Star Factories: Nuclear Fusion and the Creation of the Elements

Science In the River City workshop 3/22/11

Chris Taylor Department of Physics and Astronomy Sacramento State

Introductions!

Science Content Standards, Grades 9 - 12 Earth Sciences:

- Earth's Place in the Universe
- 1.e "Students know the Sun is a typical star and is powered by nuclear reactions, primarily the fusion of hydrogen to form helium."
- 2.c "Students know the evidence indicating that all elements with an atomic number greater than that of lithium have been formed by nuclear fusion in stars."

Three topics tonight:

1) how do we know all the heavier elements are made in stars? *(Big Bang theory)*

2) How do stars make elements as heavy as or less heavy than iron? (Stellar nucleosynthesis)

3) How do stars make elements heavier than iron? *(Supernovae)*

Big Bang Nucleosynthesis

The Big Bang theory predicts that when the universe first formed, the only matter that existed was hydrogen, helium, and very tiny amounts of lithium. If this is true, then all other elements must have been created in stars.

Astronomers use spectroscopy to examine the light emitted by distant stars to determine what kinds of atoms are in them.

We've learned that most stars contain nearly every element in the periodic table.

The spectrum of the Sun

In order to measure measure what kinds of atoms were around in the earliest days of the Universe, we look for stars that were made out of fresh, primordial gas.

The closest we can get to this is looking at dwarf galaxies, which show extremely low levels of elements heavier than helium.

Stellar Nucleosynthesis

If heavy elements didn't get formed during the Big Bang, then where do they come from?

The Proton-Proton Chain

In fusion, atomic nuclei are smashed together at speeds high enough to overcome the electric repulsion of their positive charges. The nuclei then join together to form a single larger nucleus.

At high speeds, nuclei come close enough for the strong nuclear force to bind them together.

The only place we know that fusion can build heavy elements is inside the cores of stars. The question now is:

What is it about the environment inside stars that makes nuclear fusion possible?

High temperature; and

high density.

*

Demo

Stars like the Sun will make helium in their cores until the hydrogen fuel runs out. Some, but not all, stars will then switch over to fusing helium into carbon. This is the origin of all carbon in the Universe.

The higher the mass of the star, the heavier elements it can create in its core. This is because heavy element fusion requires higher temperatures, which only the most massive stars can attain.

Helium-capture reactions

Other reactions

The highest mass stars can make all elements up to and including iron in their cores.

But iron is the heaviest element they can make. Fusion of iron does not create energy, and without an energy supply, the star will soon die.

Nucleosynthesis in Supernovae

If stars can only fuse elements upto and including iron (Number 26 on the periodic table) then where do all the gold, silver, lead, uranium, etc... come from?

*

Supernova Explosion

Inert iron core stops producing energy, but continues to produce neutrinos which release energy from core

Densities climb, protons and electrons combine to produce neutrons and more neutrinos

Sudden lost of energy causes core to collapse from lack of pressure support

Regions around core are unsupported and plunge onto core at speeds up to 15% the speed of light

Neutron densities are so high in core that it is incompressible and rigid. Infalling layers strike core and rebound.

In a fraction of a second, a wave of matter forms a shock front and moves outward towards stellar surface.

Shock wave hits surface of star and explodes

Inward shock compresses remaining stellar core into neutron star or black hole

When a high mass star's core runs out of fusion fuel, the core collapses, causing the regions near the core to fall in and bounce off the core.

This creates an outward moving shockwave of atoms.

Demo

The R-Process

When the supernova explodes, large numbers of neutrons are shot out of the interior of the star at high velocities. Think of these like pellets in a shot gun shell that has been fired.

These neutrons pass through the outer regions of the star, colliding with the atoms already there (mostly hydrogen). The collisions happen very rapidly and quickly build up very large atoms. Nucleosynthesis by Neutron Capture

construction of elements beyond iron involves the capture of a neutron to produce isophotes. Unstable isotopes decay into new elements

		F	11C ⁻	10r	n ir	n ct	-e11	ar	co	rec	1								
	hydrogen		UD.	IUI.	L LL.			.41	UU									52553. O	helium
																			2
	н																		не
ą	1.0079 lithium	boryllium												boron	carbon	nitrogen	ownen	fluorine	4.0026
	3	4												5	6	7	8	9	10
	Li	Re												B	C	N	0	E	Ne
	6.941	9.0122												10.811	12.011	14.007	15,999	18 998	20.180
8	sodium	magnesium												aluminium	silicon	phosphorus	sulfur	chlorine	argon
	11	12												13	14	15	16	17	18
	Na	Ma												AI	Si	Ρ	S	CI	Ar
	22.990	24.305												26.982	28.086	30.974	32.065	35.453	39 948
	potassium	calcium		scandium	titanium 22	vanadium 22	chromium	manganese	iron 26	cobalt	nickel	copper	zinc 20	gallium 21	germanium	arsenic	selenium 24	bromine 25	krypton 26
	19	20				23	24	25	20	2	20	29	30	0	32	33	34	55	30
	ĸ	Ca		SC	11	V	Cr	wn	Fe	Co	NI	Cu	Zn	Ga	Ge	AS	Se	Br	Kr
	39.098 rubidium	40.078 strontium		44.956	47.867	50,942 piobium	51,996	54,938 teebnotium	55.845 rutbopium	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904 jodino	83.80
	37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Ph	Sr		V	7r	Nb	Mo	To	Du	Ph	Dd	۸a	Cd	In	Sn	Sh	To	1	Yo
		07.00		00.000							100.40	Ay	Gu	444.00	3 11	30		100.00	
ġ.	caesium	barium		lutetium	91.224 hafnium	tantalum	95.94 tungsten	rhenium	osmium	iridium	platinum		mercury	thallium	118.71 lead	bismuth	polonium	astatine	131.29 radon
	55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	×	L III	Hf	Ta	W	Re	0s	Ir	Pt	Διι	Ha	TL	Ph	Ri	Po	Δt	Rn
	132.91	137 33	1.563	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	12101	[222]
8	francium	radium	10.2.12.0.12.12.12.12.1	lawrencium	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	ununnilium	unununium	ununbium	201.00	ununquadium	200.00	200	TETO	[222]
	87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
	Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
	[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

*Lanthanide series

* * Actinide series

lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Fusion in supernova explosions

Thanks!