ratio where it
will be two times as tall as it is long. This was
achieved by our deployable prototype (See appendix
D).

3) ​S ​YSTEM​ ​CONNECTS​ ​TO​ W​IFI​ ​FOR​ 150 ​FT​: ​We did
a quick test to see if the system will be able to reach
up to 150ft. This was done by moving the raspberry
pi relative to the router. The pi was able to meet this
requirement if there are no big obstacles in between
the two devices. However, for future proof, we added
an additional wifi adapter module to the pi, and that
was able to meet this requirement quite easily.

X. MARKETABILITY FORECAST
There are a few factors to consider when

talking about taking our prototype to market. First, it
is important to actually understand the market. What
is currently for sale and what is and isn’t successful in
the market is important to consider. Market research
would have to be done to determine what price people
would actually pay. Without knowing the target price
it is quite difficult to develop something. Once these
things have been determined the next step is to make
prototype revisions. These are all the changes that we
need to make to bring our system to market.

A. M ​ARKET

There are very few aeroponic systems on the
market. Currently hydroponic systems outnumber
aeroponics by far. This is very much a positive. This
means that there is a large amount of possible growth
in the market. The only aeroponic systems that are
available are very expensive, sometimes over $2000,
and they are very large generally. Our system that is
completely contained and very efficient space wise
with a smartphone app is quite unique. If we can keep
the price reasonable there is legitimately some
potential for success. What a “reasonable price” is
would need to be determined through much more

26

market research. Most likely it would be well under
$1000.

One area that our project is truly unique is the
community aspect of it. No other product tries to
foster a community of people growing their own
produce. People talking to other growers and sharing
tips and information along with trading produce is
what could truly make this product a success. Since
this aspect is built right into the app, it is accessible
enough to actually be useful.

B. P​ROTOTYPE​ ​REVISIONS

To truly bring our system to the market a few
changes will need to be made. Corian is a great
material but it is very expensive per unit compared to
something like injection molded plastic. If many units
were to be made a different material might be chosen.
We would also have to refine the help within the
application. We would add a robust help section that
would guide people who are new to growing plants.
Currently the system gives the user a great deal of
control but the problem with that is that the user can
very easily kill their plants. Currently it is possible to
manually adjust the sprayers so if someone wishes to
have more than one type of plant, and they have
different watering needs, they can adjust the amount
sprayed. This works but a more streamlined solution
could be made. In the final product it should be easier
to have plants with different water needs and possibly
even different lighting needs.

XI. CONCLUSION
Our goal was to create a device that was able

to supplement the diets of people in urban areas with
more healthy food. People in heavily populated urban
cities are generally in situations known as “food
deserts” where unhealthy food is far more cheap and
available than healthy alternatives. This is the focus
of the growing trend toward urban farming where
fruits and vegetables are grown within cities to cut
down on the cost and pollution associated with
transporting that food.

To achieve this goal we set out features we
thought would be necessary and/or beneficial to
achieving these ends. We decided there needed to be
sensors to gather the data that might be relevant to
someone who wants extra ability to control the food
they grow. The sensors also allow for the system to
react on it’s own to changes an uneducated user may
not notice. We wanted the process to be automated
for the same reason, to allow people less educated on
growing food to get a foot in the door. It was also
important that the system in general doesn’t require
too much user attention, again it is time they might
not be willing to spend. We decided the device should
be connected to an app to foster a community of
people wanting to get more healthy food in their diet.
Lastly, since the design was meant for an urban area
it should take up minimal space and not be noticeably
loud. We then split these features into subtasks to be
split amongst each other.

The funding and materials for this project
came from the team members.Thanks to donations
from the employer of one of our teammates we were
able to get over $600 worth of materials, about the
same amount of money we collectively spent both
semesters, $558. It is also more than half of the
$1092.4 total spent for the deployable prototype. In
the end the budget stayed under control with none of
our hardware failing and needing to be replaced.
Almost all $558 can be seen as hardware or materials
on the deployable prototype so little money was
wasted in testing and development.

There were several milestones throughout the
course of senior design, these included all of the
group assignments but also several important dates.
The lab prototype, midterm progress review and the
end of project documentation were the three biggest
milestones where our individual tasks had to be made
to work together. The lab prototype made us get basic
but thorough versions of our designs working
together. The mid-term progress review had us
finishing the project aside from small issues and thus

27

everyone’s designs would have to work together. This
end of project documentation had us compiling all of
our work from the past two semesters into a
representation of the time spent on this project.

The five sections of our feature set were
divided by their subgroups among the four of us.
Approximately 820 hours was spent on the project
between all of us. Kevin was responsible for the
automation programs and hardware and the wireless
communication, most of his time was spent working
on the automation aspects. Yutthachat was
responsible for the sensor programs and hardware,
most of his time was spent on wiring and acquiring
data from the sensors. Adrian was responsible for the
android application and operation of the database. He
worked primarily on getting the Android application
working. Brandon was responsible for the design and
manufacturing and wiring of the chassis of the device.
His time was spent designing and manufacturing the
mechanics of the project.

Next we talked about the risks associated with
our project and steps we’ve taken to avoid these
situations. We wrote about the possibilities of
hardware and software problems and the steps we’ve
taken to address them such as ordering spare parts
and using an online server, respectively. We ranked
the danger and likelihood of various possible
situations and used that to decide which problems
would require the most urgent attention. Looking at
the external risks became very important this
semester with the spread of COVID-19 and the
shutdown of the school and other major institutions
such as vendors.

We went from there to talk about the design
philosophy behind the various parts of the device.
Choosing sensors came down to what was available
at an inexpensive price. Still, the gravity pH sensor
was an expensive necessity to meet the feature set.
Software was designed with simplicity in mind as to
get people with less agriculturally educated people

into growing their own food. Lastly, hardware like
the lights and pumps were carefully chosen to meet
the feature set and to successfully grow food

Our project at this stage has met all of the
feature requirements set out for it. Extensive testing
has been done on the sensors to make sure they
provide relevant and accurate information. The
programs

We believe our device can compete with the
other indoor growing systems on the market today.
Cheaper systems lack the functionality ours has while
similar devices are more expensive. Improvements
could certainly be made to the design though such as
the use of a cheaper structure material or optimizing
the system to better care for the plants. This project
has been a great learning experience for all of us in
the issues that come during large scale and
cooperative projects.

REFERENCES
[1] R. N. Amundsen, “Urban farming: Victory gardens for sustainable

communities,” ​2013 Energy and Sustainability Conference​, 2013.

[2] Meharg, Andrew A. "Perspective: City farming needs monitoring."
Nature: International Journal for Science, 17 Mar. 2016. Google Scholar,
doi:https://www.nature.com/articles/531S60a. Accessed 16 Apr. 2020.

[3] Ackerman K, Conard M, Culligan P, Plunz R, Sutto, M Sustainable Food
Systems for Future Cities: The Potential of Urban Agriculture*. The
Economic and Social Review [Internet]. 2014 [cited 2020
Apr];45(2):189-206. (ScienceDirect)

[4] Zhange. He, Asutosh. Ashish, Hu. Wei, “Implementing Vertical Farming
at University Scale to Promote Sustainable Communities: A Feasibility
Analysis,” Sustainability, 2018. [Online].
Available:https://doi.org/10.3390/su10124429.

[5] “Food Waste FAQs,” USDA. [Online]. Available:
https://www.usda.gov/foodwaste/faqs. [Accessed: 10-Apr-2020].

[6] “How many watts are required per square foot of grow space”,
LEDgrowlightdepot.com
“https://www.ledgrowlightsdepot.com/blogs/blog/16326275-how-many-le
d-watts-are-required-per-square-foot-of-grow-space April 15,2020

[7] “Why is PAR Rating a Big Deal for Indoor Grow Light Systems?”
GrowAce.com
https://growace.com/blog/why-is-par-rating-a-big-deal-for-indoor-grow-li
ght-systems/ April 15,2020

28

[8] Crowe, Kevin, “Total Cost Of the Project.” [Excel] 2020

[9] Thao, Yutthachat, “WBS Hours Breakdown.” [Excel] 2020

[10] Thao, Y., et al. “Risk Matrix” [Excel] 2020

[11] Thao, Yutthachat. “Project Documentation.” [Photos] 2020

[12] Thao, Yutthachat. “Electrical Connection.” [Draw.io] 2020

[13] “Raspberry Pi 3 – Model B.” ​PiShop.us​,
www.pishop.us/product/raspberry-pi-3-model-b-armv8-with-1g-ram/.

[14] Aosong Electronics Co. “DHT22 Datasheet.” [Datasheet]. Accessed on
October 23, 2019.
https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf

[15] Adafruit Industries. “Analog UV Light Sensor Breakout -
GUVA-S12SD.” ​Adafruit Industries Blog RSS​,
www.adafruit.com/product/1918.

[16] DiCola, Tony. “Raspberry Pi Analog to Digital Converters.” ​Adafruit
Learning System​,
learn.adafruit.com/raspberry-pi-analog-to-digital-converters/mcp3008

[17] MCP3008 - 8-Channel 10-Bit ADC With SPI Interface.” ​The Pi Hut​,
thepihut.com/products/adafruit-mcp3008-8-channel-10-bit-adc-with-spi-i
nterface.

[18] “Gravity: Analog PH Sensor/Meter Kit V2.” ​DFRobot​,
www.dfrobot.com/product-1782.html.

[19] “SainSmart 4-Channel Relay Module.” ​Amazon​,
https://www.amazon.com/gp/product/B0057OC5O8/ref=ppx_yo_dt_b_asi
n_title_o03_s00?ie=UTF8&psc=1

[20] Thao, Yutthachat. “​EC Sensor Setup.” [​Draw.Io] 2020

[21] “Power Supply.” ​Amazon​,
images-na.ssl-images-amazon.com/images/I/61VB5ltH4zL._AC_SL1000
_.jpg.

[22] “LM295 Buck Converter.” ​Amazon​,
images-na.ssl-images-amazon.com/images/I/41YI1K5raEL.jpg.

[23] “King Plus 600w Double Chips Led Grow Light Full Spectrum with UV
and IR for Greenhouse and Indoor Plant Flowering Growing.”,​KingLED​,
https://kingledlights.com/products/king-plus-600w-double-chips-led-grow
-light

[24] Hilitand. “Peristaltic Pump Product Page.” ​Amazon​,
www.amazon.com/Self-Priming-Peristaltic-Aquarium-Chemicals-Additiv
es/dp/B07J2JDT54.

[25] AUBIG. “Aubig DC 12V Brushless Magnetic Drive Centrifugal
Submersible Oil Water Pump 500L/H 5M/16ft.” ​Amazon​,
www.amazon.com/DC-12V-Brushless-Centrifugal-Submersible/dp/B00C
6XNB50/ref=sr_1_10?dchild=1&keywords=waterproof+12v+water+pum
p&qid=1587780102&sr=8-10.

[26] “Adafruit TSL2591 High Dynamic Range Digital Light Sensor”
Adafruit.com
https://www.adafruit.com/product/1980

[27] “TCA9548 I2C Multiplexer” Adafruit.com
https://www.adafruit.com/product/2717

[28] Thao, Yutthachat. “Testing Data.” [Graphs]2020

[29] Crowe, Kevin, “Test Results - Light_Angle” 2020

[30] Crowe, Kevin, “Test Results - Light_lux/PPFD” 2020

[31] Crowe, Kevin “Raspberry Pi programs flow-chart”2020

[32] Crowe, Kevin “Pi programs” 2020

[33] “Subprocess” https://docs.python.org/3/library/subprocess.html

[34] Buck, Brandon “Construction” 2020

[35] Buck, Brandon “Tape compression” 2020

[36] Buck, Brandon “Sanding” 2020

[37] Buck, Brandon “Brace Cutting” 2020

[38] Buck, Brandon “Powder Coating” 2020

[39] Buck, Brandon “Dimensions” 2020

[40] Thao, Yutthachat. “Plants Documentation.” [Photos] 2020

[41] Barrera, Adrian“Login logic flow-chart”2020

[42] Barrera, Adrian “Login pseudocode flow-chart”2020

[43] Barrera, Adrian “User profile”2020

[44] Barrera, Adrian “Community Contact Logic”2020

[45] Barrera, Adrian “Layout pseudocode flow-chart”2020

GLOSSARY
Aeroponic​ - a plant-cultivation technique in which the roots hang suspended in
the air while nutrient solution is delivered to them in the form of a fine mist.

Electrical Conductivity​- A measurement of the amount of nutrients in a
solution.

Risk ​ - exposure to the chance of injury or loss; a hazard or dangerous chance

Polystyrene ​- a synthetic aromatic hydrocarbon polymer made from the
monomer styrene; it can be solid or foamed.

pH ​- quantitative measure of the acidity or basicity of aqueous or other liquid
solutions.

Food Deserts​ - places where healthy food is less accessible than cheaper and
unhealthier options.

29

Photo-Synthetic Photon Flux (PPFD)​ - the amount of photosynthetically active
photons (400-700nm) hitting a surface per unit area per unit time.

Android ​- an open-source operating system used for smartphones and tablet
computers.

Firebase ​- a Backend-as-a-Service — BaaS — a next-generation
app-development platform on Google Cloud Platform

30

IMPORTANT
READ THIS MANUAL CAREFULLY before attempting to operate the system.

DO NOT EVER LOOK DIRECTLY INTO GROW LIGHT. DIRECT OBSERVATION
MAY CAUSE DAMAGE TO EYES.

BEFORE OPERATION: Ensure there are no cracks or holes in the Corion enclosure.

1.0 Overview:
The Green Wall is an automated aeroponic growing system. It has an Android smartphone
application to monitor and control the environment to emulate the perfect growing condition for
plants. It is equipped with various sensors and controls to help the user grow their selected
plants.

1.1 Features:
● Able to maintain 12 small plants: After setup, system can support plants for a week

without user intervention
● Monitor relevant environmental information: ​With the assistance of the Android

smartphone application, users can monitor temperature (outside and inside system), light
information (UV and LUX), nutrient solution information (EC and pH), and humidity
(outside and inside system).

● Control lighting and watering times: ​With the assistance of the Android smartphone
application, users can control the watering time and light times for the system. After
initial setup, light and water timing are set to default times.

● Interact with other Green Wall users: ​Included in the Android smartphone application is
the ability for Green Wall users to contact other users in their zip code for the purposes of
trading produce.

1.2 What’s Included:
● LED grow light x 1
● Corian enclosure x 1 [Figure 1]
● Two part nutrient solution x 1 [Figure 2]
● 2 inch net pots x 20 [Figure 3]
● Green Rockwool x 1 [Figure 4]
● Raspberry Pi x 1
● Light sensor x 3
● UV sensor x 1
● Temperature and humidity sensor x 2
● EC sensor x 1

APPENDIX A.
User Manual

A-1

● pH sensor x 2

Figure A1. Corian enclosure adapted from [11] Figure A2. Two part nutrient solution adapted from [11]

Figure A3. Net pots adapted from [11] Figure A4. Green Rockwool adapted from [11]

1.3 Additional Requirements:
● Android smartphone, API 24 or newer
● Plant seedlings
● Distilled water

2.0 Specifications:
Dimensions:

Depth: 12 inches
Width: 24 inches
Height: 30 inches
Weight: 35 pounds

A-2

Material:
Material: Corian/aluminum
Color: white
Thickness: .5 inches

Other:
Operating Systems:

Raspbian Linux ver. 4.19 (microcontroller)
Google Android API 24 (smartphone)

3.0 Getting Started:

To start the setup, we recommend the user purchase plant seedlings, as the Green Wall system
has not been tested for the germination of the seeds. For example, a great and healthy plant to
grow is Basil, mint (any type), and small herbs.

Pick a place where there is a lot of open room as it will allow the plants to have access to more
air. The Green Wall is intended to sit flush against a wall; avoid using a well enclosed space such
as a closet or small room.

After picking a designated place for your Green Wall, you will need to prepare your system for
your new plants. First, fill the basin with 5 gallons of distilled water. Then, add a small 10ml of
each of the two part nutrient solution. This is just a base value for your plants. We recommend
that you research just how much your nutrient your type of plants require. We have an internal
Electrical Conductivity Sensor to help with the nutrient in your water. After filling the water and
adding an initial nutrient, fill up the two bottles within the system with the nutrients. Mix a 10

part water one part nutrient solution into the bottles.
Those two bottles will act as a regulator which will
automatically regulate the desired solution density.

After you are done, you are ready to transfer your
plant. Remove your seedlings and gently remove
most of the soil from its roots. Put your plant’s root
in first into the net on the system and then add
rockwool around it to hold it in place. Similar to the
Figure 5 below but you plant in the middle.

Figure A5. Rockwool in net pot adapted from [11]

A-3

Now plug in the system and watch as the plants start to get water. To configure the light setting
and the water interval, we recommend that you immediately use your provided credential and
connect to our app.

3.1 Monitoring System:
After the initial setup, it is recommended that the Android smartphone application be
downloaded and initialized. Once the application has been downloaded, open the application and
sign up using your email and password. After sign up, the sensor data page is shown. At the
bottom of the page, press the “users” button and enter in the provided credential into the
respective text field, and click update. This completes the setup for the account. The user is now
able to see the data that relates to the aeroponics system by returning to the sensor data page.

3.2 Other Green Wall users:
To view the other users in the same zip code, press the “users” button at the bottom of the sensor
data page. Enter in the desired zip code and press “update.” This will provide the contact
information for other users in your zip code. To opt out of this feature, enter in a value of “0”.

4.0 Troubleshooting:
In the event that the system is unresponsive, follow this procedure:

● Ensure that the overhead light is switched to the OFF position
● Unplug the Green Wall
● Plug in the Green Wall
● Give the system 5 minutes to reinitialize
● If open, close Android smartphone application
● Reopen Android smartphone application and login

This hard reset procedure will return the Green Wall to factory settings. Custom water and light
timings will be changed back to default. Please update these timings to avoid disrupting plants.

A-4

Figure B1. Electrical Connection Adapted from [12]

APPENDIX B.
Hardware

B-1

In this section, we will be listing all the hardware and components that we use for our
project. Above is a simplified version of how we set up our overall electrical connections. We
will be listing all these components. These are just the important components as the others are
just minor details to get these components working. For the electrical components:

1. Raspberry Pi 3
2. 2 DHT22 Temperature and Humidity Sensor
3. UV Sensor
4. MCP3008 ADC
5. Gravity Analog pH Sensor
6. 4 Relays Module
7. EC Sensor
8. 100 Watt 12V Power Supply
9. LM295 Buck Converter
10. Kingsled 600 watt Led grow light
11. Peristaltic Pump
12. Waterproof 12v Pump
13. 3 TSL2951 Light Sensor

Why did we choose it?
Raspberry Pi Model 3

-Wifi Module
-Easy to Program
-Able to Run multiple programs
-Has multiple GPIO pins and specific pins

Figure B2. Raspberry Pi 3 Adapted from [13]

B-2

DHT22 Temperature And Humidity Sensor
-Fit Perfectly with our project requirement

Figure B3. DHT22 Specification Adapted from [14]

Figure B4. DHT22 Sensors Adapted from [11]

UV Sensor (Adafruit GUVA-S12SD)
-Able to measure UV index of 0-5
-Output Analog Signal
-.1v/step is equal to UV1/step

Figure B5. UV Sensor GUVA-S12SD Adapted from [15]

B-3

MCP3008 ADC
-8 Channel 10 bit ADC
-Able to be use with 3.3v-5v

Figure B6. MCP3008 Wiring to Pi Adapted from [16]

Figure B7. MCP3008 Adapted from [17]

B-4

Gravity Analog pH Sensor/Meter
Specifications
Reads: pH
pH: 0.1 - 14.0
Resolution: 0.1
Accuracy: +- 0.2
Response Time: Continuous Analog Output
Supported Probes: Any Type & Brand
Temp. Compensation: No (Unnecessary)
Data Protocol: Analog 2.7 - 0.2V

Figure B8. Gravity Analog pH Sensor Adapted from [18]

SainSmart 4-Channel Relay Module
- Logic levels controlled by Vcc: 3.3V
- Relay operates below 250V AC - 10A, or 30V DC - 10A
- Relays powered by JD-Vcc: 5V

Figure B9. 4 Relay Module Adapted from [19]

B-5

EC Sensor
- Use stainless steel for the two probes
- 1Kohm for the known resistance

Figure B10: EC Sensor Setup
Adapted from [20]

100 Watts 12V Power Supply

Figure B11. 100 Watt 12V Power Supply Adapted from [21]

B-6

LM2596 Buck Converter
- (45 x 23 x 14) mm
- Vin: 3.0 - 40 V
- Vout: 1.5 - 30V
- Output voltage adjusted through potentiometer but Vout < Vin

Figure B12. LM295 Buck Converter Adapted from [22]

Kingled 600 Watt Grow Light
- (12.2 x 8.2 x 2.36) in
- 85 - 265 V
- effective 120 watt (equivalent to 600W HPS bulb)
- 60 10W equivalent LEDs
- Lifespan: >50,000 hours
- Recommended Distance: 2-3.5 ft

Figure B13. Kingled 600 Watt grow light Adapted from [23]

B-7

Peristaltic Pump
- Able to pump EC Solution
- Uses 12v

Figure B14. Peristaltic Pump Adapted from [24]

Main Pump 12V
- Able to be fully submerged
- Pump enough water for all our plants

Figure B15. Main Pump 12V Submersible Adapted from [25]

B-8

TSL2591 Visible/Ir Lux Sensor
- (19x16x1) mm
- Vin: 3.3V-5V
- Range: 188 uLux - 88 kLux
- Interface: I2C (7-bit address, 0x29)
- Temp Range: -30 - 80 (deg C)

Figure B16: TSL 2591 Visible/IR lux sensor Adapted from [26]

TCA9548A I2C Multiplexer
(30.6 x 17.6 x 2.7) mm
Selectable I2C addresses: 0x70-0x77

Figure B17: TCA9548A I2C Multiplexer Adapted from [27]

B-9

Testing Data
We will look at the most important components listed here and describe the test done to validate what

the datasheet claims.

First is the pH, we wanted to see if the pH sensor can measure the pH accurately and stable through a
day. Below is the stability inside a test solution of pH 6.82.

Figure B18. pH Sensor Stability over a day Adapted from [28]

Table BI. pH Sensor Test Adapted from [28]

Solutions pH Sensor Retail pH Sensor

30ml/100L 5.12 5.31

400mL/100L 4.6 4.55

pH Calibration Packet 4.01 3.99 4.05

7.01 7.04 7.12

10.01 10.00 10.15

Tap Water 8.07 8.01

30ml/100L solution 6.77 6.86

400mL/100L 5.77 5.64
Adapted from [27]

B-10

From both of the tests, we can see that the pH sensor is able to measure the pH accurately and the
stability of the sensor over a day did not vary a lot. These are well within our measurable requirements.
However, when both the pH and EC sensor are within the 1 ft of one another in the solution they would affect
each other reading. Below is a test to see if we can figure out a way to minimize these effects.

Figure B19. pH with EC Sensor Stability Adapted from [28]

Figure B20. EC with pH Sensor Stability Adapted from [28]

In the first 6 hours, the two sensors were about 1 foot apart. Then the next data is when they are about
6 inches apart. At about 1 foot, the pH reads about 7.45 while the actual pH is 7.36. The difference is about
.15 pH. For the EC Sensor, the EC read .09 mS/ cm which is close to the EC of .086 mS/cm. We can see that
at one foot, the two sensors are already pretty closed to the accurate value. Therefore, when we built the
deployable prototype we make sure they are two feet apart. This will greatly improve our readings.

B-11

Seeing that we are able to control the EC and pH interference, we needed to measure the EC stability
and accuracy as well. Below is the stability in one day:

Figure B21. EC Stability over a day
Adapted from [28]

As we can tell from the data that we collected the EC tends to go off by about .3. The real EC was .86
while this graph shows that at first, the EC was still getting used to the environment. Later the EC sensor was
able to settle near the actual value.

We will then also be testing the stability and accuracy of the DHT22 Sensors. We noticed that one of
the sensors is offset by 5% relative humidity, so we are doing the test to see if we can actually see which one
is the correct one. Below, we tested the stability of the two sensors.

Figure B22. DHT22 Humidity Sensor Adapted from [28]

Figure B23. DHT22 Temperature Sensors Adapted from [28]

B-12

Looking at the result, we can see that the two sensors are able to measure the temperature and humidity at a
stable rate. However for the humidity, one of them is offset by 5% relative humidity. To find out which one it
is, we did an accuracy test. For the humidity, we create a saturated salt test which when placed within a sealed
bag will create a humidity of about 75% relative humidity. We then put the two sensors in and measure the
humidity to see if they are close to 75%. We found that the sensor1 was closest which means that sensor0 is
offset 5% higher. For the temperature accuracy, we only needed to test if the temperature was within 2F of
what it is. Therefore, we use a thermometer on a multimeter to measure the temperature and then using the
two sensors, we measure the temperature. The real temperature is 71F while the two sensors measured 71.59
and 71.41F which are very close to what it should be.

Figure B24. Temperature Accuracy Test Result Adapted from [28]

Grow Light/Light Sensor:
Testing of the TSL2591 and the KingLED 600W grow light was a process of three tests. The first tested if the
sensor required the light to be directly facing it or if the sensor could be angled and corrected with geometry
later. The second tested if the light sensors were outputting the correct lux values, which was tested using a
commercial lux meter the test was also used to see if the light range on the deployable was at least 200-600 on
the PPFD scale.

The first test came back successful, results of the light shining on the parallel sensor can be seen in the
figure below.

Figure B25. angle_Veg-flat Adapted from [29]

B-13

The average value obtained from the data was used to compare to when the sensor was angled. I
test it with angles from the ground of 45 and 60 degrees.

Figure B26. Veg-flat average Adapted from [29]

This figure again shows the average of the flat sensor. Given another output the angle between
those two outputs should be the inverse sine of the fraction made with the new number over the
above average

Figure B27. Veg-45 Angle Test Adapted from [29]

For example, here the average value of the angled sensor is 46760.2952. With the previous
average, the angle should be arcsin(46760.2952/63480.0182) = 47.44, as it is. The “Angle Error”
shows the percentage error from the ideal 45 degrees. The test setup itself was less than ideal so
an error within 10% should be within reason.

Figure B28. Veg-60 Angle Test Adapted from [29]

The error here is again low, supporting the idea that geometry can be used to overcome this
sensor’s inabilities. A similar test was done with the light in the other mode, bloom, the results
were very similar.

Figure B29. Bloom-flat Angle Test Adapted from [29]

Figure B30. Bloom-45 Angle Test Adapted from [29]

Figure B31. Bloom-60 Angle Test Adapted from [29]

The angle error for this mode is also between 10%. This shows that angling the light can reduce
the output without losing the accuracy of the sensor.

B-14

The second test was to both compare the light sensors to a commercial lux sensor to see how
accurate their readings were. The results were very far off

Figure B32. Bloom Lux Test Adapted from [30]

This above table shows the measurements made by the commercial lux sensor. Measurements
were taken at the three growing levels where the light sensors sit.

Figure B33. Bloom Lux Test 2 Adapted from [30]

This shows the averages for the data above. I used an online PPFD calculator to convert from
lux. The calculator requests the spectrum of light and then converts your lux level to PPFD. Our
light is “full spectrum” based on their product description. I thought the best fit would be the red
blue and white LED option. The constant the website is using to calculate the PPFD was easy to
find with some math and found to be .02569 PPFD/lux. Using this I was able to calculate the
PPFD range from the bottom growing row to the top row.

Figure B34. Veg Lux Test Adapted from [30]

B-15

Using the same method as above I tested the results of the “Veg mode” The results were lower
PPFD values in general. The range is not much thinner than the bloom option but it does reach
lower into low light.

Figure B35. Bloom+Veg Lux Test Adapted from [30]

With both light modes enabled the system reaches its peak of 614 PPFD. This means the total
range of light being shone on the grow space is 166-614, considering different modes, with a
plenty wide range in any mode.

B-16

C.1. Raspberry Pi Program

Figure C1. master.py and Lights.py Adapted from [31]

The flow charts above show how each program starts, what they do and how they are
connected. The first shows the master program and the lighting program. The master program
starts at boot and continues off to the right. In between then and when it returns for the start of
the loop the four other programs are started.

APPENDIX C.
Software

C-1

This shows most of the process of the master program. It’s main function is to check on
the other programs. The keyboard interrupt block is used to show that a loop starts that can be
exited by using the keyboard interrupt, CTRL + C on the pi. While it’s not pressed the program
goes into its’ continuous loop. It first gets the current time, then it checks if that time is one of
the lighting times, the first loop the values are empty so nothing is done. If it is one of those
times the light is turned on. Continuing with the master program the next command is checking
if the lighting times have been updated in the last 10 seconds, if they haven’t an array of user set
lighting times is pulled from the database. Lastly the program checks if the other programs are
still running with the poll() command explained above. If any of the programs aren’t running,
aside from the light program, an error is displayed saying which program has stopped.

This flowchart shows the master program commands in red and color codes the rest of
the programs uniquely. The yellow program path is the Light.py program, it simply runs the
lights for several hours. It is the perfect example for why the subprocess library should be used.
Since it’s a seperate program it can sleep for the duration of the lighting, again several hours, and
not interfere with the master program or any other for that matter. The Light.py program is the
only one to run for a certain amount of time before stopping as the others all run continuously
until stopped. Below I go into the other standalone programs.

C-2

Figure C2. Water_Pump.py Adapted from [31] Figure C3. Sensors.py Adapted from [31]

The “Water_Pump.py” program controls how often the plants are sprayed with the
nutrient solution. The program runs continuously until the keyboard interrupt is pressed. This
program uses the requests library to pull the user set watering information from the application.
The watering interval is set to revert back to the default 5 minutes if a time outside the range of 3
minutes to 7 minutes is entered. The two constants of the program set the default delay time just
described and the other to set the duration of the watering, set to 10 seconds in the code. The
program cycles in a loop, checking every 10 seconds if the delay time has passed since the last

C-3

watering time. When the keyboard interrupt is pressed the GPIO’s are unset and the program
ends.

The “Sensors.py” program controls the acquisition, saving, and sending of the sensor
data. It notably uses the json and csv python libraries; the json library is used to format and send
data to the database whereas the csv library is used to save chunks of past data to .txt files. The
other notable libraries include those used for the sensor data acquisition; we had to get data from
both SPI and I2C as well as a specialized digital interface for the temperature and humidity
sensors. Each sensor’s acquisition code has its own defined function for ease of use, the other
two functions serve to save and send the data respectively as described above. The program runs
on a simple timing loop like the others which, when triggered every 10 seconds, sticks the data
from all of the sensors into a buffer after which the save and send functions get the data where it
needs to go. A separate file is also created for the electrical conductivity value, a file containing
the most recent EC value is created and overwritten every 10 seconds for use in regulating the
amount of nutrients in the water.

C-4

Figure C4. Send_Data.py Adapted from [31] Figure C5. Env_Reg.py Adapted from [31]

The “Send_Data.py” program is a functionality that went unused for the most part with
the lingering benefit of the sensor data being stored on the database. The program is very simple
and was intended to allow for the plotting of past sensor data. The program pulls the
time-stamped sensor data accumulated over the last hour and sends it as a json file to the

C-5

database. The program is asleep for most of the time, only checking if an hour has passed every
10 minutes and staying asleep to save the CPU the rest of the time.

The “Env_Reg.py” program is responsible for regulating the amount of nutrients in the
water. It does this with information from our electrical conductivity PPM sensor, by controlling
the floor level of electrical conductivity we are able to control the amount of nutrient solution in
the water basin. The only relevant library this program uses is the csv library which is used to
read the most recent EC value. There are no functions as the code is very simple. The loop gets
the current time and checks if 30 seconds has passed since the last time the program got the EC
value. If it’s been 30 seconds the program pulls the EC value from the most recent running of the
“Sensor.py” program. If the value is lower than the set threshold then the peristaltic chemical
pump is run for just a second. The pump time is so short compared to the wait time of 30 seconds
because the nutrient solution is incredibly potent, it needs time to dissolve into the water.

Since each program runs independently of the others testing could be done by running the
master program, assuming that works, and the programs that were incorrectly working would
display errors specific enough to point them out. The main discovery of testing that prompted the
addition of some code to every program is I was getting errors that the GPIO’s were already in
use because I had exited the programs without doing any GPIO cleanup. The other fact
discovered through testing was the effect of calling for a program to sleep. Running 6 programs
at once was pushing the limits of the Raspberry Pi’s CPU and using the sleep command reduced
the CPU percentage in use to below 50%.

The program “master.py” starts and monitors the others to make sure everything is
running smoothly and to give specific errors as to which program isn’t working. This program is
set to start on the boot of the Pi. From there several libraries are called, most important of which
is the subprocess library. The library allows for programs to make command line executions such
as starting another python program [30]. The function Popen() is what allows for the action.

Figure C6. master.py - Popen() Adapted from [32]

Assigning the function to a variable allows for the programs status to be monitored. Below I
show a command used in the program to start one of the independent programs. I then show the
command used to monitor those programs as an example.

Figure C7. master.py - runprog() example Adapted from [32]

Figure C8. Master.py - poll() example Adapted from [32]

C-6

As seen in the function all that is needed as input for runprog() is the python file name as a string
with the condition that the program is in the “pi” folder. The second command, found within the
loop of the master program, checks the status of the water pump and outputs an error if it sees the
program has stopped. It uses the variable of the runprog() command with the addition of the
.poll() function. If poll() returns None the program is still running and returns 0 if the program
has stopped (or can’t be found) [33].

Another important library found in several programs is the request library, it allows for
communication with the firebase database our android application uses. The library is used to get
information both to and from the database. The following figure shows an example of the code in
this case used to pull an array of user set lighting times.

Figure C9. master.py - requests Adapted from [32]

From that point the “data” variable can be treated as a dictionary in json format. A similar
function is used to push the sensor data to the database for it to be displayed on the application.

Figure C10. requests - put Adapted from [32]

This command contains more syntax but is just pushing numbers to the database in json format
rather than pulling from it. It is used for each sensor, string of names contained in the “stp” array,
to push each value into its own named category on the database. With the correctly set user and
firebase_url the correct categories will show up, named, on the database without the user having
to set anything up on the website end.

The last important library is the datetime library which is used to control the timing of the
device. It uses the RaspberryPi’s internal clock which is updated through the internet. Other
important libraries include the csv and json libraries. The csv library is used to create easy to
read data files on the pi while the json library is used to send and receive data from the
database/app. There are also the Adafruit libraries for the MCP3008, the DHT22, and the TSL
2591 used for the sensor functions. Other common libraries are used to a lesser degree in all
programs.

C-7

Start

No

Yes New User?

Enter email

Enter password

Error message

No

Yes

Valid Email/
Password?

Error message

Open Landing Page

Press "Login"

Press "Sign Up"

No

Yes

Already
Registered?

C-8

Figure C11: Login Logic Adapted from [41]

Start

Import libraries
(android and firebase)

Set View to Sensor
data page

Get Firebase Auth
userID

Yes

No

Has any data
changed?

Yes

Button pressed?

Set findView and
button listeners

Add real time data
listener

Pull data snapshot of
users sensor data

Set text on text fields
to reflect the current
state of the database

values

Check which button
was pressed

Logout Button
Pressed

Sign out of Firebase

Go back to login page

Users Button Pressed

Go to Users page

Pump Update Button
Pressed

Call pumpUpdate
function

Error check text field
value

Set value in user's
data in database to

reflect change

Light Update Button
Pressed

Call lightUpdate
function

Error check text field
value

Set value in user's
data in database to

reflect change

C-9

Figure C12: Login Psuedocode Adapted from [42]

0..1 1logs in

Illuminance - High (LUX)

Temperature - Inside (F)

Temperature - Outside (F)

Ultraviolet (mW/cm^2)

pH

Water Pump Interval

Lighting Interval

User

Name

Zip Code

EC Sensor (mS/cm

Illuminance - Mid (LUX)

Illuminance - Low (LUX)

Humidity - Outside (%)

Humidity - Inside (%)

Authentication

Email

Password

C-10

Figure C13: User Profile Adapted from [43]

Start

Import libraries
(android and firebase)

Set View to Users
data page

Get userID

Search database for
user's zip code

Get emails
associated with zip

code

No

Yes

Zip code found?
Error message, ask
user to resubmit zip

code

Yes

Update zip code
pressed?

C-11

Figure C14: Community Contact Logic Adapted from [44]

Start

Import libraries
(android and firebase)

Set findView and
button listeners

Get Firebase Auth
Instance

YesNo
Login Button

Pushed?
Get Email and

Password from fields

Error check email and
password (empty

fields, valid format,
password length)

User Presses Login
or Sign Up

Yes

No

Errors in email
or password?

Yes

No

Already
registered?

Error message

Create new user with
email and password

on Firebase

Create user's data
structure by setting

each field to "No Data"

Open main landing
page

Get Email and
Password from fields

Error check email and
password (empty

fields, valid format,
password length)

Yes

No

Errors in email
or password?

Error message

Send login
information to

database

No

Yes

Login accepted?

C-12
Figure C15: Layout Psuedocode Adapted from [45]

 I . Building Material
The first prototype was made from polystyrene. It is a synthetic aromatic

hydrocarbon polymer. People use it everyday in food containers and utensils. It comes in many
forms but the form we used was a solid that is ¼ inch thick. This was chosen for the first
prototype because it is food safe and considered a cheap material. It is also very easy to cut and
work with. The problems with it are that it is not stiff or particularly strong. This makes it almost
impossible to create a structure that is perfectly straight. Another problem is that it starts to break
down in UV light, something that could definitely happen in our case considering we are using a
grow light. It also does not seal in water vapor well.

The solution to all of this was to switch to corian. It is an acrylic polymer and it’s
much denser than polystyrene. It is often used outside for countertops and similar applications so
it is very UV resistant. The most common usage for it is kitchen countertops and cutting boards.
It is used because it is food safe and very stable. It comes in very precise sheets so building a
structure with it is straightforward.

The other primary building material is 6061 aluminum. It can be bought in any
shape and is fairly inexpensive. For our use we got it at an extruded angle. It is simply an L
shaped bar. On its own it is a fairly resilient material, but to make it even more resistant to
corrosion it was powder coated. Powder coating is the process of using static to make small
beads of plastic cling to an object, and then baking that object until the plastic melts and forms a
hard layer.

II. Building Process
To build the structure all the pieces were cut from a large sheet of corian. Then, with

color matching glue specifically made for corian the pieces were glued together. As seen in
Figure D1.

Figure D1. Construction Adapted from [34]

APPENDIX D.
Mechanical Aspects

D-1

In figure D3 blue tape is used to provide compression. In general adhesives create a much
stronger bond when the pieces are pressed tightly. This was also done so that everything would
stay perfectly aligned while the glue cured.

Figure D2. Tape compression. Adapted from [35]

D-2

Once the main structure was glued together, everything needed to be sanded to give the

Figure D3 shows the system during its sanding phase.

Figure D3. Sanding Adapted from [36]

D-3

Once the sanding was completed the aluminum bracing had to be cut, debured, and then
powder coated. Figure D4 shows the aluminum being cut in a band saw.

Figure D4. Brace cutting. Adapted from [37]

Once cut and debured, the aluminum bracing had to be powder coated. That process is
shown in figure D5.

D-4

Figure D5. Powder Coating. Adapted from [38]

Once all these steps were completed the main structure was complete. Figure D6 shows
the dimensions of the finished system.

Figure D6. Dimensions Adapted from [39]

III. Integration
The final part of the physical structure was integrating all the parts. To accomplish this

holes had to be cut anywhere a sensor was placed. This was done so that the wires could run
directly into the system. Using aluminum bracing a mount was made for the light. The light is
over 10 pounds so we chose not to hang it. Instead it simply sat on top of an aluminum shelf.

D-5

APPENDIX E.
Vendor Contacts

E-1

Ansync Labs
5090 Robert J Mathews Pkwy, Eldorado Hills, CA 95762
916-933-2850

EDUCATION

California State University; Sacramento, CA
Bachelor of Science, Electrical and Electronic Engineering, May 2020

Los Rios Community Colleges; Sacramento, CA
Dec 2017

EXPERIENCE

Selland’s Market-Cafe; Sacramento, CA
Dishwasher

March 2017 - Now

• Work as a dishwasher and doing food preparation

Opa Opa; Sacramento, CA
Busser

March 2017 – Jan 2018

• Worked as a busser, food runner, and dishwasher

SES Tutoring; Sacramento, CA
Tutor

Jan 2016 - Dec 2016

• Tutored in K-12 English and Math

PROJECTS

Senior Product Design
• Designed and built an automated aeroponic system for indoor farming which received an A grade

APPENDIX F.
Resumes

Kevin Crowe

F-1

Yutthachat Thao

EDUCATION

California State University, Sacramento
Bachelor of Science, Electrical and Electronic Engineering, May 2020

EXPERIENCE

KFC Crew Member, ​Elk grove, CA
Project Manager

Nov 2015 - Sep. 2017

• Responsible for greeting customers and taking orders.
• Responsible for package them and delivering them

Macy Receiver, ​Sacramento, CA
Engineering Intern/Assembly Tech

May 2018 - Oct 2018

• Help unload new stocks and prepare them for inventory.

• Loaded old shipment of unneeded clothes to RBA.

PROJECTS

Senior Product Design

• ​Designed and built an aeroponic system for indoor farming which received an A grade

LANGUAGES & INTERESTS

• Code development,
• Love to learn and automate many functions of life through programming

F-2

Adrian Barrera

EDUCATION

California State University, Sacramento

Bachelor of Science, Computer Engineering, May 2020

EXPERIENCE

California Department of Water Resources

Electrical Engineering Intern

July 2017 – Jan 2020

• Assist electrical engineers with ongoing projects

• Review functional trip test reports of protective electrical systems for motors, generators, transformers,

etc. to ensure WECC compliance

• Analyze electrical single-line, three-line, connection, dc schematic, and switching diagrams for

compliance purposes

California Department of Community Services and Development

Student Assistant

July 2014 - July 2017

• Act as administrative assistant for the Human Resources Office (HRO)

• Troubleshoot IT issues for the HRO

California Department of Public Health

Volunteer

December 2013 - April 2014

• Conduct black box testing of the California Reportable Disease Information Exchange (CalREDIE)

system, with supporting documentation

• Provide effective customer support to users of the CalREDIE system

• Effectively control the release of confidential information to health care providers

F-3

Brandon Buck

EDUCATION

California State University, Sacramento
Bachelor of Science, Electrical and Electronic Engineering, May 2020

Folsom Lake College
Associate of Science, Mathematics, May 2016

EXPERIENCE

• Organize and facilitate relationships with vendors
• Schedule and create timeline for projects including material acquisition and department assignments
• Facilitate communication between teams and clients

• Consulted on projects especially relating to conductivity and signal integrity
• Constructed prototypes

• Contracted for the California Public Retirement System
• Coded programs for data auditing to ensure data quality
• Created a search engine to locate records impacted by production change requests

PROJECTS

Senior Product Design
• Designed and built an aeroponic system for indoor farming which received an A grade

LANGUAGES & INTERESTS

Fluent in Afrikaans
Cycling Development November 2014 - September 2016
• High school mountain bike program coach

Ansync Labs, Eldorado Hills, CA
Project Manager

June 2019 - Present

Ansync Labs, Eldorado Hills, CA
Engineering Intern/Assembly Tech

June 2018 - June 2019

J A Frasca & Associates, Sacramento, CA
Consultant

February 2017 - June 2018

F-4

 This section is a documentation of our first use of the system. We decided to grow
3 different plants: spearmints, lemon mints, and basil. We chose these plants because we
wanted a variety to test how far our system can keep the plants alive and growing. In
addition, the spearmint and lemon mints are much easier to maintain and are more resilient to
environmental changes. They required about 2-3 hours of full direct sunlight while the basil
requires 6 hours of direct sunlight. These requirements can be met by our led growth light.

The first step was the transfer. We wanted to have a few small growing plants already, so
we can test our system better. We transfer the plants one by one from their pots to the holder in
our systems. This transfer may have caused some stress in the plants. Although not fully realized,
the plants may be struggling. In addition, the plants did not receive any water or nutrition after 3
hours after the transplant because we were working far away from the plant we wanted to test the
system. However after we transplanted, the plants were still looking good.

Figure G1. The plants after the transplants Adapted from [40]

We transfer the plants at one of our group member’s workplace.

G-1

APPENDIX G.
Using The System

Figure G2. After Setting the System At the Designated place Adapted from [40]

After we decided who would take care of the plants, we set up the system and had it
running. This system is going to be run by one of our group members, and he will treat it like a
user would. This means that he will not be taking care of the system everyday. He will run the
programs and tried to see if our system can actually grow some plants.

G-2

Figure G3. Day 4 after the Transplant Adapted from [40]

After 3 days, we noticed that the plants were doing well, and our system is working as intended.
It was watering the plants, and the plant actually a bit. The system so far has not had any issue.

G-3

Figure G4. Day 5 Adapted from [40]

We decided that when we set up the system, we should prepare for any mishaps. Therefore, we
have a towel underneath to make sure if there is a small leak, the carpet will be safe for a while.

G-4

Figure G5. Day 6 Adapted from [40]

Day 6: The plants are growing and still doing fine. Again there is no issue so far with the system.
The lights were still on and the water was still pumping.

G-5

Figure G6. Day 9 Adapted from [40]

Day 9: After a week, we were sure that the system and the plants were going to be fine and left it
with much attention just as the user would have. However, our system did have a leak in the
back. Most of the water was leaking out on the back. This left the plants with a few days of no
water and nutrition. We did not notice this leak until it had already left the plants stressed.

G-6

Figure G7. Day 10 Adapted from [40]

Day 10: We decided to put a plastic sheet underneath and the towel just in case there was another
leak. We sealed up the previous leak, and now the water plants are still doing ok. Therefore, just
like before, we intend to leave the plants growing without much attention from the user. This was
an idea because our system did not have a way to act if the wifi was intermittent. This was the
case after 10 days. The wifi at our designated testing area was working intermittently, and we did
not notice it immediately and left the system running for 7 days without access to instruction on
when to run the lights and the interval of the watering.

G-7

Figure G8. Day 18 Adapted from [40]

Day 18: After another 8 days, we noticed that the plants were dying and struggling to survive.
We checked the system, and found that the program was all out when the wifi disconnected. This
left the system not working for a whole 1 week. This caused plants to stress and mostly the basil
all died. The basil required much more sunlight to survive and there was barely any from the
window near and no light from our grow lights. We removed the basil and decided to keep
testing the system after fixing the issue. Again, we left the system with little attention from its
users and tried to see what would happen.

G-8

Figure G9. Day 25 Adapted from [40]

Day 25: After a week, we did a checkup on the plants and noticed that they were still doing okay.
They may have grown a bit different, but it looks like they were still growing even if just by a
little. We checked the system for any error and have found nothing.

G-9

Figure G10: Day 27 Adapted from [40]

Day 27: We noticed that the plants were slowly dying, and again there was another leak in our
system. Although the plants were getting water, they were only getting a little now. This may be
the reason why our plants are struggling to grow. Even though we fixed this error, it seems that
the plants were going to die. Slowly we watched the plants die one by one.

G-10

Figure G11: Final Day Adapted from [40]

This is the final day. It is the day in which we are recording the video for the senior project. We
knew we did not have time to retry our test. However with our first experiment, we learn that the
plants are able to be kept alive for a while without any care. Stills, our design was not perfect and
there were some leaks and mishaps. This ultimately caused our plants to slowly die. In
conclusion, we still needed to test the actually growing process even further before actually
marketing this product. There are still a lot of minor details that needed to be corrected before we
can actually call this a real product.

G-11

	End of Project Table of Contents
	End of Project Documentation
	End of Project Table Appendices
	Pages from Team8_End_of_Project_Documentation
	Resume_KevinCrowe
	EDUCATION
	Los Rios Community Colleges; Sacramento, CA

	EXPERIENCE
	PROJECTS

	ThaoYResume V2
	ABarreraResume_v2
	Brandon Resume School PDF
	EDUCATION
	EXPERIENCE
	PROJECTS
	LANGUAGES & INTERESTS

