Electron configurations to describe and communicate the arrangement of electrons around the nucleus of atoms.

Steps for determining electron configurations:

1. Identify how many electrons are in the atom or in ion.

Example: Carbon has 6 electrons, Al³⁺ has 10 electrons.

2. Determine the principal energy level (*n*) of the atom

n = 2 for carbon (it is in the second period), n=3 aluminum (it is in the third period).

- 3. Determine the number of sublevels.
 - For the principal energy level (n) there are sublevels (l=0, 1, 2, 3, n-1).
 - Example: for n = 4, 1 = 0, 1, 2, 3
 - Each sublevel has a letter name as:

1 = 0	1 = 1	1 = 2	1 = 3	1=4
S	Р	d	f	g

• Maximum electrons in each subshell:

S	Р	d	f	g
2	6	10	14	18

4. Assign electrons to the sublevels as: $nl^{\#e}$ follow the order of the subshells (aufbau rule = building-up principle) in the periodic table: Move from top to the bottom periods (rows) in order & from left to right of each period (row).

Aufbau Parodic Table									
n	1 2	3	4 5 6 7 8 9 10 11	12	13 14 15 16 17	18			
1	1S					1S			
2	2S				2р				
3	3S				Зр				
4	4S		3d	4р					
5	5S		4d	5p					
6	6S	4f	5d		6р				
7	7S	5f	6d						

In order as: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p...

- *Is* will be filled first, with the maximum of 2 electrons.
- 2s will be filled next, with the maximum of 2 electrons.
- 2*p* will be filled next, with the maximum of 6 electrons.
- *Continue until no* any electrons left.

Example: write electron configuration for titanium (Ti) atom.

- Look at the periodic table, atomic number is 22. (For a normal atom, atomic number gives number of electrons).
- Follow the subshells order (aufbau rule): n = 22

₂₂*Ti*: 1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d²

Also, an abbreviated method for electron configurations is to use the Core Electrons (Noble Gas Core) for presentation of electron configuration:

- Choose the nearest noble gas to the element in your question.
- Use square brackets [] around the chemical symbol of the noble gas.
- Continue to write remaining subshell after the noble gas core.

An Example: Write electron configuration for potassium atom.

Solution:

- The nearest noble gas element to the potassium is argon (Ar).
- The electron configuration for argon is: Ar: 1s² 2s² 2p⁶ 3s² 3p⁶
- The electron configuration for potassium is:

K: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹

- As we see Potassium has an argon core plus 4s¹
- The abbreviated electron configuration for potassium is: K: [Ar] 4s¹

An Example: Write electron configurations for vanadium atom and vanadium ion (V^{3+}) .

Answer:

V: $[Ar] 4s^2, 3d^3$ *V*³⁺: $[Ar] 3d^2$

Special rule:

In general, electrons are removed from the valence-shell *s* orbitals before they are removed from valence *d* orbitals when transition metals are ionized.