Formula: Formaldehyde: CH₂O

List of atoms in the	A	N
formula		·
С	4	8
Н	1	2
Н	1	2
0	6	8
(+ or -) Charge	0	
	Total A:	Total N:
	12	20

- Note 1: N= 8 for all elements, expect for hydrogen N=2
- Note 2: Find A for each atom by its group number in the periodic table.
- Note 3: For anion add number of negative charge. For cation subtract number of positive charges.
- Note 4: For skeleton:
 - o Symmetrical if possible.
 - o H and halogens are terminal.
 - Element with fewest valance electrons in center. Also, the least electronegative atom is the central atom.
 - o No O-O bonds (expect for O_2 & O_3).

S = Number of valence electrons to share = Total (N) - Total(A) = 12 - 20 = 8

Number of lone pairs electrons = Total (A) – (S) = 12 - 8 = 4

Skeleton:	Skeleton + Shared Electrons	
O H C H	O •••	
Skeleton + Available Electrons	H C H Final Structure	
Skeleton + Avanable Elections	Tillal Structure	
Using lone pairs electrons: O B H C H	*O *	