Electron configurations to describe and communicate the arrangement of electrons around the nucleus of atoms.

Steps for determining electron configurations:

1. Identify how many electrons are in the atom or in ion.

Example: Carbon has 6 electrons, Al^{3+} has 10 electrons.

2. Determine the principal energy level (n) of the atom
$n=2$ for carbon (it is in the second period), $n=3$ aluminum (it is in the third period).
3. Determine the number of sublevels.

- For the principal energy level (n) there are sublevels $(\mathrm{l}=0,1,2,3, \mathrm{n}-1)$.
- Example: for $\mathrm{n}=4,1=0,1,2,3$
- Each sublevel has a letter name as:

$\mathrm{l}=0$	$\mathrm{l}=1$	$\mathrm{l}=2$	$\mathrm{l}=3$	$\mathrm{l}=4$
S	P	d	f	g

- Maximum electrons in each subshell:

S	P	d	f	g
2	6	10	14	18

4. Assign electrons to the sublevels as: $n l^{\#}$ follow the order of the subshells (aufbau rule $=$ building-up principle) in the periodic table: Move from top to the bottom periods (rows) in order \& from left to right of each period (row).

In order as: $1 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{p}, 3 \mathrm{~s}, 3 \mathrm{p}, 4 \mathrm{~s}, 3 \mathrm{~d}, 4 \mathrm{p}, 5 \mathrm{~s}, 4 \mathrm{~d}, 5 \mathrm{p} \ldots$

- $\quad l s$ will be filled first, with the maximum of 2 electrons.
- $2 s$ will be filled next, with the maximum of 2 electrons.
- $2 p$ will be filled next, with the maximum of 6 electrons.
- Continue until no any electrons left.

Example: write electron configuration for titanium (Ti) atom.

- Look at the periodic table, atomic number is 22. (For a normal atom, atomic number gives number of electrons).
- Follow the subshells order (aufbau rule):
$\mathrm{n}=22$

$$
{ }_{22} T i: 1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}, 4 s^{2}, 3 d^{2}
$$

Also, an abbreviated method for electron configurations is to use the Core Electrons (Noble Gas Core) for presentation of electron configuration:

- Choose the nearest noble gas to the element in your question.
- Use square brackets [] around the chemical symbol of the noble gas.
- Continue to write remaining subshell after the noble gas core.

An Example: Write electron configuration for potassium atom.
Solution:

- The nearest noble gas element to the potassium is argon (Ar).
- The electron configuration for argon is:

$$
\operatorname{Ar}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}
$$

- The electron configuration for potassium is:
$K: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$
- As we see Potassium has an argon core plus $4 s^{1}$
- The abbreviated electron configuration for potassium is:

K: [Ar] 4s ${ }^{1}$
An Example: Write electron configurations for vanadium atom and vanadium ion $\left(V^{3+}\right)$.
Answer:

$$
\begin{aligned}
& V: \quad[A r] 4 s^{2}, 3 d^{3} \\
& V^{3+}:[A r] 3 d^{2}
\end{aligned}
$$

Special rule:
In general, electrons are removed from the valence-shell s orbitals before they are removed from valence d orbitals when transition metals are ionized.

